<<

Int. J. Chem. Sci.: 8(1), 2010, 119-131

EFFICIENT SYNTHESIS OF AND

QUINOXALINE DERIVATIVES WITH ZnO.H 2O2 UNDER MILD CONDITIONS G. A. MESHRAM * and VISHVANATH D. PATIL

OrganicChemistryResearchLaboratory,DepartmentofChemistry,Vidyanagari,Santacruz(E), MUMBAI400098(M.S.)INDIA

ABSTRACT

Variousandquinoxalinesderivativeshavebeensynthesizedwithexcellentyields using a catalytic amount of zinc oxide with hydrogen peroxide (ZnO.H 2O2) at room temperature. The advantagesofthissyntheticprotocolareawidesubstraterange,easyhandlingandcommerciallyavailable inexpensivecatalyst.

Key words : Benzimidazoles,Quinoxalines,Zincoxide,Hydrogenperoxide.

INTRODUCTION

The development of simple, efficient, environmentallybenign and economically viablechemicalprocessesormethodologiesforwidelyusedorganiccompoundsisingreat demand. 1Benzimidazolearepresentinvariousbioactivecompounds possessing antiviral, antihypertension and anticancer properties. 2,3 Compounds possessing the benzimidazole moiety express significant activity against several viruses such as HIV, 4 Herpes(HSV1) 5 and influenza 6. Bisbenzimidazole is DNAminor grove binding agents possessing anti tumouractivity. 7

Thecondensationofophenylenediaminewithcarbonylcompoundsinthepresence ofstrongsuchaspolyphosphoricormineral acids 8andotherreagentssuchas 9 10 11 12 I2/KI/K 2CO 3, Nhalosuccinamide(X=Cl,Br,I), Yb(OTf) 3, ,PEG100, ,(NH 4)H2PW 12 13 14 15 O40 , and palladiumaswellas microwave irradiation and solid phasereactions, are reportedinliterature.However,manyofthesyntheticprotocolsreportedsofarsufferfrom disadvantages,suchastherequirementforanhydrousconditions,useoforganicsolvents,

______ *Authorforcorrespondence;Fax:02226528547;Email:[email protected] 120 G. A. Meshram and V. D. Patil: Efficient Synthesis of Benzimidazole and…. harshreactionconditions,prolongedreactiontimes,expensivereagentsandlowtomoderate yields.

EXPERIMENTAL

Almostallthereportedmethodsmakeuseofanacidcatalyst,givingrisetotedious working procedures. Therefore, the development of a costeffective, safe and environmentallyfriendlyreagentisstillneeded.

NH O N 2 ZnO.H2 O 2 R′ R′ + r.t. NH H N R 2 R H R:H,Alkyl R’:Alkyl,Aryl Scheme 1

In this communication, we report a simple and efficient method for synthesis of benzimidazole and quinoxaline derivatives using zinc oxide and hydrogen peroxide as a catalystundermildconditions. Typical experimental procedure for synthesis of benzimidazole derivatives

Amixtureofophenylenediamine(2mmol),pnitrobenzaldehyde (2 m mol) and zinc oxidehydrogen peroxide (0.1 m mol : 1 mL) was stirred magnetically at room temperatureandtheprogressofthereactionwasmonitoredbythinlayerchromatography (TLC).Thereactionmixturewasfilteredandextractedwithethylacetates(3x30mL).The combinedethylacetatesextractsweredriedwithNa2SO 4andconcentratedunderreduced pressure.Inallthecases,theproductsobtainedaftertheusualworkupgavesatisfactory spectraldata. Typical experimental procedure for synthesis of quinoxaline derivatives

A mixture of ophenylenediamine (2 m mol), (2mmol)andzincoxide hydrogenperoxide(0.1mmol:1mL)wasstirredmagneticallyatroomtemperatureandthe progressofthereactionwasmonitoredbythinlayerchromatography(TLC).Thereaction mixture was filtered andextracted withethyl acetates (3 x 30mL). The combined ethyl acetatesextractsweredriedwithNa 2SO 4andconcentratedunderreducedpressure.Inallthe cases,theproductsobtainedaftertheusualworkupgavesatisfactoryspectraldata. Int. J. Chem. Sci.: 8(1), 2010 121

RESULTS AND DISCUSSION

The catalytic activity of zinc oxide for the benzimidazoles derivatives of o phenylenediamine (2m mol) and pnitrobenzaldehyde (2 mmol) under room temperature wasstudiedanditwasfoundthattheapplicationoflessthan0.1mmolofzincoxidein hydrogenperoxide(1mL)gaveamoderateyieldofthebenzimidazoles(Table1,entries1, 2, 3 ),whereastheuseofmorethan0.1mmolgaveanexcellentyield(Table1,entries 4, 5, 6 ).

Table 1: Catalytic effect of ZnO on o-phenylenediamine (2 m mole) and p- nitrobenzaldehyde (2 m mol) in the presence of hydrogen peroxide (1 mL) at room temperature

NH2 N O ZnO.H2 O 2 + NO2 NO2 r.t. NH2 N H Entry ZnO mmol (mg) Time (min) Yield (%) a

1. 0.005(0.4) 60 65 2. 0.01(0.8) 50 70 3. 0.05(4) 40 78 4. 0.10(8) 20 96 5. 0.15(12) 20 96 6. 0.20(16) 20 96

In order to find out the most effective catalyst for preparation of benzimidazole derivatives,weemployedvariousmetaloxidesduringthebenzimidazoleformationfromo phenylenediamine and pnitrobenzaldehyde (2 : 2m mol) in the presence of hydrogen peroxide(1mL)atroomtemperature.(Table2).

According to the results obtained, zinc oxide was found to be the most efficient catalyst(Table2,entry2).However,othermetaloxidessuchasCuO,MgO,Cu2O3andCaO exhibitlesssignificantcatalyticpropertiesintheformationofbenzimidazolederivatives. 122 G. A. Meshram and V. D. Patil: Efficient Synthesis of Benzimidazole and….

Table 2: Synthesis of benzimidazole in the presence of different metal oxides, at room temperature

Entry Metal oxide mmol (mg) Time (min) Yield (%) 1. CuO 0.1(8) 40 85 2. ZnO 0.1(8.1) 20 96 3. MgO 0.2(8) 45 45

4. Cu 2O3 0.1(17.6) 50 44 5. CaO 0.1(5.6) 60 30 aIsolatedyields

We used a wide variety of compounds, to which was applied optimal reaction conditions,toprepareawiderangeofbenzimidazoles.TheresultsaresummarizedinTable 3. Variety of (aliphatic, heterocyclic and aromatic) possessing both electron donatingandelectronwithdrawinggroupswereemployedforbenzimidazoleformationand inallcases,theyieldswereexcellent.(Table3, entries 1-18 ).Fourdifferenttypesofo phenylenediamines were employed and all of them reacted smoothly under the reaction conditions.Thealiphaticaldehydes,whichwerealsoreactedundersimilarconditions,gave considerableyields(Table3,entries 12-13 ).Alltheknownproductswerecharacterizedby compairingtheirphysicalandspectral(IR,NMR)datawithauthenticsamplesreportedin theliterature.

Table 3: Synthesis of benzimidazole in presence of ZnO.H 2O2 at room temperature

Time Yield 1, 2-Diamine (a) Product (b) (min) (%) Entry

NH2 O N 1. 20 95 H N NH2 H NH2 O N NO 2. NO2 2 20 96 N H NH2 H NH2 O N CH 3. CH 3 3 20 94 N H NH2 H Cont… Int. J. Chem. Sci.: 8(1), 2010 123

Time Yield 1, 2-Diamine (a) Aldehyde Product (b) (min) (%) Entry

NH2 O N 4. OM e OM e 20 90 N H NH2 H O N NH2 5. H N 20 92 NH H 2 NO 2 NO2 NH2 N O H2 H2 6. C C 20 92 N CH H CH 3 3 NH2 H NH2 O N 7. Cl Cl 20 89 H N NH2 H O N NH2 Cl Cl 8. H N 30 90 NH H 2 Cl Cl NH2 O N 9. OH OH 30 87 H N NH2 H O NH2 N OH OH 10. H N 40 85 NH H 2 OM e OM e NH2 O N NM e 11. NM2 2 40 91 N H NH2 H NH2 O N 12. 60 88 N H NH2 H NH2 O N 13. 60 85 N H NH2 H NH2 O O N O 14. 60 87 H N NH2 H Cont… 124 G. A. Meshram and V. D. Patil: Efficient Synthesis of Benzimidazole and….

Time Yield 1, 2-Diamine (a) Aldehyde Product (b) (min) (%) Entry

NH N 2 O 20 96 15. N H C NH2 H H 3 H3 C NH 2 O N NO NO2 16. 2 N 20 94 NH2 H H H3 C H3 C O N NH O2N 2 2 O N 17. NO2 NO2 10 96 NH H N 2 H Br Br NH2 O N NO 18. 2 NO2 20 92 NH H N 2 H a Thesubstratewastreatedwithbenzaldehyde(2mmol)byusing0.1mmolofZnOinthe

presenceofH 2O2underneatconditionsatroomtemperature. b AllproductswereidentifiedbytheirIRand 1HNMRspectra c Isolatedyields.

Quinoxaline derivatives are an impotant class of nitrogen containing heterocycles and they constitute useful intermediates in organic synthesis. Quinoxaline derivatives are well known in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activities such as antibacterial, antiinflammatory, antiviral and anticanceractivity. 16 Besidesthese,theirapplicationsindyes, 17 efficientelectroluminescent materials, 18 organicsemiconductors, 19 buildingblocksforthesynthesisofanionreceptor, 20 cavitands, 21 dehydroannulenes 22 andDNAcleavingagents 23 havebeenreported.Anumber ofsyntheticstrategieshavebeendevelopedforthepreparationofsubstitutedquinoxalines.

Over the years, numerous syntheticmethods for preparation of quinoxalines have beenreportedintheliterature. 24 Amongthem,thecondensationof1,2aryldiaminewith1,2 diketoneinrefluxingethanoloraceticacidisageneralapproach. 25 Researcheffortshave beenfocusedonfindingnewcatalyststoimprovetheyieldofthiscondensationreaction.In 26a,26b 26c addition to common Lewis acids, many other catalysts including I 2, SA, 26d 26e 26f 26g 26h 26i MontmoriliniteK10, SSA, H 6P2W18 O62 .24H 2O, InCl 3, MnCl 2, CuSO 4.5H 2O, CAN, 26j ,pTsOH 27 ,Ga(OTF)3 28 andmicrowave 29 havebeenreported.Herein,wereporta simple,highlyefficientprocessforthepreparationofthebiologicallyimportantquinoxaline Int. J. Chem. Sci.: 8(1), 2010 125 derivativesthroughthereactionof1,2diaminesand1,2diketonesbyusingzincoxideand hydrogenperoxideasacatalyst( Scheme 2).

O R' N R' ZnO.H2 O 2 r.t. N R'' R NH2 O R'' R R,R=alkyl,aryl R=H,alkyl Scheme 2

Inordertoexpandthescopeofthisnewprotocoltosynthesizequinoxalinefromo phenylenediamineanddiketones,weinvestigatedthereactioninthepresenceofzincoxide with hydrogen peroxide (Table 4, entries 1-16 ). Results in Table 4 show that electron donatinggroupsatthephenylringof1,2diamine favored the product with quantitative yields(Table4,entries 2, 7 and 10 ).Incontrast,electronwithdrawinggroupssuchasnitro, chloroandbromogroupsaffordedslightlyloweryields.Ethylene1,2diamine,whichwere also reacted under similar conditions, gave considerable yields (Table 4, entries 13-15 ). Different 1, 2diketones gave excellent yields of quinoxaline derivatives, while 1,2 dialkylketonesaffordedthereactionTable4,entries 16 ).

Table 4: Synthesis of quinoxaline in presence of ZnO.H 2O2 at room temperature

Time Yield 1, 2-Diamine (a) 1,2 Diketone Product (b) (min) (%) Entry

NH2 O N 1. 10 98 NH2 O N

NH2 O N 2. 10 99 H C NH2 3 O H3 C N

Cont… 126 G. A. Meshram and V. D. Patil: Efficient Synthesis of Benzimidazole and….

Time Yield 1, 2-Diamine (a) 1,2 Diketone Product (b) (min) (%) Entry

O2 N NH2 O O2 N N 3. 10 90 NH2 O N

Br NH2 O Br N 4. 10 89 NH2 O N Cl Cl

Br NH2 O Br N 5. 10 90 NH2 O N Cl Cl

Cl Cl

O N 2 NH2 O O2 N N 6. 10 91 NH2 O N

Cl Cl

Cl Cl

H C 3 NH2 O H3 C N 7. 5 96 NH2 O N

Cl Cl Cl Cl

NH2 O N 8. 10 98 NH2 O N

Cl Cl Cont… Int. J. Chem. Sci.: 8(1), 2010 127

Time Yield 1, 2-Diamine (a) 1,2 Diketone Product (b) (min) (%) Entry

O O

NH2 O N 9. 10 95 NH2 O N O O

O O

NH2 O N 10. 10 97 H C NH2 3 O H3 C N O O O O

NH2 O N 11. 10 90 O2 N NH2 N O O2 N O O O O

NH2 O N 12. 10 91 Br NH2 O Br N O O O O

NH2 O N 13. 60 87 NH2 O N O O Cl Cl

NH2 O N 14. 60 85 NH2 O N

Cl Cl Cont… 128 G. A. Meshram and V. D. Patil: Efficient Synthesis of Benzimidazole and….

Time Yield 1, 2-Diamine (a) 1,2 Diketone Product (b) (min) (%) Entry

NH2 O N 15. 60 88 NH2 O N

N O N 16. 60 30 N O N a Thesubstratewastreatedwith1,2diketones(2mmol)byusing0.1mmolofZnOinthe presenceofhydrogenperoxide(1mL)underneatconditionsatroomtemperature. b AllproductswereidentifiedbytheirIRand 1HNMRspectra c Isolatedyields.

Table 3, Product (2b) IR(KBr):1349,1523,1616,2981,3475cm 1

1 HNMR(300MHz,CDCl 3):δ=6.8(m,2H,J=7.01Hz),7.2(d,2H,J=7.01Hz);8.1 (d,2H,J=7.01Hz);8.4((d,2H,J=8.12Hz);8.7(s,br,1H,NH) Table 4, Product (1b) IR(KBr):697,770,1211,1346,1578,1675,1659,3058cm 1

1 HNMR(300MHz,CDCl 3):δ=7.55(m,5H),7.35(m,5H);8.0(d,2H,J=8Hz); 8.2(m,2H,J=8Hz)

CONCLUSIONS

In conclusion, a method has been described in which ZnO/H 2O2 is working as a highlyefficientcatalystforthesynthesisofbenzimidazoleandquinoxalinederivatives.The advantages include low cost, ease of catalyst handling, mild reaction conditions and reactionscarriedoutatroomtemperaturewithexcellentyields. Int. J. Chem. Sci.: 8(1), 2010 129

ACKNOWLEDGEMENT

WethanktheFacultyofChemistry,UniversityofMumbai,forsupportingthiswork.

REFERENCES 1. G.A.MeshramandVishvanathD.Patil,TetrahedronLett., 50 ,11171121(2009). 2. D.A.Horton,G.T.BourneandM.L.Sinythe,Chem.Rev.,103 ,893(2003). 3. M.Alamgir,St.C.D.BlackandN.Kumar,Top.Heterocycl.Chem.,9,87(2007). 4. (a)A.R.Porcari,R.V.Devivar,L.S.Kucera,J.C.DreachandL.B.Townsend,J. Med.Chem., 41 ,1252(1998) (b)T.Rath,M.L.Morningstar,P.L.Boyer,S.M.Hughes,R.W.BuckheitjrandC.J. Michejda.J.Med.Chem.,40 ,4199(1997). 5. M.T.Migawa,J.L.Girardet,J.A.Walker,G.W.Koszalka,S.D.Chamberjain,J.C. DrachandL.B.Townsend,J.Med.Chem., 41 ,1242(1998). 6. I.Tamm,Science,126,1235(1957). 7. J.Mann,A.Baron,Y.OpokuBoahen,E.Johansoon,G.Parkmson,L.R.Kellandand S.Neidle,J.Med.Chem., 44 ,138(2001). 8. (a)P.N.Preston,inTheChemistryofHeterocyclicCompounds:A.Weissbergerand E.C.Taylor(Eds.):Wiley:NewYork, Vol. 40 ,(1981)pp.660. (b)M.R.Grimmett,inComprehensiveHeterocylicChemistry,A.R.KatrizkyandC. W.Rees(Eds.),Pergamon,Oxfored,(1984)pp.457487. 9. P.GogoiandD.Konwar,TetrhedronLett., 47 ,7982(2006). 10. H.Fujioka,K.Murai,Y.Ohba,A.HiramastsuandY. Kita, Tetrahedron Lett., 46 , 21972199(2005). 11. (a)D.S.VanVliet,P.GillespieandJ.Scicinski,J.TetrahedronLett., 46 ,67416743 (2005). (b)G.VenketReddy,RamaRao,V.V.V.N.S.NarsaiahandB.SanthanRao,Synth. Commun., 32 ,24672476(2002). 12. Chhanda Mukhopadhyay and Pradip Kumar Tapaswi, Tetrahedron Lett., 49 , 6237 6240(2008). 130 G. A. Meshram and V. D. Patil: Efficient Synthesis of Benzimidazole and….

13. B.Y.Giri,B.L.A.PrbavatiDevi,K.N.Gangadhar,K.VijayaLakshmiandR.B.N. Prasad,Synth.Commun., 37 ,23312336(2007). 14. M.Curini,F.Epifano,F.Montanari,O.RosatiandS.Taccone,Synlett, 10 ,1832 1834(2004). 15. (a)J.P.RobertandB.DavidWilson,J.Org.Chem., 58 ,70167021(1993). (b)K.Bougrin,A.CoupyandM.Soufiaouj,Tetrahedron, 54 ,80558064(1998). 16. (a)W.He,M.R.Meyers,B.Hanney,A.Spada,G.Blider,H.Galzeinski,D.Ami,S. NeedleandK.Page,Med.Chem.Lett, 13 ,30973099(2003). (b)Y.B.Kim,Y.H.Kim,J.K.ParkandS.K.Kim,Med.Chem.Lett., 14 ,541544 (2004). 17. S.Dailey,J.W.Feast,R.J.Peace,R.C.Saga,S.TillandE.L.Wood,J.MaterChem., 11 ,22382243(2001). 18. K.R.JustinThomas,V.Marappan,I.I.Jiann,C.ChangeHaoandT.Yuai,Chem. Mater,17 ,1860(2005). 19. D.O’Brien,M.S.Weaver,D.G.LideyandD.D.C.Bradley,Appl.Phys.Lett., 69 , 881883(1996). 20. L.S.Jonathan,M.Hiromitsu,M.Toshichisa,M.I.VincentandF.Hyrouki,Chem. Commun.,862863(2002). 21. (a)L.S.Jonathan,M.Hiromitsu,M.Ioshihisa,M.I.VincentandF.Hiroyuki,J.Am. Chem.Soc.,124 ,1347413479(2002). (b)P.C.Peter,A.M.Grace,H.CarlosandM.G.T.Linda,Org.Lett., 6,333336 (2004). 22. SaschaF.Rudiger,Synlett.,15091512(2004). 23. (a)T.KazunbobuRyusuke,O.TomohiroandM.Shuichi,Chem.Common.,212213 (2002). (b)S.Louis,M.G.Mare,J.W.JoryandP.B.Joseph,J.Org.Chem., 68 ,4179(2003). 24. A.E.Porter,incomprehensiveHeterocyclicChemistry,A.R.KatritskyandC.W. Rees.(Eds.),Pergamon,Oxtord,(1984)pp.157197. 25. D. J. Brown, Quinoxalines : Supplement II, in The Chemistry of Heterocyclic Compounds:Taylor,E.C.andP.Wipf(Eds.),JohnWiley&Sons,NewJersey(2004). Int. J. Chem. Sci.: 8(1), 2010 131

26. (a)R.S.Bhosale,S.R.Sarda,S.S.Ardhapure,W.N.Jadhav,S.R.BhusareandR.P. Pawar,TetrahedronLett., 46 ,7183(2005). (b)S.V.More,M.N.V.Sastry,C.C.WangandC.F.Yao,TetrahedronLett.,46 , 6345(2005). (c)H.R.Darabi,S.Mohandessi,K.AghapoorandF.Mohsenzadeh,Catal.Commun., 8,389(2007). (d)T.K.Huang,R.Wang,L.ShiandX.X.Lu,Catal.Commun., 9,1143(2008) (e)C.Srinivas,C.N.S.S.PKumar,V.JayathirthaRaoandS.Palaniappan,J.Mol. Catal.A:Chem.,265 ,227(2007). (f) M. M. Heravi, Kh. Bakhtiari, F. F. Bamoharram and M. H. Tehrani, Monatsh. Chem.,138 ,465(2007). (g)P.Hazarika,P.GogoiandD.Konwar,Synth.Commun., 37 ,3447(2007). (h)M.M.Heravi,Kh.Bakhtiari,H.A.OskooieandSh.TaheriHeteroat.Chem., 19 , 218(2008). (i)M.M.Heravi,Sh.Taheri,Kh.BakhtiariandH.A.Oskooie,Catal.Commun.,8, 211(2007). (j)M.M.Heravi,M.H.Tehrani,Kh.BakhtiariandH.A.Oskooie,Catal.Commun., 8, 1341(2007). (k)S.V.More,M.N.V.SastryandC.F.Yao,GreenChem., 8,91(2006). 27. ShiDaQingandGuoLanDou,SyntheticCommun, 38 ,33293337(2008). 28. JingJingCai,JianPinkZou;XiangQiangPanandWeiZhang.TetrahedronLett, 49 , 73867390(2008). 29. Z. Zaho, D. D. Wisnoski, S. E. Wolkenberg, W. H. Leister, Y. Wang and C. W. Lindsley,TetrahedronLett., 45 ,87(2004).

Accepted : 13.10.2009