Deploying the AI R&D Mlops Platform to Enable End-To-End ML Workflows

Total Page:16

File Type:pdf, Size:1020Kb

Deploying the AI R&D Mlops Platform to Enable End-To-End ML Workflows Deploying the AI R&D MLOps Platform to Enable End-to-End ML Workflows Deploying the Kubeflow MLOps platform in AWS to enabled our Data Science team to create end-to-end ML workflows for automated delivery of machine-learning models. April | 2021 Authors: Patrick McDermott, Christi Kazakov, Seth Havermann, Ethan McDowell, Sean Doyle, Maksim Poletaev and Jordan Walker of Object Computing Inc. World Wide Technology wwt.com Table of Contents Abstract .......................................................................................................3 Business Justification ...........................................................................................3 Experimental Setup and Methodology ...........................................................................4 Conclusion .................................................................................................... 12 References. 12 Deploying the AI R&D MLOps Platform to Enable End-to-End ML Workflows 2 Abstract In this white paper, you will learn about the MLOps platform that a WWT machine-learning (ML) platform infrastructure team built to reliably deliver trained and validated ML models into production. By deploying the Kubeflow MLOps platform in AWS as a component of our common ML infrastructure, the team enabled WWT data scientists to create end-to-end ML workflows. As part of the MLOps platform deployment, the team built an automated delivery pipeline proof-of-concept to train and productionize a natural language processing (NLP) deep learning model, along with microservices that enable a user to search for relevant WWT platform articles that have been ranked by that productionized model. Business Justification As more organizations adopt a data-driven culture by moving up the Data Maturity Curve, MLOps has become a necessity for any data mature company. While ML capabilities have progressed greatly over the last decade, many organizations still struggle with how to deploy these models consistently and reliably. As the industry enters the second decade of the machine learning revolution, there is a need for machine learning systems that can operate in an automated, repeatable and platform independent manner. That upgraded environment should allow data scientists to focus more on the data science and less on where and how they will do the data science. Further, as cloud computing has allowed for big data and massive modeling (e.g., large language models like Bidirectional Encoder Representations from Transformers (BERT) which are specialized Natural Language Processing (NLP) neural networks that often contain 110 million or more parameters) the demand for ML pipelines that encompass the entire machine learning lifecycle is also increasing. Such pipelines allow data scientists to work faster in a repeatable manner while still allowing for innovation. For example, many organizations have built data science teams deploying many models but have siloed the various elements of these models in such a way that these models start to break down in a way that requires constant attention. Through MLOps these models can constantly be deployed reliably and automatically. Here, we present a full ML pipeline with a massive NLP model using Kubeflow as example of a successful pipeline. This by no means constitutes the only available ML pipeline but demonstrates what is possible. MLOps involves building an advanced infrastructure in which the various elements of the pipeline and tools need to integrate seamlessly. Thus, organizations may put together a different puzzle based on data maturity, resources and current infrastructure. That said, many of the lessons learned while building the end-to-end ML workflow with Kubeflow can be applied to a variety of ML pipelines. Deploying the AI R&D MLOps Platform to Enable End-to-End ML Workflows 3 Experimental Setup and Methodology An effective ML infrastructure team enables data scientists to iterate quickly and more efficiently. An organization’s ML infrastructure typically includes platforms and internal tools for ML model training, experimentation and deployment. By unburdening data scientists from the complexity of building ML infrastructure, they can focus on researching the latest concepts in Artificial Intelligence and Deep Learning, performing feature engineering, and training ML models that will eventually provide value in production. We selected Kubeflow to enhance the MLOps capabilities of our AI R&D platform and built a proof-of-concept system including data ingestion, an end-to-end ML workflow and a microservices ecosystem. MLOps Platform Selection When selecting the platform, we assessed multiple options, including MLFlow, Flyte, Domino Data Lab and Kubeflow. We chose Kubeflow because it had several advantages including its level of adoption, its deployment flexibility and its development community. Many organizations have successfully adopted Kubeflow to build reproducible ML pipelines, e.g., Spotify, Bloomberg, Volvo, US Bank, Chase and others. Kubeflow is freely available and, because it is installed on a Kubernetes cluster, it shares Kubernetes’ deployment flexibility in any of the primary cloud providers (AWS, GCP and Azure) and on-premises. To provide the type of MLOps platform that had previously only been achievable by major tech companies building ad-hoc platforms with large ML infrastructure teams, Kubeflow was created by developers at Google, Cisco, IBM, Red Hat, CoreOS and CaiCloud. Critically, the Kubeflow development community provides valuable guidance around installation and use of the MLOps platform and its components. Many MLOps platform options exist today. Selecting one of these platforms and performing a deep dive has allowed WWT to not only gain expertise with Kubeflow but has also enabled WWT data scientists to learn generalized MLOps skills, techniques, patterns that readily transfer across MLOps platforms. Building the Proof-of-Concept As a proof-of-concept of the AI R&D Group’s MLOps capabilities, our ML Platform Infrastructure team built an ML- driven system that enables users to search for technology articles (such as the one you are reading right now) that have been published on WWT’s website, the Advanced Technology Center Platform (which we will call the WWT platform). To build this system, the team deployed Kubeflow, created a component that ingests data from the WWT platform, trained a deep learning model via an end-to-end ML workflow, and built a web application that enables the user to search for articles (Figure 1). The team consisted of a Data Scientist, a Data Engineer and three ML Infrastructure Engineers. For your convenience, we are bolding the key features below. Deploying the AI R&D MLOps Platform to Enable End-to-End ML Workflows 4 Figure 1 The proof-of-concept system ingests articles from the WWT platform, trains a model in the end-to- end ML workflow, and serves predictions to APIs running in the microservices ecosystem. Kubeflow Deployment Because the AI R&D group had adopted AWS for our development environment, we deployed Kubeflow in an Amazon Elastic Kubernetes Service (EKS) cluster. In addition to deploying the MLOps pipeline to Amazon EKS in AWS Cloud, the team also deployed the solution to an EKS cluster running on AWS Outposts. AWS Outposts is a fully managed offering by AWS that offers similar AWS Infrastructure, services, and APIs locally to any datacenter or facility. This is provided via a rack of hardware delivered to a local facility. GitHub Actions along with the Terraform infrastructure-as-code utility helped us automate cluster provisioning and Kubeflow installation. Terraform allowed the team to provisiondifferent cloud services with varying configurations, then perform experiments, and immediately tear down the services to avoid the cost associated with keeping the cloud services (including GPU-accelerated instances) available. In addition to provisioning the EKS cluster, Terraform provisions many other AWS services, including the AWS Elastic File System (EFS). EFS enables multiple Kubeflow components (running as Kubernetes pods) to share training data and ML models with other components. As part of the deployment, after Terraform deploys the AWS cloud services, we use the kfctl utility to install the Kubeflow custom resources on top of the running EKS cluster. By integrating with GitHub Actions, the team built a one-click deployment feature that enables a Data Scientist to easily spin up a Kubeflow cluster without having to gain expertise in Kubernetes or cloud service provisioning. While a deployed Kubeflow cluster and Pipelines let you build end-to-end ML workflows, an ML infrastructure team must enable multiple data scientists to share the cluster. For this multi-tenancy, the team configured multi-user isolation (included with Kubeflow 1.1) which supports multiple user profiles in individual Kubernetes namespaces. In addition, dex (an OpenID Connect identity provider) authenticated each Data Scientist via web-based login form. To further reduce the cluster running cost, the ML infrastructure team implemented autoscaling so GPUs would only run during training. Deploying the AI R&D MLOps Platform to Enable End-to-End ML Workflows 5 Data Ingestion For data ingestion, the data engineer and data scientist collaborated to determine how to transform the WWT article content. The text data from the WWT platform was extracted using the Advanced Technology Center (ATC) connect API. Text extraction used a Python 3.8 program to run locally, ingesting a single
Recommended publications
  • Running ML/DL Workloads Using Red Hat Openshift Container Platform V3.11 Accelerate Your ML/DL Projects Platform Using Kubeflow and NVIDIA Gpus
    Running ML/DL Workloads Using Red Hat OpenShift Container Platform v3.11 Accelerate your ML/DL Projects Platform using Kubeflow and NVIDIA GPUs January 2021 H17913.2 White Paper Abstract This white paper describes how to deploy Kubeflow v0.5 on Red Hat OpenShift Container Platform and provides recommendations for achieving optimal performance for ML/DL workloads using the latest NVIDIA Tesla GPUs. Dell Technologies Solutions Copyright The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any software described in this publication requires an applicable software license. Copyright © 2021 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners. Published in the USA 01/21 White Paper H17913.2. Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change without notice. 2 Running ML/DL Workloads Using Red Hat OpenShift Container Platform v3.11 Accelerate your ML/DL Projects Platform using Kubeflow and NVIDIA GPUs White Paper Contents Contents Executive summary ........................................................................................................................ 4 Solution architecture ...................................................................................................................... 6 GPU accelerated TensorFlow training using TFJobs .................................................................. 9 Installing the GPU device plug-in ...............................................................................................
    [Show full text]
  • Application Development with Azure
    Application Development with Azure Karim Vaes Specialist – Azure Application Development 0032 497 219577 @kvaes Agenda • Kubernetes Kubernetes Kubernetes momentum “By 2020, more than 50% of enterprises Larger companies will run mission-critical, containerized are leading the cloud-native applications in production.” adoption. 77% For the organizations running Kubernetes today, 77%1 of those with more than 1,000 developers are running it in production. 1Heptio: state of Kubernetes 2018 What’s behind the growth? Kubernetes: the leading orchestrator shaping the future app development and management It’s widely used It’s vendor-neutral It’s community-supported Kubernetes is in production for A variety of cloud providers There’s a huge community of active global companies across industries1 offer robust Kubernetes support contributors supporting Kubernetes3 24,000 1.1 million contributors contributions since 2016 since 2016 1Kubernetes.io. “Kubernetes User Case Studies.” 2CNCF. “Kubernetes Is First…” 3CNCF. Keynote address. Azure Kubernetes Service (AKS) Ship faster, operate easily, and scale confidently with managed Kubernetes on Azure Manage Kubernetes Accelerate Build on an Run anything, with ease containerized enterprise-grade, anywhere development secure foundation Top scenarios for Kubernetes on Azure Lift and shift Machine Microservices IoT Secure DevOps to containers learning Cost saving Agility Performance Portability Automation without refactoring Faster application Low latency Build once, Deliver code faster and your app development processing run anywhere securely at scale Azure Kubernetes momentum Trusted by thousands of customers 30x Azure Kubernetes Service usage grew 30x since it was made generally available in June 2018 Dated November 2018 How Kubernetes works Kubernetes control Worker node Internet kubelet kube-proxy 1.
    [Show full text]
  • Running Large-Scale Machine Learning Experiments in the Cloud
    O’REILLY Artificial Intelligence Conference, San Jose 2019 Running large-scale machine learning experiments in the cloud Shashank Prasanna, Amazon Web Services @shshnkp September 12, 2019 © 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda • Machine Learning, experiments and the scientific method • Scaling challenges with machine learning setups • Containers technologies for large-scale machine learning • Demo 1: Hyperparameter optimization with Amazon SageMaker • Demo 2: Custom designed experiments with Amazon SageMaker • Demo 3: Hyperparameter optimization with Kubernetes, Kubeflow and Katib • Summary and additional resources © 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Experimentation in machine learning Data acquisition Data preparation for Design and run curation and labeling training experiments Model optimization Distributed Deployment and validation training © 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Why do we run experiments? The scientific method Question Hypothesis empirical procedure to determine Experiment whether observations agree or conflict with our hypothesis Interpret Iterate © 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Why do we run machine learning experiments? Machine learning researcher may want to: Question • Identify factors that affect model performance Hypothesis • Explain the root causes of performance Experiment • Choose between alternate models Interpret • Study variability and robustness of
    [Show full text]
  • Chapter 1 - Overview
    Reference architecture Chapter 1 - Overview This document provides a complete reference architecture guide for infrastructure required for machine learning use cases. This document specifically covers open source machine learning software that includes Kubeflow using Charmed Kubernetes solution on Dell EMC hardware delivered by Canonical. This includes Dell EMC PowerEdge servers for workloads and storage based on Intel® Xeon® Scalable Processors and Dell EMC Networking. This guide discusses the Dell EMC hardware specifications and the tools and services to set up both the hardware and software, including the foundation cluster and the Kubernetes cluster to run machine learning workloads. It also covers other tools used for the monitoring and management of the cluster in detail and how all these components work together in the system. The guide also provides the deployment steps and references to configuration and automation scripts developed by Dell EMC and Canonical for the deployment process. Document ID Revisions Revisions Date Description March 2020 Initial release Acknowledgements This paper was produced by the following: Author: Andrey Grebennikov Support: Other: The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any software described in this publication requires an applicable software license. Copyright © Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners.
    [Show full text]
  • Tensorflow 2.0 and Kubeflow for Scalable and Reproducable Enterprise Ai
    TENSORFLOW 2.0 AND KUBEFLOW FOR SCALABLE AND REPRODUCABLE ENTERPRISE AI Romeo Kienzler1, 2, Holger Kyas2, 3, 4 1IBM Center for Open Source Data and AI Technologies, 505 Howard St, San Francisco, CA, USA 2Berne University of Applied Sciences, Technology and Informatics, Wankdorffeldstrasse 102, 3014 Berne, Switzerland 3Open Group, 548 Market St #54820, San Francisco, CA 94104-5401 4Helvetia Insurance Switzerland, St. Alban-Anlage 26, 4002 Basel, Switzerland ABSTRACT Towards the End of 2015 Google released TensorFlow 1.0, which started out as just another numerical library, but has grown to become a de-facto standard in AI technologies. TensorFlow received a lot of hype as part of its initial release, in no small part because it was released by Google. Despite the hype, there have been complaints on usability as well. Especially, for example, the fact that debugging was only possible after construction of a static execution graph. In addition to that, neural networks needed to be expressed as a set of linear algebra operations which was considered as too low level by many practitioners. PyTorch and Keras addressed many of the flaws in TensorFlow and gained a lot of ground. TensorFlow 2.0 successfully addresses these complaints and promises to become the go-to framework for many AI problems. This paper introduces the most prominent changes in TensorFlow 2.0 targeted towards ease of use followed by introducing TensorFlow Extended Pipelines and KubeFlow in order to illustrate the latest TensorFlow and Kubernetes ecosystem movements towards simplification for large scale Enterprise AI adoption. KEYWORDS Artificial Intelligence, TensorFlow, Keras, Kubernetes, KubeFlow, TFX, TFX Pipelines 1.
    [Show full text]
  • Using Ipus from Docker Release 1.4.0
    Using IPUs from Docker Release 1.4.0 Graphcore Ltd Dec 08, 2020 CONTENTS 1 Introduction 1 2 Initial setup 2 3 Using gc-docker 3 3.1 Loading docker images.............................................3 3.2 Verifying IPU access from inside container..................................4 3.3 Mounting directories from the host......................................5 3.4 Setting environment variables.........................................5 4 Running a TensorFlow application on an IPU6 5 Extending the images 7 6 Further reading 8 7 Trademarks & copyright 9 i CHAPTER ONE INTRODUCTION This guide explains how you can run applications in Docker on a Linux machine with one or more physical IPU devices. Prerequisites: • A machine with IPU devices • Ubuntu 18.04 / CentOS 7.6 1 CHAPTER TWO INITIAL SETUP First check if your machine has the IPU device driver installed. You can check this is loaded and running with the following command: $ modinfo ipu_driver If the driver is are installed and running, you should see something similar to: $ modinfo ipu_driver filename: /lib/modules/4.15.0-55-generic/updates/dkms/ipu_driver.ko version: 1.0.39 description: IPU PCI Driver author: Graphcore Limited license: GPL srcversion: 49FFB7D8556EB58899AE41A alias: pci:v00001D95d00000003sv*sd*bc*sc*i* alias: pci:v00001D95d00000002sv*sd*bc*sc*i* alias: pci:v00001D95d00000001sv*sd*bc*sc*i* depends: retpoline: Y name: ipu_driver vermagic: 4.15.0-55-generic SMP mod_unload parm: memmap_start:array of ulong parm: memmap_size:array of ulong If so, proceed to the next section. If it returns an error along the lines of: $ modinfo ipu_driver modinfo: ERROR: Module ipu_driver not found. You will need to install the driver.
    [Show full text]
  • Reference Architecture for Kubeflow on Openshift Accelerate ML/DL Workloads Using Kubeflow and Poweredge Servers
    Solution brief Reference Architecture for Kubeflow on OpenShift Accelerate ML/DL workloads using Kubeflow and PowerEdge servers Artificial intelligence (AI) and its subsets, machine learning (ML) and deep learning (DL), Customer are gaining widespread adoption for use cases such as computer vision, speech recognition and natural language processing (NLP). Integrating production‑grade AI technologies Results in well‑defined platforms within the protection of the data center can facilitate wider adoption of advanced computing, extending investments by supporting AI use cases as well as augmenting the resources available to data science teams. 2 hours vs. But not every IT organization has the time and resources to research, integrate and test all the components required to deploy a customized system to run AI workloads. Building 9 months a production‑ready AI system involves combining various components, often from different to run analysis1 vendors, and integrating and managing these disparate pieces. As well, deployments are often tied to a specific cluster, so that moving models — for example, between laptops and cloud clusters or from DevOps to production and back — significantly increases 218% ROI complexity and the chance for human errors. over 3 years2 Kubeflow together with the Red Hat® OpenShift® Container Platform help address these challenges. Kubeflow is an open‑source Kubernetes®‑native platform designed 20 million to accelerate ML workloads. It’s a composable, scalable, portable stack that includes images used to train a components and automation features to integrate ML tools, so they work together to deep neural network3 create a cohesive pipeline that makes it easy to deploy ML applications at scale.
    [Show full text]
  • CNCF Webinar Taming Your AI/ML Workloads with Kubeflow
    CNCF Webinar Taming Your AI/ML Workloads with Kubeflow The Journey to Version 1.0 David Aronchick (Microsoft) - @aronchick Elvira Dzhuraeva (Cisco) - @elvirafortune Johnu George (Cisco) - @johnugeorge SNARC Maze Solver Minsky / Edmonds (1951) 2000 3 2006 4 2007 5 2008 6 2010 7 2013 8 2014 9 2015 10 Today 11 One More ML ???Solution??? 12 One More ML ???Solution??? 13 14 GitHub Natural Language Search Prototype MVP With Demo In Jupyter Demo with front-end mockup with Experiments.Github.Com: +3 Months Notebook: 2 Weeks blog post: +3 Days https://github.com/hamelsmu/code_search https://towardsdatascience.com/semantic-code-se https://experiments.github.com/ arch-3cd6d244a39c 15 Resource Provisioning Numpy Scheduling Experiment Tracking Jupyter Access Control Declarative Deployment TF.Transform Drivers HP Tuning TF.Estimator Orchestration Profiling Docker Lifecycle Management Validation Seldon Networking KubeCon 2017 17 Resource Provisioning Numpy Scheduling Experiment Tracking Jupyter Access Control Declarative Deployment TF.Transform Drivers HP Tuning TF.Estimator Orchestration Profiling Docker Lifecycle Management Validation Seldon Networking Mission (2017) Make it Easy for Everyone to Develop, Deploy and Manage Portable, Distributed ML on Kubernetes 20 Kubeflow 2018 Mission (2018) Make it Easy for Everyone to Develop, Deploy and Manage Portable, Distributed ML on Kubernetes 23 Kubeflow 2019 Mission (2019) Make it Easy for Everyone to Develop, Deploy and Manage Portable, Distributed ML on Kubernetes 26 Mission (2020) Make it Easy for Everyone
    [Show full text]
  • Kubeflow: End to End ML Platform Animesh Singh
    Kubeflow: End to End ML Platform Animesh Singh Jupyter Notebooks MXNet KFServing Tensorflow Seldon Core Serving Pytorch TFServing, + Training Operators XGBoost, + MPI Metadata Kale Workflow Building HP Tuning Fairing Tensorboard Tools Prometheus KF Pipelines Pipelines TFX Your Speaker Today: CODAIT 2 Animesh Singh Kubeflow STSM and Chief Architect - Data and AI Open Source github.com/kubeflow Platform o CTO, IBM RedHat Data and AI Open Source Alignment o IBM Kubeflow Engagement Lead, Kubeflow Committer o Chair, Linux Foundation AI - Trusted AI o Chair, CD Foundation MLOps Sig o Ambassador, CNCF o Member of IBM Academy of Technology (IBM AoT) © 2019 IBM Corporation Kubeflow: Current IBM Contributors Untrained Model Christian Kadner Weiqiang Zhuang Tommy Li Andrew Butler Prepared Preparedand Trained AnalyzedData Model Data Deployed Model Jin Chi He Feng Li Ke Zhu Kevin Yu IBM is the 2nd Largest Contributor IBM is the 2nd Largest Contributor IBMers contributing across projects in Kubeflow Kubeflow Services kubectl apply -f tfjob High Level Kubernetes API Server Services Notebooks Low Level APIs / Services Pipelines TFJob PyTorchJob Pipelines CR KFServing Argo Jupyter CR MPIJob Katib Seldon CR Study Job Spark Job Istio Mesh and Gateway Kubebench TFX Developed By Kubeflow Developed Outside Kubeflow Adapted from Kubeflow Contributor Summit 2019 talk: Kubeflow and ML Landscape (Not all components are shown) Community is growing! 8 Multi-User Isolation ML Lifecycle: Build: Development, Training and HPO Untrained Model Prepared Preparedand Trained
    [Show full text]
  • Machine Learning at Scale with Kubernetes Aug 23Rd, 2018
    JupyterCon - Machine Learning at Scale with Kubernetes Aug 23rd, 2018 Chris Cho, Fei Xue, Tyler Erickson Confidential & Proprietary Proprietary + Confidential Contents 1. Containers Appendix- Tensor2Tensor 2. Kubernetes 3. Google Kubernetes Engine 4. Kubeflow - Overview 5. Kubeflow - Components 6. Kubeflow - Architecture 7. ksonnet 8. Kubeflow - Tutorial Section Start Time Total Duration (Min) Type Topic area Proprietary + Confidential Agenda 9:00 AM 0:30 Presentation Welcome + Introduction + Setup 9:30 AM 0:45 Exercise GKE quest lab 1- Introduction to docker 10:15 AM 0:05 Debrief 10:20 AM 0:30 Presentation Kubernetes and GKE 10:50 AM 1:00 Exercise GKE quest lab 2 - Hello Node Kubernetes 11:50 AM 0:05 Debrief 11:55 AM 0:30 Presentation Orchestrating the Cloud with GKE 12:25 PM 5:25 1:00 Lunch 1:25 PM 1:00 Exercise GKE quest lab 3 - Orchestrating the Cloud with GKE 1:25 PM 0:30 Presentation Kubeflow introduction 1:55 PM 1:00 Exercise Kubeflow 1 - Intro to Kubeflow 2:55 PM 0:05 Debrief 3:00 PM 0:30 Presentation Kubeflow - Components, Architecture, Short tutorial 3:00 PM 1:30 Exercise Kubeflow 2 - E2E 4:30 PM 3:35 Buffer Proprietary + Confidential Expectations – Walk away with better understanding of… ● Containers/Docker ● Kubernetes ● Orchestrating Kubernetes ● Kubeflow – Try out Kubeflow when you get home :) Proprietary + Confidential Logistics – Access you will need for the labs ● 8 Qwiklab credits - Pick it up in the back ● 2 GCP test accounts - Handed out at the end – Sign up on https://qwiklabs.com – Enroll in quest https://qwiklabs.com/quests/29
    [Show full text]
  • Application Development with Azure
    Application Development with Azure Karim Vaes Specialist – Azure Application Development @kvaes Agenda • Digital Transformation, powered by Application Innovation • Developer Toolchain • App Service • Integration Services Digital Transformation Powered by Application Innovation Digital transformation 91% Digital of business leaders see Digital Transformation as a way of sparking Transformation innovation and finding efficiencies1 A journey with one destination but different paths 85% say they must offer digital services or become irrelevant2 1 ISACA: Information Systems Audit and Control Association, 2018 2 Couchbase: Couchbase Survey, August 2018 1 Data: Capture digital signal from across business Consumer Reports review indicate braking issue with Model 3 Vehicle telemetry shows brake performance across fleet 2 Insight: Connect and synthesize data Car telemetry for suspect cars analyzed to understand issue Tesla identifies fix to improve stopping distance Engage Transform customers products 3 Action: Improve business outcomes Car braking software updated over-the-air to fix issue Tesla closes the loop with consumer reports and review is updated 7,0% 6,0% 5,0% 4,0% 3,0% 2,0% 1,0% 0,0% -1,0% -2,0% software Digital DNA Toolchain Overview World’s most comprehensive developer toolchain Azure Azure Stack Azure Data Box Azure Sphere Azure Kinect HoloLens Web Databases Mobile Analytics Tools Mixed Reality AI + Machine Learning Visual Studio Containers Internet of Things Azure Devops Events + Integration Media GitHub PowerApps Power BI Compute
    [Show full text]
  • Build an Event Driven Machine Learning Pipeline on Kubernetes
    Assign Hyperparameters Initial Model and Train Create Model PreparedPrepared andand Trained AnalyzedAnalyzed Model DataData Monitor DeployedDeployed Validate and Deploy ModelModel Build an Event Driven Machine Learning Pipeline on Kubernetes Yasushi Osonoi Animesh Singh Developer Advocate IBM STSM, IBM kubeflow kfserving maintainer osonoi animeshsingh Center for Open Source Improving Enterprise AI lifecycle in Open Source Data and AI Technologies (CODAIT) Code – Build and improve practical frameworks to enable more developers to realize immediate value. Content – Showcase solutions for complex and real-world AI problems. Community – Bring developers and data scientists to engage with IBM • Team contributes to over 10 open source projects • 17 committers and many contributors in Apache projects • Over 1100 JIRAs and 66,000 lines of code committed to Apache Spark itself; over 65,000 LoC into SystemML • Over 25 product lines within IBM leveraging Apache Spark • Speakers at over 100 conferences, meetups, unconferences and more CODAIT codait.org 3 DEVELOPER ADVOCATE in TOKYO Tokyo Team is a part of Worldwide Developer Advocate Teams! Developer Advocate City Leader WW Developer Advocate WW Developer Advocate Client Developer Advocate AKIRA ONISHI NORIKO KATO KYOKO NISHITO YASUSHI OSONOI Program Manager WW Developer Advocate WW Developer Advocate Digital Developer Advocate TOSHIO YAMASHITA TAIJI HAGINO AYA TOKURA JUNKI SAGAWA @taiponrock https://developer.ibm.com/patterns/ https://developer.ibm.com/jp/ Please follow me @osonoi IBM’s history
    [Show full text]