Including Covers

Total Page:16

File Type:pdf, Size:1020Kb

Including Covers Australasian Journal of Herpetology ISSUE 30, PUBLISHED 10 NOVEMBER 2015 1 ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) AustralasianAustralasian JournalJournal ofof HerpetologyHerpetology Hoser 2015 - Australasian Journal of Herpetology 28:1-64 and 29:65-128. Available online at www.herp.net Copyright- Kotabi Publishing - AllAprasia rights reserved parapulchella CONTENTS PAGE 2 gibbonsi subsp. nov. 2 Australasian Journal of Herpetology Australasian Journal of Herpetology Issue 30, 10 November 2015 Contents Two new legless lizards from Eastern Australia (Reptilia: Squamata: Sauria: Pygopodidae). ... Raymond T. Hoser, 3-6. A division of the Meso-American lizard genus Laemanctus Wiegmann, 1834 as currently recognized, with the formal description of a new genus, new species and a new subspecies. ... Raymond T. Hoser, 7-10. Two new genera of Lacertid lizards (Reptilia: Squamata: Sauria: Lacertidae) from the Middle-east. ... Raymond T. Hoser, 11-17. Two hitherto overlooked subspecies of Papuan Python Liasis (Apodora) papuana Peters and Doria, 1878 from New Guinea. ... Raymond T. Hoser, 18-20. Hitherto overlooked species of reptile from Northern Australia: A result of science, taxonomy, molecular biology, systematics, history and forensic herpetology. ... Raymond T. Hoser, 21-27. A new taxonomy for the Vipera latastei species complex (Serpentes: Viperidae). ... Raymond T. Hoser, 28-36. Australian agamids: Eighteen new species from the genera Amphibolurus Wagler, 1830, Lophognathus Gray, 1842, Rankinia Wells and Wellington, 1984, Diporiphora Gray, 1842, Tympanocryptis Peters, 1863, as well as three new genera and six new subgenera. ... Raymond T. Hoser, 37-64. Australasian Journal of Herpetology® Publishes original research in printed form in relation to reptiles, other fauna and related matters, including the subjects of classification, ecology, public interest, legal, captivity, exposure of frauds, “academic misconduct”, etc. It is a peer reviewed printed journal published in hard copy for permanent public scientific record in accordance with the Zoological Code (Ride et al. 1999), with a sizeable print run and has a global audience. Full details of acquiring copies, either printed or in identical form online, editorial policies, publication procedure, author submission guidelines, peer review guidelines, legal matters, advantages of publication in this journal and the like can be found by following links from: http://www.herp.net Published by Kotabi Pty Ltd ISSNISSN 1836-5698 1836-5698 (Print) (Print) PO Box 599 ISSN 1836-5779 (Online) Doncaster, Victoria, 3108. ISSN 1836-5779 (Online) Australia. Copyright. All rights reserved. Australasian Journal of Herpetology is also a registered trademark ® in all relevant areas and jurisdictions (Australian trademark number: 1686575). All Intellectual Property (IP) rights are reserved, including in relation to all IP generated by the journal in terms of both authors, publisher and the like. Misuse of the IP by way of illegal over-writing of names formally proposed for taxa for the first timewithin this journal in accordance with relevant rules, or by any means, outside of fair and reasonable scientific discourse is strictly forbidden and legally actionable. Online journals (this issue) do not appear for a month after the actual and listed publication date of the printed journals. Minimum print run of first printings is always at least fifty hard copies. Hoser 2015 - Australasian Journal of Herpetology 28:1-64 and 29:65-128. Available online at www.herp.net Copyright- Kotabi Publishing - All rights reserved Australasian Journal of Herpetology 3 Australasian Journal of Herpetology 30:3-6. ISSN 1836-5698 (Print) Published 10 November 2015. ISSN 1836-5779 (Online) Two new legless lizards from Eastern Australia (Reptilia: Squamata: Sauria: Pygopodidae). RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 11 August 2015, Accepted 15 August 2015, Published 10 November September 2015. ABSTRACT Two new subspecies of legless lizards from south-eastern Australia within the genus Aprasia Gray, 1839 are formally identified and named according to the rules of the International Code of Zoological Nomenclature. Both are morphologically distinct from their nominate forms and both are allopatric in distribution with respect to the nominate forms. One of these populations, this being from Bendigo, Victoria and currently referred to as a population of Aprasia parapulchella, Kluge, 1974 has long been recognized as being taxonomically distinct from the nominate form (Osborne and Jones, 1995). The second taxon, referred to as being within Aprasia inaurita Kluge, 1974, was found to be distinct for the first time as part of this audit. Keywords: Taxonomy; nomenclature; Lizards; Aprasia; parapulchella; pseudopulchella; inaurita; new subspecies; gibbonsi; rentoni. INTRODUCTION MATERIALS, METHODS AND RESULTS As part of an audit of the reptiles in Victoria, Australia, two The audit consisted of looking at specimens from all relevant regionally isolated of legless lizards in the genus Aprasia Gray, species, herein effectively treated as two groups, namely A. 1839 were inspected with a view to assess their relationships inaurita and A. parapulcella / A. pseudopulchella (the latter two with the nominate forms. species being near identical in features) with a view to Both were within the genus Aprasia Gray, 1839, these being identifying obvious morphological differences between the Aprasia parapulchella, Kluge, 1974 and A. inaurita Kluge, 1974. populations in order to decide whether or not any unnamed For both species, the Victorian animals were found to be populations were worthy of taxonomic recognition. different from those from interstate and sufficiently so as to Added to this was an audit of the relevant published literature warrant taxonomic recognition. The Victorian populations were and available molecular data for species and species complexes also allopatric in distribution and with no known point of contact. affected by similar geographical barriers. For the species Aprasia parapulchella, Kluge, 1974, the type On a morphological level, each population was distinct, albeit locality is Coppins Crossing in the ACT, and the population in only slightly, and on the basis of this alone, worthy of taxonomic and around Bendigo, Victoria is apparently isolated from the recognition. However on the basis of molecular results for next nearest population in Albury, NSW, by some 120 km in a species affected by the same geographical barriers (e.g. the straight line measurement, being an area of habitat known to be Varanus rosenbergi group, Smith et al. 2007, as cited by Hoser unsuitable for the taxon. 2013), these recognized differences were decided to be only significant enough to warrant designation as subspecies. For the species A. inaurita Kluge, 1974, type locality Sunset Country, Victoria, the specimens from West of the Flinders Hence the formal descriptions below. Ranges in South Australia were found to be allopatric from the APRASIA PARAPULCHELLA AND A. PSEUDOPULCHELLA. nominate form and also morphologically distinct. The species Aprasia parapulchella, Kluge, 1974, with the type The barrier between these populations of this taxon appears to locality of Coppins Crossing in the ACT and Aprasia be a population of another recognized taxon, known as Aprasia pseudopulchella, Kluge 1974, from the type locality of Burra, pseudopulchella, Kluge 1974, type locality Burra, South South Australia when described by Arnold Kluge, were known Australia and generally restricted to this region. In terms of A. from two widely scattered locations about 800 km apart and inaurita Kluge, 1974, there is no known zone of contact between separated by an arid zone of clearly unsuitable habitat. the two main populations. While morphologically similar, Kluge no doubt relied on this The same applies in terms of the Bendigo, Victoria, the ACT/ geographical separation to decide each should be treated as NSW and the South Australian populations of A. parapulchella separate species. and A. pseudopulchella. The more recent discovery of a third population of similar lizards Hoser 2015 - Australasian Journal of Herpetology 30:3-6. Available online at www.herp.net Copyright- Kotabi Publishing - All rights reserved 4 Australasian Journal of Herpetology in and around Bendigo, Victoria, in part midway between the exclusion. other two populations has confused things somewhat. In any event, it is clear that the eastern (east of the Flinders While some authorities have treated this population as being Ranges) population and western (west side of the Flinders either an undescribed or unidentified species, most recent ranges) populations are disjunct and also morphologically authors have treated it merely as an outlying population of A. different. In the absence of molecular data, there is no effective parapulchella. way to ascertain how long each population has been divergent Notwithstanding this, it appears that no one has actually and it is for that reason the unnamed western population is compared this population with A. pseudopulchella. herein described conservatively as a new subspecies. When doing so, I found all three to be very similar and quite Further significant literature in terms of A. inaurita, include the likely of one and the same species. following: Cogger (2014), Kluge (1974, 1976), Wells (2007) and Wilson and Swan (2010). However
Recommended publications
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Aquiloeurycea Scandens (Walker, 1955). the Tamaulipan False Brook Salamander Is Endemic to Mexico
    Aquiloeurycea scandens (Walker, 1955). The Tamaulipan False Brook Salamander is endemic to Mexico. Originally described from caves in the Reserva de la Biósfera El Cielo in southwestern Tamaulipas, this species later was reported from a locality in San Luis Potosí (Johnson et al., 1978) and another in Coahuila (Lemos-Espinal and Smith, 2007). Frost (2015) noted, however, that specimens from areas remote from the type locality might be unnamed species. This individual was found in an ecotone of cloud forest and pine-oak forest near Ejido La Gloria, in the municipality of Gómez Farías. Wilson et al. (2013b) determined its EVS as 17, placing it in the middle portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by IUCN, and as a species of special protection by SEMARNAT. ' © Elí García-Padilla 42 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The herpetofauna of Tamaulipas, Mexico: composition, distribution, and conservation status SERGIO A. TERÁN-JUÁREZ1, ELÍ GARCÍA-PADILLA2, VICENTE Mata-SILva3, JERRY D. JOHNSON3, AND LARRY DavID WILSON4 1División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Boulevard Emilio Portes Gil No. 1301 Pte. Apartado postal 175, 87010, Ciudad Victoria, Tamaulipas, Mexico. Email: [email protected] 2Oaxaca de Juárez, Oaxaca, Código Postal 68023, Mexico. E-mail: [email protected] 3Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mails: [email protected] and [email protected] 4Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] ABSTRACT: The herpetofauna of Tamaulipas, the northeasternmost state in Mexico, is comprised of 184 species, including 31 anurans, 13 salamanders, one crocodylian, 124 squamates, and 15 turtles.
    [Show full text]
  • Timon Lepidus (Daudin, 1802) Timon Lepidus (Daudin, 1802) Lézard Ocellé
    Timon lepidus (Daudin, 1802) Timon lepidus (Daudin, 1802) Lézard ocellé Ecologie et statut de l'espèce Section révisée et complétée par Philippe Geniez. cd_ref 79273 Famille Lacertidae Aire de répartition mondiale : Le Lézard ocellé (Timon lepidus, anciennement connu sous le nom de Lacerta lepida fait partie d'un petit genre de la famille des Lacertidae comprenant six espèces, 4 distribuées dans l'ouest du bassin méditerranéen (le groupe de Timon lepidus) et deux dans l'est (groupe de Timon princeps). Sur la base de caractéristiques morphologiques (taille, coloration, forme des dents, etc.), trois sous-espèces sont actuellement retenues au sein de l'espèce lepidus bien que plusieurs auteurs ne les reconnaissent pas toutes : -Timon l. lepidus (Daudin 1802), occupe la majeure partie de la péninsule Ibérique, la moitié sud et l'ouest de la France jusqu'à l'extrême nord-ouest de l'Italie (Cheylan & Grillet 2004, 2005 ; Salvidio et al, 2004). -Timon l. ibericus López-Seoane, 1884 est localisé en Galice (nord-ouest de l’Espagne) et dans le nord du Portugal. -Timon l. oteroi Castroviejo & Matéo, 1998 concerne une population insulaire localisée sur l'île de Sálvora en Galice. Des études phylogénétiques récentes révèlent cependant l'existence de cinq lignées génétiquement et géographiquement bien distinctes au sein de la péninsule Ibérique dont l’une d’elle, la « lignée », la plus répandue, est celle qui est présente en France et en Italie (Miraldo et al., 2011). La sous-espèce oteroi apparaît comme une population insulaire présentant quelques caractéristiques morphologiques liée à l’insularité mais qui entre clairement dans la « lignée » (T.
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Kilmore East Murrindindi Complex South Fire
    KILMORE EAST MURRINDINDI COMPLEX SOUTH FIRE BURNED AREA EMERGENCY STABILIZATION PLAN BIODIVERSITY - FAUNA ASSESSMENT I. OBJECTIVES • Assess the effects of fire and suppression actions to the Threatened and Endangered Species of Victoria, Australia under the Flora and Fauna Guarantee Act 1988 (FFG Act), and the Environment Protection and Biodiversity Conservation Act 1999 • Prescribe emergency stabilization and rehabilitation measures and/or monitoring and assess the effects of these actions to listed species and their designated habitat. II. ISSUES Impacts to Rare or Threatened Species- Seven listed species under the Flora and Fauna Guarantee Act 1988 (FFG Act), (Leadbeater’s Possum [Gymnobelideus leadbeateri], Spotted tree-frog [Litora spenceri], Barred Galaxias [Galaxias olidus var. fuscus], Macquarie Perch (Macquaria australasica), Brush-tailed Phascogale [Phascogale tapoatafa], Powerful Owl [Ninox strenua]), Sooty Owl [Tyto tenebricosa], occur within the fire areas. Leadbeater’s Possum, Barred Galaxias, and Macquarie Perch, are also listed nationally under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) within the fire area. Impacts to these species and their habitats from the fire, suppression actions, and proposed emergency stabilization actions are addressed. III. OBSERVATIONS The purpose of this Burned Area Emergency Response (BAER) Wildlife Assessment is to document the effects of the fire, suppression activities, proposed stabilization treatments, and potential post fire flooding and sediment delivery to listed threatened and endangered fauna species and their preferred habitats within the fire area. This assessment includes effects to species that occur on lands under the tenure of the Department of Sustainability and Environment, Parks Victoria, Goulburn Broken Water Catchment Management Authority, Goulburn Valley Water, Melbourne Water Corporation, and private ownership.
    [Show full text]
  • Rivers and Streams Special Investigation Final Recommendations
    LAND CONSERVATION COUNCIL RIVERS AND STREAMS SPECIAL INVESTIGATION FINAL RECOMMENDATIONS June 1991 This text is a facsimile of the former Land Conservation Council’s Rivers and Streams Special Investigation Final Recommendations. It has been edited to incorporate Government decisions on the recommendations made by Order in Council dated 7 July 1992, and subsequent formal amendments. Added text is shown underlined; deleted text is shown struck through. Annotations [in brackets] explain the origins of the changes. MEMBERS OF THE LAND CONSERVATION COUNCIL D.H.F. Scott, B.A. (Chairman) R.W. Campbell, B.Vet.Sc., M.B.A.; Director - Natural Resource Systems, Department of Conservation and Environment (Deputy Chairman) D.M. Calder, M.Sc., Ph.D., M.I.Biol. W.A. Chamley, B.Sc., D.Phil.; Director - Fisheries Management, Department of Conservation and Environment S.M. Ferguson, M.B.E. M.D.A. Gregson, E.D., M.A.F., Aus.I.M.M.; General Manager - Minerals, Department of Manufacturing and Industry Development A.E.K. Hingston, B.Behav.Sc., M.Env.Stud., Cert.Hort. P. Jerome, B.A., Dip.T.R.P., M.A.; Director - Regional Planning, Department of Planning and Housing M.N. Kinsella, B.Ag.Sc., M.Sci., F.A.I.A.S.; Manager - Quarantine and Inspection Services, Department of Agriculture K.J. Langford, B.Eng.(Ag)., Ph.D , General Manager - Rural Water Commission R.D. Malcolmson, M.B.E., B.Sc., F.A.I.M., M.I.P.M.A., M.Inst.P., M.A.I.P. D.S. Saunders, B.Agr.Sc., M.A.I.A.S.; Director - National Parks and Public Land, Department of Conservation and Environment K.J.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • For Peer Review Journal: Biological Journal of the Linnean Society
    Biological Journal of the Linnean Society The evolution of Australasian agamid lizards based on nuclear and mitochondrial genes, and the affinities of the thorny devil (Moloch horridus). For Peer Review Journal: Biological Journal of the Linnean Society Manuscript ID: BJLS-0023 Manuscript Type: Original Manuscript Date Submitted by the 26-Jun-2006 Author: Complete List of Authors: Hugall, Andrew; University of Adelaide, Earth and Environmental Sciences Foster, Ralph; South Australian Museum Lee, Michael; South Australian Museum Hutchinson, Mark; South Australian Museum agamidae, phylogeny, partition support, congruence, convergence, Keywords: molecular clock, aridification Biological Journal of the Linnean Society Page 1 of 33 Biological Journal of the Linnean Society 1 2 3 4 The evolution of Australasian agamid lizards based on nuclear and 5 mitochondrial genes, and the affinities of the thorny devil (Moloch 6 horridus). 7 8 9 A.F. Hugall1*, R. Foster2, M. Hutchinson2 and M.S.Y. Lee1,2 10 11 12 13 1 School of Earth and Environmental Sciences, University of Adelaide, SA 5005 14 2 15 Natural Sciences Building, South Australian Museum, Adelaide, SA 5000, Australia 16 17 *Corresponding Author, E-mail [email protected], Fax +61 8 8303 4364 18 19 20 For Peer Review 21 Running title: Austral Agamid Phylogeny 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Biological Journal of the Linnean Society Biological Journal of the Linnean Society Page 2 of 33 Austral Agamid Phylogeny 2 1 2 3 ABSTRACT 4 5 6 7 Recent mtDNA phylogenies of Australasian agamid lizards are highly incongruent with 8 existing morphological views.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Reintroducing the Dingo: the Risk of Dingo Predation to Threatened Vertebrates of Western New South Wales
    CSIRO PUBLISHING Wildlife Research http://dx.doi.org/10.1071/WR11128 Reintroducing the dingo: the risk of dingo predation to threatened vertebrates of western New South Wales B. L. Allen A,C and P. J. S. Fleming B AThe University of Queensland, School of Animal Studies, Gatton, Qld 4343, Australia. BVertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, Forest Road, Orange, NSW 2800, Australia. CCorresponding author. Present address: Vertebrate Pest Research Unit, NSW Department of Primary Industries, Sulfide Street, Broken Hill, NSW 2880, Australia. Email: [email protected] Abstract Context. The reintroduction of dingoes into sheep-grazing areas south-east of the dingo barrier fence has been suggested as a mechanism to suppress fox and feral-cat impacts. Using the Western Division of New South Wales as a case study, Dickman et al. (2009) recently assessed the risk of fox and cat predation to extant threatened species and concluded that reintroducing dingoes into the area would have positive effects for most of the threatened vertebrates there, aiding their recovery through trophic cascade effects. However, they did not formally assess the risk of dingo predation to the same threatened species. Aims. To assess the risk of dingo predation to the extant and locally extinct threatened vertebrates of western New South Wales using methods amenable to comparison with Dickman et al. (2009). Methods. The predation-risk assessment method used in Dickman et al. (2009) for foxes and cats was applied here to dingoes, with minor modification to accommodate the dietary differences of dingoes. This method is based on six independent biological attributes, primarily reflective of potential vulnerability characteristics of the prey.
    [Show full text]