Conservation Assessment of the Endemic Plants of the Tuscan Archipelago, Italy

Total Page:16

File Type:pdf, Size:1020Kb

Conservation Assessment of the Endemic Plants of the Tuscan Archipelago, Italy Conservation assessment of the endemic plants of the Tuscan Archipelago, Italy B RUNO F OGGI,DANIELE V ICIANI,RICCARDO M. BALDINI A NGELINO C ARTA and T OMMASO G UIDI Abstract The Mediterranean islands support a rich di- Circa 25,000 species are native to the region, with a high versity of flora, with a high percentage of endemic species. percentage of endemism (50–59%: Greuter, 1991; Médail We used the IUCN categories and criteria to assess the & Quèzel, 1997), and the archipelagos of the Mediterranean conservation status of 16 endemic plant taxa (species and are thus a natural laboratory for evolutionary studies subspecies) of the Tuscan Archipelago, based on data (Thompson, 1999). collected during field surveys over 4 years. Our data were A taxon is considered endemic when its distribution sufficient to use criteria B, C and D in our assessment. We is circumscribed to a well-defined geographical district used criterion B in the assessment of all 16 taxa, criterion C (Anderson, 1994; Cuttelod et al., 2008). Endemic taxa may for four taxa, criterion D for 11 taxa and criteria B, C and be defined as rare and potentially threatened (Ellstrand & D for three taxa, Centaurea gymnocarpa, Limonium doriae Elam, 1993; Fjeldså, 1994; Linder, 1995; Ceballos et al., 1998; and Silene capraria. According to our results L. doriae, Myers et al., 2000;Işik, 2011), and therefore they may be Romulea insularis and S. capraria are categorized as considered conservation priorities (Schnittler & Ludwig, Critically Endangered and therefore require immediate 1996; Gruttke et al., 1999). Populations of many species conservation measures; eight taxa are categorized as have declined (Butchart et al., 2010; SCBD, 2010) and Endangered, two as Vulnerable and three as Near extinction rates exceed background extinction rates by two Threatened. Compared to earlier assessments, eight species to three orders of magnitude (Pimm et al., 1995). are recategorized with a higher degree of threat, two species The most authoritative source of information on the are recategorized with a lower degree of threat, five are global conservation status of species is the IUCN Red List unchanged, and one species is assessed for the first time. (Miller et al., 2007), which uses objective standards based on Based on the IUCN categorization our results show that all the assessment of extinction risk at the global level to the endemic species of the Tuscan Archipelago are directly provide researchers with a system for comparing data and/or indirectly threatened by human activities, such as (IUCN, 2001, 2011; Mace et al., 2008). tourism and agriculture, and invasive species of plants and The IUCN Centre for Mediterranean Cooperation and animals. The Tuscan Archipelago National Park is respon- the IUCN Species Survival Commission have highlighted sible for the conservation of all endemic species in the area. plant conservation and assessment as regional priorities for action (Delanoë et al., 1996). A project to assess the Keywords Conservation, endemic, flora, islands, IUCN conservation status of 454 aquatic plant species and Red List, Mediterranean, threatened species 19 subspecies in the Mediterranean was carried out during 2007–2010 2013 This paper contains supplementary material that can be (IUCN, ) and an evaluation of Medi- found online at http://journals.cambridge.org terranean endemic plants is in progress. However, there has not been sufficient research examining the extent to which global criteria are applicable to small geographical regions such as islands (Martin, 2009). Although there has Introduction been some research on individual taxa (de Montmollin & Strahm, 2005; Fenu et al., 2011, 2012), few projects have used 5 000 he Mediterranean region, with almost , islands the IUCN categories to assess the status of endemic flora for 2005 Tand islets (de Montmollin & Strahm, ), is known regional red lists (Domínguez Lozano et al., 1996; Médail & for its high plant diversity and is recognized as one of Verlaque, 1997; Trigas et al., 2008) and few have focused on 34 2004 Global Biodiversity Hotspots (Mittermeier et al., ). entire archipelagos (Costion et al., 2009; Martin, 2009). The Conservation Working Group of the Italian Botanical fl BRUNO FOGGI (Corresponding author), DANIELE VICIANI,RICCARDO M. BALDINI Society has initiated an evaluation of the Italian ora to and TOMMASO GUIDI Department of Evolutionary Biology, Laboratory of Plant establish a National Red List (Rossi & Gentili, 2008). Several Biology, University of Florence, Via La Pira 4, I-50121 Florence, Italy fl E-mail bruno.foggi@unifi.it taxa of the endemic ora of the Tuscan Archipelago are listed in Conti et al. (1997) and Sposimo & Castelli (2005); however, ANGELINO CARTA Department of Biology, Botanic Garden, University of Pisa, Italy to date, only one species in the archipelago (Centaurea 2005 Received 14 July 2012. Revision requested 18 October 2012. gymnocarpa;Foggi, ) has been evaluated using the IUCN Accepted 20 February 2013. First published online 31 July 2014. criteria. Consequently, we started an extended work to assess © 2014 Fauna & Flora International, Oryx, 49(1), 118–126 doi:10.1017/S0030605313000288 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 27 Sep 2021 at 09:16:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605313000288 Endemic plants of the Tuscan Archipelago 119 Palmaiola Cerboli Formica Grande FIG. 1 The islands of the Tuscan Archipelago. The rectangle on the inset shows the location of the main map off km the coast of Italy. all the rare and vulnerable plants of the Tuscan Archipelago. was assessed using the IUCN criteria and guidelines Our aim here is to assess all the endemic vascular plants of the (IUCN, 2001, 2011). The species included those listed by Archipelago, based on IUCN criteria (2001, 2011), and Arrigoni et al. (2003), with the addition of Crocus ilvensis highlight threats to the flora in this territory. (Peruzzi & Carta, 2011). Contrary to a previous report (Fossi Innamorati, 1991), and in accordance with Frignani & Iiriti Study area (2011), Romulea insularis is considered an endemic species of Capraia Island. The Tuscan Archipelago comprises seven islands and c. 20 Three of the five IUCN criteria were employed. Criteria islets (Fig. 1). It originated with the rotation of the Cyrno– A and E were not used because there is insufficient Sardinian tectonic plate and the consequent evolution of the information to assess population dynamics or estimate the northern Apennine. The flora of the archipelago consists of minimum viable population. Three main types of infor- c. 1,400 taxa, 80% of which are herbaceous, reflecting the mation were available for assessment: distribution, popu- Mediterranean setting and the prevalence of secondary lation sizes and threats. forms of vegetation; 1.14% of the taxa are strictly endemic, most of which are related to Cyrno–Sardinian elements, Distribution data suggesting that the Tuscan Archipelago is a biogeographical bridge between the floristic Cyrno–Sardinian dominion The distribution data were obtained from field surveys, and the Italian peninsula. The landscape of the region has museum collections (only records from 2005 onwards were changed significantly over recent decades as the traditional used) and a georeferenced phytosociological database of economy based on pastoralism, forestation and cultivation . 1,000 relevés and permanent plots (from the Laboratory has given way to an economy based mostly on tourism of Plant Biology, Department of Biology, University of (Papayannis & Sorotou, 2008). Florence). For herbarium specimens and information from phytosociological relevés (mainly collected for vegetation 2006 2008 2011 Methods mapping; Foggi et al., , , a; Foggi & Pancioli, 2008; Viciani et al., 2011) we discarded all records with a . 500 fi Species georeferencing uncertainty of m. We conducted eld surveys during 2007–2010, from early spring to late summer, The conservation status of the 16 plant taxa (species and to investigate the species localities reported in the historical subspecies) endemic to the Tuscan Archipelago (Table 1) floristic bibliography on the area, check for species presence © 2014 Fauna & Flora International, Oryx, 49(1), 118–126 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 27 Sep 2021 at 09:16:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605313000288 120 B. Foggi et al. data, complete the distribution information, count mature individuals, detect typical habitats of the different taxa, and identify threats and pressures. We recorded the geograph- ical coordinates of each individual, using a global position- Habitat (92/43 ECE) 8220 1240 3170* 3170*/6220* ing system, to an accuracy of ± 10 m. All geographical data were plotted using ArcGis v. 10 (ESRI, Redlands, USA). The distribution information was used to compute Extent of Occurrence and Area of Occupancy of each species, following the IUCN guidelines for applying 2011 Formica Grande di Grosseto x 1240 criterion B (IUCN, ). Extent of Occurrence was obtained by delimiting a polygon that encompassed all the known localities of a taxon. For species that occurred on several islands (e.g. Linaria capraria) the polygon was computed /EEC). with the exclusion of the sea areas between islands (IUCN, 43 / 2011). Area of Occupancy was calculated by overlaying a 92 2 4 km Universal Transverse Mercator (UTM) grid on the maps and summing the areas in which each species was located. Because of the narrow distributions of the species and the detail of spatial information available we also 2 calculated the Area of Occupancy using a grid of 1 km . 2 A 1 km grid can be used for assessment when high- precision data are available (IUCN, 2011). The Extent of Occurrence was often lower than the Area of Occupancy for narrowly distributed species. In such cases the Extent of Occurrence was taken to be equal to the Area of Occupancy (IUCN, 2011).
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Asteraceae) from Different Italian Islands
    Atti Soc. Tosc. Sci. Nat., Mem., Serie B, 121 (2014) pagg. 93-100, tab. 1; doi: 10.2424/ASTSN.M.2014.07 LUCIA VIEGI (*), ROBERTA VANGEliSTI (**), ROBERTO CECOTTI (***), ALDO TAVA (***) ESSENTIAL OIL COMPOSITION OF SOME CENTAUREA SP. (ASTERACEAE) FROM DIFFERENT ITALIAN ISLANDS Abstract - Essential oil composition of some Centaurea sp. (Asteraceae) subsp. umbrosa (Fiori) Greuter, C. panormitana Lojac. subsp. todaroi from different italian islands. The volatile constituents of leaves and (Lacaita) Greuter, C. panormitana Lojac. subsp. seguenzae (Lacaita) flower heads of several Centaurea species from different islands of Greuter da diverse località della Sicilia. La resa in olio essenziale è Ligurian and Tyrrhenian Sea were investigated for the first time. C. risultata essere compresa tra 0.02 e 0.13% per le foglie e tra 0.01 e veneris (Sommier) Bég. from Palmaria Island (Ligurian Sea), C. gym- 0.09% per le infiorescenze, calcolata sul peso fresco. Gli estratti sono nocarpa Moris & De Not. from Capraia Island, C. aetaliae (Somm.) stati quindi analizzati mediante GC/FID e GC/MS e più di 100 com- Bég. and C. ilvensis (Sommier) Arrigoni from Elba Island (Northern posti appartenenti a diverse classi chimiche sono stati identificati e Tyrrhenian Sea); C. aeolica Lojac. subsp. aeolica from Lipari, Aeolian quantificati. I sesquiterpeni rappresentano la classe più abbondante Islands, C. busambarensis Guss., C. panormitana Lojac. subsp. ucriae di composti (valutati rispettivamente 22.35-61.67% e 35.16-57.51% (Lacaita) Greuter, C. panormitana Lojac. subsp. umbrosa (Fiori) Greu- dei volatili totali in foglie ed infiorescenze), tra cui il germacrene D ter, C. panormitana Lojac. subsp.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Hieracium Racemosum Subsp. Amideii (Asteraceae), a New Hawkweed Taxon from Montecristo Island (Tuscan Archipelago, Italy)
    Phytotaxa 406 (5): 294–300 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.406.5.5 Hieracium racemosum subsp. amideii (Asteraceae), a new hawkweed taxon from Montecristo island (Tuscan archipelago, Italy) VINCENZO GONNELLI1,*, GÜNTER GOTTSCHLICH2 & ANTONIO ZOCCOLA3 1Via Martiri della libertà,1 52036 Pieve Santo Stefano Arezzo Italy (*corresponding author’s e-mail: [email protected]) 2Hermann-Kurz-Straße 35, 72074 Tübingen, Germany 3 Arma dei Carabinieri - C.U.F.A. - Reparto Biodiversità di Pratovecchio Arezzo Italy Abstract A new hawkweed taxon endemic to the insula Montecristo (Tuscan archipelago, Italy), Hieracium racemosum subsp. amideii, is described and illustrated. Information on its distribution, ecology and taxonomic relationship is provided. Keywords: Tuscany, endemism, taxonomy, vascular plant Introduction Montecristo is a small uninhabited island of the Tuscan archipelago south of Elba with an area of 10,3 km2. The geologic substrate is mainly granite (Aringoli et al. 2009). The highest mountain is M. Fortezza (645 m). Since 1971 the whole island is an integral nature reserve. Only 1000 visitors are allowed to visit the island per year. The first collection of a species from genus Hieracium Linnaeus (1753: 799) from Montecristo was collected by George Watson-Taylor and classified as H. sabaudum Linnaeus (1753: 804) (Caruel 1860). Subsequently it was collected by Mori in 1902 (FI) and by Fabbri, Bavazzano and Contardo in 1964 (FI) and also named H. sabaudum. In the central Italic Herbarium in Florence there are only these three specimens stored.
    [Show full text]
  • Coleoptera, Chrysomelidae, Cryptocephalinae)
    A peer-reviewed open-access journal ZooKeys 155: Pachybrachis51–60 (2011) sassii, a new species from the Mediterranean Giglio Island (Italy)... 51 doi: 10.3897/zookeys.155.1951 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Pachybrachis sassii, a new species from the Mediterranean Giglio Island (Italy) (Coleoptera, Chrysomelidae, Cryptocephalinae) Matteo Montagna1,2,† 1 DIPAV, Sezione di Patologia Generale e Parassitologia, Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Italy 2 DIPSA, Dipartimento di Protezione dei Sistemi Agroalimentare e Urbano e Valoriz- zazione della Biodiversità, Facoltà di Agraria Università degli Studi di Milano, Italy † urn:lsid:zoobank.org:author:15F6D023-98CA-4F12-9895-99E60A55FBD6 Corresponding author: Matteo Montagna ([email protected]) Academic editor: A. Konstantinov | Received 23 August 2011 | Accepted 8 December 2011 | Published 15 December 2011 urn:lsid:zoobank.org:pub:7C527A2D-52FB-4C8C-84E9-60AC63EC8498 Citation: Montagna M (2011) Pachybrachis sassii, a new species from the Mediterranean Giglio Island (Italy) (Coleoptera, Chrysomelidae, Cryptocephalinae). ZooKeys 155: 51–60. doi: 10.3897/zookeys.155.1951 Abstract Pachybrachis sassii, new species is described from Giglio Island, of the Tuscan Archipelago (Italy). The new species belongs to the nominotypical subgenus and is closely related to P. salfiiBurlini, 1957, from which it differs in the shape of the median lobe of the aedeagus and in the pattern of the yellow raised spots on the elytra and pronotum. Ecological observations are made. The neotype of P. salfii from Colloreto, Monte Pollino (Italy) is designated. Keywords Entomology, taxonomy, Coleoptera, Chrysomelidae, Cryptocephalinae, Pachybrachini, Tuscan Archi- pelago, neotype Introduction The genus Pachybrachis Dejean, 1836 belongs to the subfamily Cryptocephalinae (Co- leoptera, Chrysomelidae) and according to the color of the prothorax and elytra is sub- divided into two subgenera: Pachybrachis sensu stricto (hereafter s.
    [Show full text]
  • Annuals/Tende Abutilon 'Dwarf Red' 9 Sun/Pt.Shade Really a Red Orange, but Nonetheless a Richly Colored Floriferous Flowering Maple Which Is Quite Compact at 15-18"
    Annuals/Tende Abutilon 'Dwarf Red' 9 sun/pt.shade Really a red orange, but nonetheless a richly colored floriferous flowering maple which is quite compact at 15-18". We like how it tolerates light frosts and continues to dazzle into November. 4" $10.00 Abutilon pictum 'Gold Dust' 8 pt.shade Mottled gold and green foliage on upright bushy plants, with salmon-orange flowers all year long. A great container plant! 4" $9.00 Abutilon 'Snowfall' 9 sun/pt.shade Pure white bells throughout the year,on bushy upright growing plants. Very bridal like apperance. Pinvh bamk regularly for more compact habit. 4" $10.00 Abutilon 'Victorian Lady' 9 sun/pt. shade This is the quite rare double form of flowering maple with pink flowers that resemble just opening old-fashioned rosebuds. It is difficult to propagate and so we must limit one per customer. Upright habit. 4" $12.00 Abutilon x 'Souvenier de Bonn'' 8 pt.sh/shade Striking white edged maple leaves, salmon bell-flowers veined with crimson and a sturdy upright habit make this is a great choice for large standards. 4" $10.00 Aeonium arboreum 'Scwarzkopf' 10 sun Shiny almost black fleshy leaved rosettes are born on sturdy stems that become tree-like with age. A must have specimen if you collect succulents. 4" $9.00 Alternanthera 'Gail's Choice' 8 sun/pt shade Dark maroon 1" wide leaves on sprawling stems and a vigorous habit distinguish this form of "Calico Plant". Great in pots, we also combined this with Lysimachia nummularia aurea (Golden Creeping Jenny) in our low lying wet soil are for an all summer show.
    [Show full text]
  • Competitive Exclusion Between Podarcis Lizards from Tyrrhenian Islands: Inference from Comparative Species Distributions
    Korsos, Z. &Kss, I. (eds) (1992) Proc. Sixth Ord. Gen. Meet. S. E. H., Budapest 1991, pp. 89-93. Competitive exclusion between Podarcis lizards from Tyrrhenian islands: Inference from comparative species distributions MASSIMO CAPULA Podarcis sicula is an opportunistic and eurikous lacertid lizard occurring as autochthon species in peninsular Italy, Sicily and in a number of Tyrrhenian islands and islets (HENLE & KLAVER 1986). It inhabits also the Adriatic coast of Yugosla- via and several Adriatic islands (NEVO et al. 1972). Distributional and genetic data indicate that in some Tyrrhenian islands, e.g. Sardinia, Corsica, Tuscan Archipelago, this lizard has been accidentally introduced by man in proto-historic or historic times, invading the range of other Podarcis species (e.g., P. tiliguerta, P. muralis) (LANZA 1983, 1988, CORTI et al. 1989). In these islands the allochthon P. sicula seems to have competed successfully with the native congeneric species, reducing their range (e.g., P. tiliguerta in Corsica and Sardinia) (LANZA 1983, 1988), or replacing them through competitive exclusion (e.g., P. muralis in the Tuscan Archipelago) (CORTI et al. 1989). In the present paper preliminary data are given on the occurrence of exclusion of P. wagleriana by P. sicula in the Aeolian Islands (Sicily). P. wagleriana is endemic to Sicily, Aegadian, Stagnone (Isola Grande) and Aeolian Islands, and has been traditionally considered closely related to P. sicula. Methods Competitive exclusion is one of the most dramatic natural effects of interspe- cific competition. The competitive superiority of a species has proved to be exceed- ingly difficult to analyze in natural conditions. To overcome this difficulty, we inferred the occurrence of competitive exclusion from the comparative distribu- tions and relative abundance of the two potentially competing species (GiLLER 1984).
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]
  • Northern Italy, Central Italy, Southern Italy & a Few Information on Transport in Italy
    25 FEBRUARY 2011 CATERINA POMINI 8107 NORTHERN ITALY, CENTRAL ITALY, SOUTHERN ITALY & A FEW INFORMATION ON TRANSPORT IN ITALY With such an endless variety of landscapes and amazing places to choose from, how do you create the ultimate Italy trip? An what's the best way to travel within the “Bel Paese”? (updated to October 2015) An overview of Northern Italy Impressive mountain landscapes, picturesque flatlands and beautiful lakes. What else? Northern Italy is also home to the Italian Riviera, the Venetian lagoon and first-class ski resorts like Cortina d'Ampezzo. Don't miss Turin (a black heart, a white heart...), Genoa (Italy's largest port), Milan (one of the world's leading cities for fashion), Bologna (famous for its charming terracotta roofs and brick towers), Ferrara (the court of the House of Este), Mantua (a little known Renaissance treasure ringed by lakes), Verona (the city of Romeo and Juliet), Trento (with both Italian Renaissance and Germanic influences), Venice (one of the most romantic places on earth), Trieste (with its unique Central European flair). An overview of Central Italy From the soft rolling hills of Chianti to the remaining wonders of the Roman Empire, from the Umbria oak forests to the Renaissance town of Urbino, definitely out of time. Central Italy offers much to see and do. Visit Florence (do we really need to introduce the Cradle of the Renaissance?), Siena (Florence's beautiful historic enemy...), Pisa (where the Leaning Tower stands), Lucca (still embraced by its 16th century walls), Pesaro (the hometown of Gioacchino Rossini), Perugia (Umbria's petite, enchanting capital), Assisi (where the spirit of St.
    [Show full text]
  • Hymenoptera: Cynipidae) in Turkey
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 141–157, 2019 http://www.eje.cz doi: 10.14411/eje.2019.016 ORIGINAL ARTICLE Tracing imprints of past climatic fl uctuations and heterogeneous topography in Cynips quercusfolii (Hymenoptera: Cynipidae) in Turkey SERDAR DİNÇ and SERAP MUTUN Department of Biology, Faculty of Science and Art, Bolu Abant İzzet Baysal University, Bolu, 14030, Turkey; e-mails: [email protected], [email protected] Key words. Hymenoptera, Cynipidae, Cynips quercusfolii, oak gall wasp, cyt b, ITS2, phylogeography, Pleistocene, Turkey Abstract. Cynips quercusfolii is an oak gall wasp species distributed across the western Palearctic region. In this study, C. quercusfolii adults were used to investigate the possible effects of past climatic fl uctuations and topography on the genetic structure of this species in Turkey. For this, the partial mitochondrial DNA (mtDNA) cytochrome b gene (cyt b) and nuclear DNA (nDNA) ITS2 region of 294 individuals from 38 populations covering the distribution of this species in Turkey were sequenced. The sequences generated 125 mtDNA haplotypes and 30 nDNA alleles. High variation was revealed in Turkish populations of C. quercusfolii (h = 0.7328 and π = 0.0102 for cyt b, and h = 0.5865 and π = 0.0058 for ITS2). Demographic analyses and high haplotype versus low nucleotide diversity indicated that C. quercusfolii populations might have undergone a series of expansions and contractions in the past. Phylogenetic analyses showed that this species is structured geographically between east and west due to a major physical barrier, the Anatolian Diagonal. Furthermore, divergence times of the lineages implied that deep splits oc- curred before the Pleistocene, while intermediate to shallow splits were associated with climatic changes during the Pleistocene.
    [Show full text]
  • Cyperaceae) and Expand Its Range in the Western Mediterranean Anales Del Jardín Botánico De Madrid, Vol
    Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España Benítez-Benítez, Carmen; Míguez, Mónica; Jiménez-Mejías, Pedro; Martín-Bravo, Santiago Molecular and morphological data resurrect the long neglected Carex laxula (Cyperaceae) and expand its range in the western Mediterranean Anales del Jardín Botánico de Madrid, vol. 74, núm. 1, 2017, pp. 1-12 Consejo Superior de Investigaciones Científicas Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=55651825011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anales del Jardín Botánico de Madrid 74(1): e057 2017. ISSN: 0211-1322. doi: http://dx.doi.org/10.3989/ajbm.2438 Molecular and morphological data resurrect the long neglected Carex laxula (Cyperaceae) and expand its range in the western Mediterranean Carmen Benítez-Benítez1,*, Mónica Míguez1, Pedro Jiménez-Mejías2 & Santiago Martín-Bravo1 1 Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, ctra. de Utrera km 1 s.n., 41013 Seville, Spain; [email protected] 2 New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Abstract Resumen Benítez-Benítez, C., Míguez, M., Jiménez-Mejías, P. & Martín- Benítez-Benítez, C., Míguez, M., Jiménez-Mejías, P. & Martín-Bravo, Bravo, S. 2017. Molecular and morphological data resurrect the long S. 2017. Datos moleculares y morfológicos resucitan la olvidada Carex neglected Carex laxula (Cyperaceae) and expand its range in the western la xula (Cyperaceae) y aumentan su área de distribución en la cuenca Mediterranean.
    [Show full text]