Kingdom ANIMALIA Subkingdom Parazoa Eumetazoa Phylum Porifera Cnidaria Platyhelminthes Nematoda Mollusca Annelida Arthropoda Echinodermata

Total Page:16

File Type:pdf, Size:1020Kb

Kingdom ANIMALIA Subkingdom Parazoa Eumetazoa Phylum Porifera Cnidaria Platyhelminthes Nematoda Mollusca Annelida Arthropoda Echinodermata Kingdom ANIMALIA Subkingdom Parazoa Eumetazoa Phylum Porifera Cnidaria Platyhelminthes Nematoda Mollusca Annelida Arthropoda Echinodermata Symmetry no symmetry Radial Bilateral Bilateral Bilateral Bilateral Bilateral Bilateral larva Adult radial Body Cavity none none absent FALSE TRUE Acoelomate PseudoCoel. Coelomate Coelomate Coelomate Coelomate Organization No tissues True tissues Organ-system Organ-system Organ-system Organ-system Organ-system Organ-system Development Protostome Protostome Protostome Protostome Protostome Deutrostome Segmentation absent absent unsegmented segmented segmented Characters 2 layers 2 layers Flat worms Round worms soft-bodied serially segment Exoskeleton Spiny-skinned Choanocytes Cnidocytes solid, 3-layered complete DigSys complete DigSys completeDigSys completeDigSys Endoskeleton of Spicules Polyp, Medusa only mouth no cilia may have shell most have setae paired, jointed bony plates Filter-feeder only mouth free living or live in soil or head, foot and hydroskeleton appendages water vascular many pores parasitic animal parasite viseral mass most insects system, tubefeet rasping radula have wings high regeneration Only marine Examples Grantia Hydra Planaria Ascaris Snail Neries Insect-butterfly Sea star Physalia Flukes Oyster Earthworm Crustacea-crab Sea urchin Jelly fish Tape worm Squid Leech millipede sea cucumber Sea Anemone Octopus centipede brittle star Corals spiders feather star scorpion Chordata Bilateral Coelomate Organ-system Deutrostome segmented Notochord dorsal nerve cord pharyngeal pouches have tail most with backbone gills or lungs Heart and vessels Lamprey sharks salmon, tuna frog, salamander lizard, turtle, alligator pigeon, sea-gull kangaroo, bat, rat.
Recommended publications
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • Grade Levels K-1
    Grade Levels K-1 Tlingit Cultural Significance Since time immemorial Tlingit people have survived using what nature provides. Southeast Alaska has a rich, extensive coastline, so Tlingit people gather numerous beach creatures that nourish them. They in turn respect the creatures of the tides and beaches that sustain them. During winter and early spring, when fresh foods weren’t always A series of elementary level thematic units available, they began the tradition of gathering food from the beaches. featuring Tlingit language, culture and history This unit is best suited for the spring because many schools conduct Sea Week/ were developed in Juneau, Alaska in 2004-6. Month activities during April or May. The project was funded by two grants from the U.S. Department of Education, awarded Elder/Culture Bearer Role to the Sealaska Heritage Institute (Boosting Academic Achievement: Tlingit Language Elders/Culture bearers enrich this unit through their knowledge of beach creatures Immersion Program, grant #92-0081844) and gathering and processing techniques. In addition they can help teach the and the Juneau School District (Building on Lingít names of beach creatures and enrich the activities with personalized cultural Excellence, grant #S356AD30001). and historical knowledge. Lessons and units were written by a team of teachers and specialists led by Nancy Overview Douglas, Elementary Cultural Curriculum Lesson #1—Old Woman of the Tides. This Tlingit legend provides a cultural Coordinator, Juneau School District. The context for learning about inter-tidal sea life. Students listen to the legend, team included Juneau teachers Kitty Eddy, sequence events from the story and retell it to others.
    [Show full text]
  • Reef Fishes Use Sea Anemones As Visual Cues for Cleaning Interactions with Shrimp
    Journal of Experimental Marine Biology and Ecology 416–417 (2012) 237–242 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp Lindsay K. Huebner ⁎, Nanette E. Chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, AL 36849, USA article info abstract Article history: Marine cleaners benefit diverse fish clients via removal of ectoparasites, yet little is known about how fishes Received 17 August 2011 locate small, inconspicuous cleaner shrimps on coral reefs. Pederson shrimp Ancylomenes pedersoni are effec- Received in revised form 19 December 2011 tive cleaners in the Caribbean Sea, and additionally form obligate associations with corkscrew sea anemones Accepted 5 January 2012 Bartholomea annulata, which also serve as hosts to a variety of other crustacean symbionts. We examined the Available online 24 January 2012 visual role of B. annulata to reef fishes during cleaning interactions with A. pedersoni by comparing anemone characteristics with fish visitation rates, and by manipulating the visibility of anemones and cleaner shrimp in Keywords: fi fi Ancylomenes pedersoni eld experiments using mesh covers. Rates of visitation by shes to cleaning stations increased primarily Cleaner shrimp with anemone body size and the total number of crustacean symbionts, but did not change consistently in Cleaning symbiosis response to covers. Fishes posed for cleaning at stations only where anemones remained visible, regardless Client fishes of whether shrimp were visible. Shrimp at stations where anemones were covered performed fewer cleaning Sea anemone interactions with fishes, as fishes did not continue to pose when anemones were not visible.
    [Show full text]
  • Stylohates: a Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae)1
    Pacific Science (1980), vol. 34, no. 4 © 1981 by The University Press of Hawaii. All rights reserved Stylohates: A Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae) 1 DAPHNE FAUTIN DUNN,2 DENNIS M. DEVANEY,3 and BARRY ROTH 4 ABSTRACT: Anatomy and cnidae distinguish two species of deep-sea ac­ tinians that produce coiled, chitinous shells inhabited by hermit crabs of the genus Parapagurus. The actinian type species, Stylobates aeneus, first assigned to the Mollusca, occurs around Hawaii and Guam with P. dofleini. Stylobates cancrisocia, originally described as Isadamsia cancrisocia, occurs off east Africa with P. trispinosus. MANY MEMBERS OF THE ORDER Actiniaria pedal disk secretes a chitinous cuticle over attach obligately or facultatively to gas­ the small mollusk shell which the pagurid tropod shells inhabited by hermit crabs. had initially occupied and to which the small Some of these partnerships seem to be actinian had first attached, often extending strictly phoretic, the normally sedentary sea the cuticular material beyond the lip of the anemone being transported by the motile shell (Balss 1924, Faurot 1910, Gosse 1858). hermit crab (Ross 1971, 1974b). The re­ This arrangement affords the crab mainly lationships between other species pairs are mechanical protection (Ross 1971). mutualistic, the anemone gaining motility Carlgren (I928a) described as a new genus while protecting its associate from predation and species Isadamsia cancrisocia (family (Balasch and Mengual 1974; Hand 1975; Actiniidae), an actinian attached to a shell McLean and Mariscal 1973; Ross 1971, occupied by a hermit crab, from four speci­ 1974b; Ross and von Boletsky 1979). As the mens collected by the Deutschen Tiefsee­ crustacean grows, it must move to increas­ Expedition (1898-1899) at 818 m in the ingly larger shells.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella Vectensis
    Reference: BiD!. Bull. 182: 169-176. (April, 1992) The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis CADET HAND AND KEVIN R. UHLINGER Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, California 94923 Abstract. Nematostella vectensis, a widely distributed, water at room temperatures (Stephenson, 1928), and un­ burrowing sea anemone, was raised through successive der the latter conditions some species produce numerous sexual generations at room temperature in non-circulating asexual offspring by a variety of methods (Cary, 1911; seawater. It has separate sexes and also reproduces asex­ Stephenson, 1929). More recently this trait has been used ually by transverse fission. Cultures of animals were fed to produce clones ofgenetically identical individuals use­ Artemia sp. nauplii every second day. Every eight days ful for experimentation; i.e., Haliplanella luciae (by Min­ the culture water was changed, and the anemones were asian and Mariscal, 1979), Aiptasia pulchella (by Muller­ fed pieces of Mytilus spp. tissue. This led to regular Parker, 1984), and Aiptasia pallida (by Clayton and Las­ spawning by both sexes at eight-day intervals. The cultures ker, 1984). We now add one more species to this list, remained reproductive throughout the year. Upon namely Nematostella vectensis Stephenson (1935), a small, spawning, adults release either eggs embedded in a gelat­ burrowing athenarian sea anemone synonymous with N. inous mucoid mass, or free-swimming sperm. In one ex­ pellucida Crowell (1946) (see Hand, 1957). periment, 12 female isolated clonemates and 12 male iso­ Nematostella vectensis is an estuarine, euryhaline lated clonemates were maintained on the 8-day spawning member ofthe family Edwardsiidae and has been recorded schedule for almost 8 months.
    [Show full text]
  • Animal Diversity Part 2
    Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 –
    [Show full text]
  • Condylactis Gigantea (Giant Caribbean Sea Anemone)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Condylactis gigantea (Giant Caribbean Sea Anemone) Order: Actiniaria (Sea Anemones) Class: Anthozoa (Corals and Sea Anemones) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Giant Caribbean sea anemone, Condylactis gigantea. [https://commons.wikimedia.org/wiki/File:Condylactis_gigantea_(giant_Caribbean_sea_anemone)_(San_Salvador_I sland,_Bahamas)_7_(16085678735).jpg, downloaded 10 March 2016] TRAITS. The giant Caribbean sea anemone, also called the pink or purple-tipped anemone, as well as giant golden anemone has a distinct purple or pink colour at the tip of its tentacles (Zahra, n.d.) (Fig. 1). Contrastingly, behind its tip straight down to its base, the tentacles are brown or greenish in colour. This organism may possess either male or female reproductive organs, or more rarely both (hermaphrodite). Its size is estimated at 15cm high and 30cm wide with a disc as wide as approximately 40cm (Wikipedia, 2015). This large column-shaped animal has 100 or more tentacles (free floating) around its mouth which is hidden at the centre of all the tentacles on an oral disc, leading to the gastrovascular cavity. Cnidocysts (stinging organelles that inject poison) are present in the tentacles (Hickman et al., 2002, 119). The basal disc is UWI The Online Guide to the Animals of Trinidad and Tobago Ecology firmly connected to the substrate causing the organism to be sessile or fixed into location (Zahra, n.d). The giant Caribbean sea anemone lacks a medusa (jellyfish-like) stage in the life cycle. DISTRIBUTION. Largely found in the Caribbean, that is, mainly in the West Indies, as well as they span the western Atlantic Ocean, including Bermuda (Silva, 2000).
    [Show full text]
  • Cellular and Molecular Processes Leading to Embryo Formation In
    Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini To cite this version: Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes through- out animal evolution. Development Genes and Evolution, Springer Verlag, 2013, 223, pp.5 - 22. 10.1007/s00427-012-0399-3. hal-01456624 HAL Id: hal-01456624 https://hal.archives-ouvertes.fr/hal-01456624 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author's personal copy Dev Genes Evol (2013) 223:5–22 DOI 10.1007/s00427-012-0399-3 REVIEW Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander V. Ereskovsky & Emmanuelle Renard & Carole Borchiellini Received: 20 December 2011 /Accepted: 26 March 2012 /Published online: 29 April 2012 # Springer-Verlag 2012 Abstract The emergence of multicellularity is regarded as metamorphosis. Thus, sponges can provide information en- one of the major evolutionary events of life. This transition abling us to better understand early animal evolution at the unicellularity/pluricellularity was acquired independently molecular level but also at the cell/cell layer level.
    [Show full text]
  • Species Delimitation in Sea Anemones (Anthozoa: Actiniaria): from Traditional Taxonomy to Integrative Approaches
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2019 doi:10.20944/preprints201911.0118.v1 Paper presented at the 2nd Latin American Symposium of Cnidarians (XVIII COLACMAR) Species delimitation in sea anemones (Anthozoa: Actiniaria): From traditional taxonomy to integrative approaches Carlos A. Spano1, Cristian B. Canales-Aguirre2,3, Selim S. Musleh3,4, Vreni Häussermann5,6, Daniel Gomez-Uchida3,4 1 Ecotecnos S. A., Limache 3405, Of 31, Edificio Reitz, Viña del Mar, Chile 2 Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km. 6, Puerto Montt, Chile 3 Genomics in Ecology, Evolution, and Conservation Laboratory, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. 4 Nucleo Milenio de Salmonidos Invasores (INVASAL), Concepción, Chile 5 Huinay Scientific Field Station, P.O. Box 462, Puerto Montt, Chile 6 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avda. Brasil 2950, Valparaíso, Chile Abstract The present review provides an in-depth look into the complex topic of delimiting species in sea anemones. For most part of history this has been based on a small number of variable anatomic traits, many of which are used indistinctly across multiple taxonomic ranks. Early attempts to classify this group succeeded to comprise much of the diversity known to date, yet numerous taxa were mostly characterized by the lack of features rather than synapomorphies. Of the total number of species names within Actiniaria, about 77% are currently considered valid and more than half of them have several synonyms. Besides the nominal problem caused by large intraspecific variations and ambiguously described characters, genetic studies show that morphological convergences are also widespread among molecular phylogenies.
    [Show full text]
  • Diversity of Animals 355 15 | DIVERSITY of ANIMALS
    Concepts of Biology Chapter 15 | Diversity of Animals 355 15 | DIVERSITY OF ANIMALS Figure 15.1 The leaf chameleon (Brookesia micra) was discovered in northern Madagascar in 2012. At just over one inch long, it is the smallest known chameleon. (credit: modification of work by Frank Glaw, et al., PLOS) Chapter Outline 15.1: Features of the Animal Kingdom 15.2: Sponges and Cnidarians 15.3: Flatworms, Nematodes, and Arthropods 15.4: Mollusks and Annelids 15.5: Echinoderms and Chordates 15.6: Vertebrates Introduction While we can easily identify dogs, lizards, fish, spiders, and worms as animals, other animals, such as corals and sponges, might be easily mistaken as plants or some other form of life. Yet scientists have recognized a set of common characteristics shared by all animals, including sponges, jellyfish, sea urchins, and humans. The kingdom Animalia is a group of multicellular Eukarya. Animal evolution began in the ocean over 600 million years ago, with tiny creatures that probably do not resemble any living organism today. Since then, animals have evolved into a highly diverse kingdom. Although over one million currently living species of animals have been identified, scientists are [1] continually discovering more species. The number of described living animal species is estimated to be about 1.4 million, and there may be as many as 6.8 million. Understanding and classifying the variety of living species helps us to better understand how to conserve and benefit from this diversity. The animal classification system characterizes animals based on their anatomy, features of embryological development, and genetic makeup.
    [Show full text]