Induction of Prenylated Isoflavonoids and Stilbenoids in Legumes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protection of PC12 Cells Against Superoxide-Induced Damage by Isoflavonoids from Astragalus Mongholicus1
BIOMEDICAL AND ENVIRONMENTAL SCIENCES 22, 50-54 (2009) www.besjournal.com Protection of PC12 Cells against Superoxide-induced Damage by 1 Isoflavonoids from Astragalus mongholicus # + + #,2 DE-HONG YU , YONG-MING BAO , LI-JIA AN , AND MING YANG #The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China; +Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/ xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isoflavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/ XO-induced injury to PC12 cells. Their EC50 values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant influence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals. -
Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites
nutrients Review Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites Matej Sova 1,* and Luciano Saso 2 1 Faculty of Pharmacy, University of Ljubljana, Aškerˇceva7, 1000 Ljubljana, Slovenia 2 Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] * Correspondence: matej.sova@ffa.uni-lj.si; Tel.: +386-1-476-9556 Received: 24 June 2020; Accepted: 22 July 2020; Published: 23 July 2020 Abstract: Hydroxycinnamic acids (HCAs) are important natural phenolic compounds present in high concentrations in fruits, vegetables, cereals, coffee, tea and wine. Many health beneficial effects have been acknowledged in food products rich in HCAs; however, food processing, dietary intake, bioaccessibility and pharmacokinetics have a high impact on HCAs to reach the target tissue in order to exert their biological activities. In particular, metabolism is of high importance since HCAs’ metabolites could either lose the activity or be even more potent compared to the parent compounds. In this review, natural sources and pharmacokinetic properties of HCAs and their esters are presented and discussed. The main focus is on their metabolism along with biological activities and health benefits. Special emphasis is given on specific effects of HCAs’ metabolites in comparison with their parent compounds. Keywords: diet; natural compounds; phenolic acids; hydroxycinnamic acids; metabolites; pharmacokinetic properties; biological activities; health effects 1. Introduction Our diet rich in plant food contains several health-beneficial ingredients. Among such ingredients, polyphenols represent one of the most important natural compounds. Phenolic compounds are members of probably the largest group of plant secondary metabolites and have the main function to protect the plants against ultraviolet radiation or invasion by pathogens [1,2]. -
Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves
UC San Diego UC San Diego Previously Published Works Title Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Permalink https://escholarship.org/uc/item/5pw0t3dx Journal Metabolites, 4(3) ISSN 2218-1989 Authors Murakami, Shinichiro Nakata, Ryu Aboshi, Takako et al. Publication Date 2014-07-04 DOI 10.3390/metabo4030532 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Metabolites 2014, 4, 532-546; doi:10.3390/metabo4030532 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Article Insect-Induced Daidzein, Formononetin and Their Conjugates in Soybean Leaves Shinichiro Murakami 1, Ryu Nakata 1, Takako Aboshi 1, Naoko Yoshinaga 1, Masayoshi Teraishi 1, Yutaka Okumoto 1, Atsushi Ishihara 3, Hironobu Morisaka 1, Alisa Huffaker 2, Eric A Schmelz 2 and Naoki Mori 1,* 1 Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan; E-Mails: [email protected] (S.M.); [email protected] (R.N.); [email protected] (T.A.); [email protected] (N.Y.); [email protected] (M.T.); [email protected] (Y.O.); [email protected] (H.M.) 2 Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, USDA, 1600 S.W. 23RD Drive, Gainesville, FL 32606, USA; E-Mails: [email protected] (A.H.); [email protected] (E.A.S.) 3 Department of Agriculture, Tottori University, Koyama-machi 4-101, Tottori 680-8550, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-75-753-6307. -
IN SILICO ANALYSIS of FUNCTIONAL Snps of ALOX12 GENE and IDENTIFICATION of PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS
Tulasidharan Suja Saranya et al. Int. Res. J. Pharm. 2014, 5 (6) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article IN SILICO ANALYSIS OF FUNCTIONAL SNPs OF ALOX12 GENE AND IDENTIFICATION OF PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS LIPOXYGENASE INHIBITORS Tulasidharan Suja Saranya, K.S. Silvipriya, Manakadan Asha Asokan* Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Viswa Vidyapeetham University, AIMS Health Sciences Campus, Kochi, Kerala, India *Corresponding Author Email: [email protected] Article Received on: 20/04/14 Revised on: 08/05/14 Approved for publication: 22/06/14 DOI: 10.7897/2230-8407.0506103 ABSTRACT Cancer is a disease affecting any part of the body and in comparison with normal cells there is an elevated level of lipoxygenase enzyme in different cancer cells. Thus generation of lipoxygenase enzyme inhibitors have suggested being valuable. Individual variation was identified by the functional effects of Single Nucleotide Polymorphisms (SNPs). 696 SNPs were identified from the ALOX12 gene, out of which 73 were in the coding non-synonymous region, from which 8 were found to be damaging. In silico analysis was performed to determine naturally occurring flavonoids such as isoflavones having the basic 3- phenylchromen-4-one skeleton for the pharmacological activity, like Genistein, Diadzein, Irilone, Orobol and Pseudobaptigenin. O-methylated isoflavones such as Biochanin, Calycosin, Formononetin, Glycitein, Irigenin, 5-O-Methylgenistein, Pratensein, Prunetin, ψ-Tectorigenin, Retusin and Tectorigenine were also used for the study. Other natural products like Aesculetin, a coumarin derivative; flavones such as ajoene and baicalein were also used for the comparative study of these natural compounds along with acteoside and nordihydroguaiaretic acid (antioxidants) and active inhibitors like Diethylcarbamazine, Zileuton and Azelastine as standard for the computational analysis. -
Influence of Short-Term Postharvest Ozone Treatments in Nitrogen Or Air Atmosphere on the Metabolic Response of White Wine Grapes
DIPARTIMENTO PER L’INNOVAZIONE NEI SISTEMI BIOLOGICI, AGROALIMENTARI E FORESTALI Corso di Dottorato di Ricerca BIOTECNOLOGIA DEGLI ALIMENTI - XXVII CICLO Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes s.s.d. AGR/15 Tesi di dottorato di: Dott.ssa Katya Carbone Coordinatore del corso Tutore Prof. Marco Esti Prof. Fabio Mencarelli Firma Firma Data della discussione 4 giugno 2015 Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes to my beloved family “gutta cavat lapidem non vi, sed saepe cadendo” 2 Ph.D. in Food Biotechnology - XXVII CICLO Katya Carbone The present Ph.D. thesis is based on the following publications 1. Carbone K. (2012). Effect of ozone postharvest treatment on the oxidative metabolism of grapes for wine production. In: Proc.s of the 17th Workshop on the “Developments in the Italian PhD Research in Food Science and Technology”, Cesena, 19-21 September 2012, pp. 289-290 2. Carbone K. (2013). Effects of ozone and nitrogen postharvest treatment on antioxidant compounds of wine grapes. In: Proc.s of the 18th Workshop on the “Developments in the Italian PhD Research in Food Science and Technology”, 25-27 September 2013, Conegliano, Italia, pp. 229-230. 3. Carbone K. (2014). Qualitative characterization, polyphenolic profiling and chemometric analysis of wine white grapes subjected to different ozone postharvest treatments. In: Proc.s of the 19th Workshop on the “Developments in the Italian PhD Research in Food Science and Biotechnology”, 24-26 September 2014, Bari, Italia, pp. -
Wine and Grape Polyphenols — a Chemical Perspective
Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011). -
Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia Sphacelata
Supplementary material Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA- Orbitrap-Mass Spectrometry Ruth E. Barrientos 1,†, Shakeel Ahmed 1,†, Carmen Cortés 1, Carlos Fernández-Galleguillos 1, Javier Romero-Parra 2, Mario J. Simirgiotis 1,* and Javier Echeverría 3,* 1 Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; [email protected] (R.E.B.), [email protected] (S.A.), [email protected] (C.C.), [email protected] (C.F.-G.) 2 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago, Chile, [email protected] 3 Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170002, Chile * Correspondence: [email protected] or [email protected] (M.J.S.); [email protected] (J.E.); Tel.: +56-63-63233257 (M.J.S.); +56-2-27181154 (J.E.) † These authors contributed equally to this study Received: 03 July 2020; Accepted: 14 August 2020; Published: August 2020 Keywords: Greigia sphacelata, endemic fruits, UHPLC-PDA-Orbitrap-MS, metabolomic analysis, antioxidant, cholinesterase inhibition Figure S1 (a-v): Full MS spectra and structures of compounds 1, 3, 7, 9, 12, 13, 15, 25, 27, 28, 29, 35, 37, 42, 43, 44, 46, 48, 51, 53 and 55. Docking analyses of Greigia sphacelata main compounds Material and Methods Docking simulations were carried for those compounds (Figure S1) that turned out to be the most abundant species according to the UHPLC Chromatogram (Figure 2) obtained from the pulp and seeds of the G. -
WO 2011/094457 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date ι 4 August 2011 (04.08.2011) WO 201 1/094457 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12P 7/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/022790 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 27 January 201 1 (27.01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/298,844 27 January 2010 (27.01 .2010) US (84) Designated States (unless otherwise indicated, for every 61/321,480 6 April 2010 (06.04.2010) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicants (for all designated States except US): OPX ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, BIOTECHNOLOGIES, INC. -
By Acid Hydrolysis and LC-MS/MS
International Conference on Food, Agriculture and Biology (FAB-2014) June 11-12, 2014 Kuala Lumpur (Malaysia) Determination of Phytoestrogenic Compounds of Chickpea (Cicer Arientinum L.) By Acid Hydrolysis and LC-MS/MS Nevzat Konar, Deryacan Aygunes, Nevzat Artik, Murat Erman, Gulay Coksari, and Ender Sinan Poyrazoglu or with ether and/or ethyl acetate for aglycone only containing Abstract—In this study, acidified hydrolysates of chickpea were samples. Enzymatic and/or acidic hydrolysis during extraction analysed to determine their contents of 13 different phytoestrogenic is sometimes employed depending on the study purpose, when compound as both free and conjugated isoflavones, lignans and only isoflavone and lignan are examined [3, 5]. coumestrol. Samples of hydrolysates were analysed by triple In this study, we analysed the amounts of free and quadrupole LC-MS/MS. Cellulase, β-glucosidase and β- conjugated isoflavones, lignans and, coumestrol in which are glucuronidase were used for acid hydrolysis. The highest the most interested phytoestrogenic compounds [6], in determined phytoestrogenic compounds content of hydrolysate was chickpeas (Cicer arientinum L.) of the Kocbasi variety secoisolariciresinol, 925.1 ± 10.9 µg/100 g. Sissotrin and glycitein which were determined as 446.8 ± 11.8 µg/100 g and 105.2 ± 9.87 samples prepared by acid hydrolysis. respectively, were the highest determined isoflavones concentration. Daidzein, daidzin, formononetin, matairesinol, apigenin, quercetin, II. MATERIALS AND METHODS ruin and coumestrol were not determined in the hydrolysates. A. Sampling and Sample Preparation Keywords—Chickpea, Coumestrol, Isoflavone, Lignan, LC- Sample of chickpea was bought in 1.0 kg amounts from the MS/MS, Phytoestrogen. local market in Ankara (Turkey) in 2012. -
Phylogenetic Insights on the Isoflavone Profile Variations In
Food Research International 76 (2015) 51–57 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Phylogenetic insights on the isoflavone profile variations in Fabaceae spp.: Assessment through PCA and LDA Tatiana Visnevschi-Necrasov a,b, João C.M. Barreira b,c,⁎,SaraC.Cunhab, Graça Pereira d, Eugénia Nunes a, M. Beatriz P.P. Oliveira b a CIBIO-ICETA, Faculdade de Ciências, Universidade do Porto, R. Padre Armando Quintas 4485-661 Vairão, Portugal b REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, No. 228, 4050-313, Porto,Portugal c CIMO-ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal d INRB/IP — INIA — Instituto Nacional de Recursos Biológicos, Caia E São Pedro Estrada Gil Vaz, 7350-228 Elvas, Portugal article info abstract Article history: Legumes (Fabaceae) are important crops, known as sources of food, feed for livestock and raw materials for in- Received 30 September 2014 dustry. Their ability to capture atmospheric nitrogen during symbiotic processes with soil bacteria reduces the Received in revised form 15 November 2014 need for expensive chemical fertilizers, improving soil and water quality. Several Fabaceae species are acknowl- Accepted 20 November 2014 edged for the high levels of secondary metabolites. Isoflavones are among the most well-known examples of Available online 28 November 2014 these compounds, being recognized for their several types of biological activity. Herein, isoflavone profiles were characterized in nine species of four Fabaceae genera (Biserrula, Lotus, Ornithopus and Scorpiurus). Plants Chemical compounds studied in this article: fl Daidzin (PubChem CID: 107971) were harvested in the late ower physiological stage to prevent biased results due to naturally occurring varia- Genistin (PubChem CID: 5281377) tions along the vegetative cycle. -
Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids In
Article pubs.acs.org/JAFC Metabolism of Nonesterified and Esterified Hydroxycinnamic Acids in Red Wines by Brettanomyces bruxellensis † ‡ § § † Lauren M. Schopp, Jungmin Lee, James P. Osborne, Stuart C. Chescheir, and Charles G. Edwards*, † School of Food Science, Washington State University, Pullman, Washington 99164−6376, United States ‡ USDA−ARS−HCRU worksite, Parma, Idaho 83660, United States § Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States ABSTRACT: While Brettanomyces can metabolize nonesterified hydroxycinnamic acids found in grape musts/wines (caffeic, p- coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p- coutaric, and fertaric acids, respectively). Red wines from Washington and Oregon were inoculated with B. bruxellensis, while hydroxycinnamic acids were monitored by HPLC. Besides consuming p-coumaric and ferulic acids, strains I1a, B1b, and E1 isolated from Washington wines metabolized 40−50% of caffeic acid, a finding in contrast to strains obtained from California wines. Higher molar recoveries of 4-ethylphenol and 4-ethylguaiacol synthesized from p-coumaric and ferulic acids, respectively, were observed in Washington Cabernet Sauvignon and Syrah but not Merlot. This finding suggested that Brettanomyces either (a) utilized vinylphenols formed during processing of some wines or (b) metabolized other unidentified phenolic precursors. None of the strains of Brettanomyces studied metabolized caftaric or p-coutaric acids present in wines from Washington or Oregon. KEYWORDS: Brettanomyces, hydroxycinnamic acids, phenolic acids, cinnamates, volatile phenols ■ INTRODUCTION pool of precursors available for conversion to volatile phenols. 21 Brettanomyces has been regarded by some as the most severe In fact, Nikfardjam et al. -
Determination of Phytoestrogenic Compounds of Soybean Sprouts Grown in Antalya, Turkey
International Journal of Chemical, Environmental & Biological Sciences (IJCEBS) Volume 1, Issue 1 (2013) ISSN 2320–4087 (Online) Determination of Phytoestrogenic Compounds of Soybean Sprouts Grown in Antalya, Turkey Nevzat KONAR solvent extraction and/or enzymatic hydrolysis and acid Abstract—In this study, quantitative identifications of hydrolysis [6, 7]. phytoestrogenic compounds, such as free and conjugated isoflavones, In this study, we analysed the amounts of free and lignans, coumestrol and various bioflavonoids, on fresh soybean sprout conjugated isoflavones, lignans and, coumestrol in samples samples, grown in Antalya Turkey, by a triple quadrupole liquid of soybean sprouts grown in Antalya Turkey (Glycine max chromatography-tandem mass spectrorscopy (LC-MS/MS) technique L.) prepared by conventional extraction, acid hydrolysis, following different pretreatments, such as conventional extraction enzymatic hydrolysis and also both enzymatic and acid (CE), acid hydrolysis (AH), enzymatic hydrolysis (EH) and enzymatic and acid hydrolysis (EAH). The obtained data and levels of the hydrolysis. identified compounds significantly varied according to the sample preparation method. As example, the most effective sample preparation II. MATERIALS AND METHODS method for total isoflavone content determination was the CE. It was A. Sampling and Sample Preparation found that secoisolariciresinol (2446.0 µg/100 g, wet basis, sample prepared by EAH) was the major phytoestrogenic compound in the Fresh samples of soybean sprouts grown in Antalya, samples. Turkey region were bought in 1.0 – 1.5 kg amounts from three different local market in Ankara (Turkey) in 2011. All Keywords—Soybean sprouts, phytoestrogen, hydrolysis, LC- parts of the samples were chopped in a chopper (Fakir, MS/MS Germany).