The IBM Presentation Template
Total Page:16
File Type:pdf, Size:1020Kb
CLAIMED – Component Library for AI, Machine Learning, ETL and Data Science A Kubeflow low code architecture A scalable open source (Trusted AI) omputer !ision pipeline for health care " #omeo Kienzler %ata Scientist IB' Ivan )esic ML *ngineer +ni(ersity ,ospital &asel Requirements - Rapid prototyping using visual editing and notebooks - Seamless scaling during development and deployment - GPU support - ML tools: PyData stack, TensorFlow, PyTorch, … - life science tools: DICOM input, DICOM output, … - Reproducibility - Data lineage - Reference implementation in open source - Collaboration support IB' Thin- 2021 / 2 2021 IB' orporation 3 Cloud annotations provides... Browser based image labeling: Classification / Object recognition training data IB' Thin- 2021 / 2 2021 IB' orporation ...in Open Source4 Kubeflow provides... Some prominent users: Amazon Web Services Auto "# IB Watson Services IB !s top clients $eplo%ment# &eproducibilit% 'otebooks# Pipelines# Serving# *raining# Scale ...on top of Kubernetes IB' Thin- 2021 / 2 2021 IB' orporation 00 Elyra provides... Some prominent users: *+ree IB clients# one ,ortune 500 compan% No Code / "ow Code " Pipeline $esign &e-usable pipeline components Interchangeability of Engines 23ubeflow, Air0ow# 4445 IB' Thin- 2021 / 2 2021 IB' orporation ...on top of JupyerLab, VSCode, ... 0. CLAIMED... Current users: Universit% 7ospital Basel Component Library for AI, otion4AI Machine Learning, ETL and Data Science )ortabilit% 'o Code / "ow Code )ipeline Components 8upyter Notebooks Sample )ipelines IB' Thin- 2021 / 2 2021 IB' orporation ...on top of Elyra and Kubeflow 05 Example Pipeline Components Category: Training Group: Distributed Name: TFJob The TFJob operator supports parallel training on multiple nodes and GPUs Example Pipeline Components Category: Processing Group: Distributed Name: SparkJob The SparkJob operator supports parallel processing on multiple nodes Example Pipeline Components Category: Tuning Group: Hyperopt Name: Katib Visualization of a hyper parameter optimization result Example Pipeline Components Category: Metric Group: Explainability Name: AIX360/LIME Example on how LIME helps to identify classification relevant areas of an image Example Pipeline Components Category: Metric Group: Adversarial Robustness Name: ART Example on how Adversarial Attacks happen Example Pipeline Components Category: Metric Group: AI Fairness Name: AIF360 Example on how the AIF360 toolkit computes fairness metrics and mitigates bias IBM 6atson 7penScale IB' 6atson OpenScale uses the same 7pen Source components on top of Kubernetes, Kubeflow and K8Ser(ing $id you know9 'odel 'onitoring and visualization of bias ./ IB' Thin- 2021 / 2 2021 IB' orporation (IB' Watson 7penScale) Component creation and cataloging... IB' Thin- 2021 / 2 2021 IB' orporation ...using Elyra and Data Science Asset Repository .0 Component consumption... IB' Thin- 2021 / 2 2021 IB' orporation ...using Elyra or Watson Orchestrator .. The final pipeline in Elyra.. IB' Thin- 2021 / 2 2021 IB' orporation …and KubeFlow .5 Summary - Rapid prototyping using visual editing and notebooks - Seamless scaling during development and deployment - GPU support - ML tools: PyData stack, TensorFlow, PyTorch, … - life science tools: DICOM input, DICOM output, … - Reproducibility - Data lineage - Reference implementation in open source - Collaboration support IB' Thin- 2021 / 2 2021 IB' orporation .9.