Self-Interference in Full-Duplex 2×2 MIMO Transceivers: Channel Characterization and RF/Analog Cancellation
Total Page:16
File Type:pdf, Size:1020Kb
Self-Interference in Full-Duplex 2×2 MIMO Transceivers: Channel Characterization and RF/Analog Cancellation Fei Chen Department of Electrical & Computer Engineering McGill University Montreal, Canada April 2017 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Master of Engineering. c 2017 Fei Chen 2017/04/07 i To my parents, with all my love. ii Abstract Spectrum resources become more and more scarce over last few decades, leading to the sig- nificance of effectively utilizing and allocating spectrum. Recently, in-band full-duplex (FD) operation has gained more attention as a potential approach of enhancing spectrum efficiency by simultaneous transmission and reception over the same frequency. One of the most challenging problems in FD communications is the existing strong self-interference (SI) from transmitter and co-located receiver. The SI must be suppressed to a sufficiently low level by a combination of an- tenna, radio frequency (RF) and baseband cancellation stages so that the intended signal received from the distant transmitter can be reliably demodulated. In this work, we study the SI-channel characteristics and develop a high performance RF/Analog self-interference canceller (SIC) for a 2×2 MIMO FD transceiver. First of all,SI cancellation technique requires knowledge ofSI propagation characteristics and models. We investigate of the wideband SI-channel propagation characteristics of a 2×2 MIMO with dual-polarized antennas. The SI-channels are measured at center frequency of 2.45GHz with 500MHz bandwidth in various environments: anechoic chamber, laboratory room, and cor- ridor. The measurement results show that the SI-channel can be represented by a multipath model composting of two segments: a quasi-static internal SI-sub-channel due to the particular Tx/Rx antenna structure and a time-varying and dynamic external SI-sub-channel due to possible reflec- tions from the surrounding objects. Also, the external SI-channel exhibits cluster arrival features and can be described by a modified Saleh-Valenzuela (S-V) model. In addition, wea develop RF/Analog SIC to suppress the quasi-static internal SI-sub-channel. We discuss SIC design considerations at the system level. Specifically, we consider coupler se- lection to minimize the noise-figure increase and derive the linearity requirements of RF/Analog SIC, including the component linearity requirements, so that the nonlinear distortion introduced by RF/Analog SIC will not significantly degrade SNR after all the cancellation stages. We pro- pose high-linear RF/Analog SIC with custom-made components. Measurements and simulations with followed digital cancellation stages show that proposed RF/Analog SIC can provide 60- 80dB cancellation and negligible SNR degradation (0.3dB) due to nonlinear distortion. Moreover, we specifically focus on the study and design of delay/phase shift module, to meet the RF/Analog SIC linearity requirements. This delay/phase shift module is composed of a RF switched true time Delay line (switched TTD) and an analog variable reflective type phase shifter (RTPS). Measurement results show significant improvement over off-the-shelf products, iii and other existing prototypes, in terms of linearity. iv Sommaire Les ressources du spectre sont de plus en plus rares au cours des dernieres` decennies,´ ce qui con- duit a` l’importance d’utiliser et d’allouer efficacement le spectre. Recemment,´ la transmission en duplex integral´ (FD) a gagne´ une grande d’attention comme une methode´ qui peut poten- tielle ameliorer´ l’efficacite´ spectrale par la transmission et la reception´ simultanee´ sur la memeˆ frequence.´ L’un des problemes` majeurs de la transmission en FD est l’auto-interference´ (self- interference ou SI) forte resultante´ de l’emetteur´ et le recepteur´ co-situe.´ La SI doit etreˆ reduite´ a` un niveau suffisamment faible en combinant des techniques de reduction´ au niveau des antennes, au niveau radio frequence´ (RF) et en bande de base pour graduellement attenuer´ la SI. Dans ce travail, nous etudions´ les caracteristiques´ du canal de la SI et nousd eveloppons´ un mecanisme´ d’annulation de la SI operant´ dans le domaine RF/Analogique pour un emetteur-r´ ecepteur´ a` deux antennes (2×2 MIMO). Tout d’abord, la technique d’annulation de la SI requiert la connaissance et la caracterisation´ du canal de propagation de la SI que nous etudions´ pour un systeme` MIMO 2x2 large bande avec des antennes a` polarisation double. Les canaux SI sont mesures´ pour une frequence´ cen- trale de 2,45GHz avec une bande passante de 500 MHz dans divers environnements: chambre anecho´ ¨ıque, salle de laboratoire et couloir. Les resultats´ de mesure montrent que le canal de la SI peut etreˆ represent´ e´ par des composants multitrajets a` deux segments: une composante interne quasi-statique dependante´ de la structure des antenne et une composante provenant des reflexions´ a` partir des objets environnants. De plus, nous montrons que cesr eflexions´ peuvent etreˆ decrit´ par un modele` modifie´ de Saleh-Valenzuela (S-V). En outre, nous developpons´ un schema´ d’annulation de la SI (SIC) en RF/Analogique pour supprimer la SIr esultante´ du reflextion interne quasi-statique. Nous discutons des considerations´ de la conception du SIC au niveau du systeme.` En particulier, nous etudions´ la selection´ du coupleur dans le but de minimiser de la figure de bruit et nous derivons´ la nonlinearit´ e´ introduite par le RF/Analogique SIC, pour determiner´ le caractere` nonlineaire´ des composantes, qui garantie que le RF/Analogique SIC ne degradera´ pas le SNR. Nous proposons un SIC RF/Analogique hautement lineaire´ avec des composants sur mesure. Des mesures et des simulations avec des etages´ d’annulation numeriques´ suivis montrent que le RF/Analogique SIC propose´ peut fournir une annulation de 60-80dB et une degradation´ negligeable´ de la SNR (0.3dB) due a` une distorsion non-lineaire.´ De plus, nous nous concentrons particuliairement sur l’etude´ et la conception du module de v delai/d´ ephasage,´ pour repondre´ aux exigences de la linearit´ e´ du RF/Analogique SIC. Ce mod- ule de delai/d´ ephasage´ est compose´ d’une ligne de temporisation a` temps reel´ commutee´ RF (TTD commutee)´ et d’un dephaseur´ de type analogique a` reflexion´ variable (RTPS). Les resultats´ des mesures montrent une amelioration´ significative par rapport aux solutions disponibles sur le marche´ et aux autres prototypes existants, en termes de linearit´ e.´ vi Acknowledgments I would like to express my deepest and sincere gratitude to my supervisor, Professor Tho Le- Ngoc, for his patience, excellent guidance, encouragement during my M.Eng. studies at McGill University. Particularly, I appreciate his devotion to this research, his broad knowledge, sharp judgment, enthusiasm. My deep appreciation goes to the Broadband Communications Research Lab (BCRL) Man- ager/Engineer, Mr.Robert Morawski, for his patient and productive research coaching and col- laboration in assisting me to complete this research work. He has helped me countless times in practical issues of my research and I have learned a great deal from him. I also would like to thank Mr.Thanh Ngon Tran for his kind assistance and helpful discussions. I would like to thank financial support received from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Huawei Technologies. I am deeply grateful to all my colleagues and friends in BCRL. They made my journey at McGill unforgettable. I would like to thank Hak Hyun Lee, Ruozhu Li, Ruikai Mai, Ahmed Masmoudi, Seonghwan Kim, Xiaowei Wang, Pragyan Hazarika. I am also thankful to my friends at McGill and in Montreal, especially, Bonan Zhang, Ge Li, Ziyin Chen, Zheng Liu, Yue Cai, Baoguang Xu, Yiqing Xiao, Randy Li, Yuhao Mao. Finally, my deepest and sincere gratitudes are devoted to my parents and my beloved girl- friend for all their immense love, presence and support. vii Contents 1 Introduction 1 1.1 Full-Duplex Wireless Communications and Key Challenges . .1 1.2 Applications of Full-Duplex Communications . .4 1.2.1 Full-duplex Base Station or Relay . .4 1.2.2 Device-to-Device (D2D) Communication . .4 1.2.3 Two-Tier Cognitive Radio Networks . .5 1.2.4 Improve Security of Wireless Data Transfer . .5 1.2.5 Other Applications.............................5 1.3 Thesis Contributions and Organization . .6 2SI Channel Characteristics andSI Cancellation Techniques: A Review 8 2.1 Self-Interference Channel Characteristics and Modeling . .8 2.2 Self-Interference Cancellation Techniques . .9 2.2.1 Antenna or Propagation Domain Suppression . 11 2.2.2 RF Domain Self-Interference Cancellation . 12 2.2.3 Baseband Domain Self-interference Cancellation . 16 2.3 Chapter Summary . 16 3 SI Channel Characterization and Modeling 18 3.1 Introduction . 18 3.2 Measurement Setup . 19 3.2.1 Antenna . 19 3.2.2 Wideband Channel Sounding System and Data Acquisition . 22 3.2.3 Measurement Environments . 23 3.2.4 Measurement Procedure . 25 Contents viii 3.3 Measurement Results and SI-channel Modeling . 26 3.3.1 SI-channel P DPTR Trends . 26 3.3.2 SI-Channel Impulse Response Models and Parameters . 27 3.3.3 Time Dispersion Characteristics . 35 3.4 Concluding Remarks . 38 4 RF/Analog Self-Interference Canceller for 2×2 MIMO Full-Duplex Transceiver 40 4.1 Introduction . 40 4.2 Multi-Tap Delay Line RF/Analog SIC Structure and Design Considerations . 42 4.2.1 Structure . 42 4.2.2 Coupler Consideration . 42 4.2.3 Nonlinearity Consideration . 44 4.2.4 Tuning Algorithm . 49 4.2.5 Bandwidth . 52 4.2.6 Quantization Effects of components in RF/Analog SIC . 53 4.3 Implemented Prototypes . 57 4.3.1 Prototype 1 . 58 4.3.2 Prototype 2 . 59 4.4 Measurement Results . 62 4.4.1 Anechoic Chamber Measurements . 63 4.4.2 Indoor Environment Measurements .