Gamma Ray-Density Logging
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Geofysisk Borrhålsloggning I Apatitjärnmalmer, Norra Bergslagen
Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2017: 32 Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Geofysisk borrhålsloggning i apatitjärnmalmer, norra Bergslagen Philip Johansson DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2017: 32 Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Geofysisk borrhålsloggning i apatitjärnmalmer, norra Bergslagen Philip Johansson Copyright © Philip Johansson Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Philip Johansson Geophysical methods are frequently applied in conjunction with exploration efforts to increase the understanding of the surveyed area. Their purpose is to determine the nature of the geophysical response of the subsurface, which can reveal the lithological and structural character. By combining geophysical measurements with the drill core data, greater clarity can be achieved about the structures and lithology of the borehole. The purpose of the project was to give the student an opportunity to discover borehole logging operations and to have a greater understanding of the local geology, in particular the iron mineralizations in the apatite iron ore intersected by the boreholes. -
Anomalies in Resistivity Logs Caused by Borehole Environment
Anomalies in Resistivity Logs Caused by Borehole Environment Ko Ko Kyi, Retired Principal Petrophysicist Resistivity logs are critical input data for petrophysical evaluation as they are used for identification of possible hydrocarbon bearing intervals, as well as determination of water saturation in reservoirs of interest. Therefore, it is important to ensure that resistivity logs are properly acquired, using appropriate type of resistivity logging tools, suitable for the borehole environment, such as hole size, type of mud, mud salinity etc., in which these tools are deployed. Generally, resistivity logging tools are divided into two main types, namely induction tools and laterolog tools. Induction resistivity tools are used in non-conductive or fresh mud and the laterolog resistivity tools are used in conductive or high salinity muds. In addition to the drilling mud, hole size also has an effect on the resistivity logging tools. Wireline logging tools are generally 3 ½ to 4 inches in diameter and are not suitable for very big holes as the mud around the tool will have significant influence on the tool response. Even Logging While Drilling (LWD) tools have limitations on the size of the hole in which they can be deployed effectively. A very saline mud inside a large borehole can have serious effects on the response of an induction logging tool. Borehole size, as well as eccentricity of the LWD resistivity tool can have deleterious effects on resistivity logs. LWD resistivity tools work on similar principle as the wireline induction resistivity tool and therefore borehole size, high salinity mud, eccentricity can cause anomalous readings of the LWD resistivity tool. -
46. Integration of Sfl and Ild Electrical Resistivity Logs During Leg 133: an Automatic Modeling Approach1
McKenzie, J.A., Davies, P.J., Palmer-Julson, A., et al, 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 133 46. INTEGRATION OF SFL AND ILD ELECTRICAL RESISTIVITY LOGS DURING LEG 133: AN AUTOMATIC MODELING APPROACH1 Peter D. Jackson2 and Richard D. Jarrard3 ABSTRACT An automatic technique is developed for integrating two electrical resistivity logs obtained during Leg 133, namely, the deep induction log (ILD) and the spherically focussed log (SFL). These logs are routinely run by the Ocean Drilling Program in lower resistivity sedimentary environments, where drilling through soft, poorly consolidated lithologies often results in variable hole diameters. Examples are given to show the superior resolution of the SFL, compared to the ILD, in lithologies encountered during Leg 133, but also the degradation of the SFL response caused by variable hole conditions. A forward modeling program is used to calculate the ILD response, and a corrective scheme is developed that uses the SFL log as the starting point of an "iterative-corrective" procedure that uses, in effect, the ILD log to correct the SFL log for degradation caused by changes in the diameter of the borehole. The calculated induction log (using the corrected SFL log as the input model) is shown to be near to the ILD measured downhole. The authors consider this to be proof that the corrected SFL is a better estimate of the formation resistivity downhole (Rt) than either the SFL or ILD taken alone. Corrections are shown to be substantial in poor hole conditions, and examples are given where geological cyclicity might be confused with hole effects if uncorrected logs were to be used. -
Common Practice of Formation Evaluation Program in Geothermal Drilling
PROCEEDINGS, 46th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 15-17, 2021 SGP-TR-218 Common Practice of Formation Evaluation Program in Geothermal Drilling Vicky R. Chandra1, Ribka F. Asokawati2, Dorman P. Purba3 1PT Geo Dipa Energi, Jl. Warung Buncit Raya No.75, Jakarta, Indonesia 2PT Rigsis Energi Indonesia, Equity Tower, 49th Floor, Jl. Jend. Sudirman, Jakarta, Indonesia 3PT Enerka Bhumi Pratama, Kawasan Komersial Cilandak Gudang 410, Jakarta Selatan 12560, Indonesia [email protected] Keywords: technique, petrography, xrd, methylene blue, formation evaluation, cutting, coring, pressure, temperature, spinner, rock pH, borehole image, drilling, mudlogging, geothermal ABSTRACT Formation evaluation program in drilling operation, particularly geothermal drilling, is very much determined by the purpose and objective of drilling itself. During early exploration phase, the formation evaluation program is carried out by collecting as much subsurface information as possible. This was applied because of available subsurface data to support the development geothermal project are very limited. On the other hand, the program is very influenced and directly involve to the drilling operation that might risks the drilling operation, in term of well stability and well cost perspective. Thus, the effective and efficient techniques are highly required in the making of proper formation evaluation program. The main purpose of formation evaluation is to get a better understanding of subsurface geology and developed geothermal system so the best future strategy of field development can be determined. By doing this evaluation while drilling, it will give an advantage to the drilling operation itself. Knowledge of the real-time drilled formation, in term of its behavior, characteristic, and composition, will help the improvement of drilling performance and increase the well success ratio. -
A New Logging-While-Drilling Method for Resistivity Measurement
sensors Article A New Logging-While-Drilling Method for y Resistivity Measurement in Oil-Based Mud Yongkang Wu 1, Baoping Lu 2, Wei Zhang 2,3, Yandan Jiang 1, Baoliang Wang 1,* and Zhiyao Huang 1 1 State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] (Y.W.); [email protected] (Y.J.); [email protected] (Z.H.) 2 Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China; [email protected] (B.L.); [email protected] (W.Z.) 3 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China * Correspondence: [email protected] This paper is an extended version of an earlier conference paper: “Wu, Y.K.; Ni, W.N.; Li, X.; Zhang, W.; y Wang, B.L.; Jiang, Y.D. and Huang, Z.Y. Research on characteristics of a new oil-based logging-while-drilling instrument. In Proceedings of the 11th International Symposium on Measurement Techniques for Multiphase Flow, Zhenjiang, China, 3–7 November 2019.” Received: 21 December 2019; Accepted: 11 February 2020; Published: 16 February 2020 Abstract: Resistivity logging is an important technique for identifying and estimating reservoirs. Oil-based mud (OBM) can improve drilling efficiency and decrease operation risks, and has been widely used in the well logging field. However, the non-conductive OBM makes the traditional logging-while-drilling (LWD) method with low frequency ineffective. In this work, a new oil-based LWD method is proposed by combining the capacitively coupled contactless conductivity detection (C4D) technique and the inductive coupling principle. -
Introduction to Formation Evaluation
Introduction to Formation Evaluation By Abiodun Matthew Amao Monday, September 09, 2013 Well Logging PGE 492 1 Lecture Outline • What is formation evaluation? • Why do we evaluate formation? • What do we evaluate? • What data are we interested in? • Who needs these data? • What tools and methodology? • Summary • References Monday, September 09, 2013 Well Logging PGE 492 2 What is formation evaluation? • Formation evaluation is the application of scientific principles, engineering concepts and technological innovations in the exploration and prospecting of hydrocarbon resources in geological formations in an environmentally sustainable and responsible manner. • It involves detailed and systematic data acquisition, gathering, analysis and interpretation both qualitatively and quantitatively while applying scientific and engineering principles. • It is an ever growing and evolving field of petroleum engineering • Petrophysicists are engineers or geologists that specialize in the profession of formation evaluation. Monday, September 09, 2013 Well Logging PGE 492 3 Why do we evaluate formation? • We want answers to the following questions: • Is there any oil or gas there? • Where are they located? • How much of it? • How much can we produce, which answers the question, “How much money can we make?” Monday, September 09, 2013 Well Logging PGE 492 4 What do we evaluate? • We evaluate a reservoir; a reservoir is the “container” storing the hydrocarbon. • A conventional reservoir will be characterized by the following properties; – Trap/Cap Rock -
Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation
PNNL-19867 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation LJ Bond RV Harris KM Denslow TL Moran JW Griffin DM Sheen GE Dale T Schenkel November 2010 PNNL-19867 Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation LJ Bond RV Harris KM Denslow TL Moran JW Griffin DM Sheen GE Dale(a) T Schenkel(b) November 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 ___________________ (a) Los Alamos National Laboratory Los Alamos, New Mexico 87545 (b) Lawrence Berkeley National Laboratory Berkeley, California 94720 Abstract Sealed, chemical isotope radiation sources have a diverse range of industrial applications. There is concern that such sources currently used in the gas/oil well logging industry (e.g., americium-beryllium [AmBe], 252Cf, 60Co, and 137Cs) can potentially be diverted and used in dirty bombs. Recent actions by the U.S. Department of Energy (DOE) have reduced the availability of these sources in the United States. Alternatives, both radiological and non-radiological methods, are actively being sought within the oil- field services community. The use of isotopic sources can potentially be further reduced, and source use reduction made more acceptable to the user community, if suitable non-nuclear or non-isotope–based well logging techniques can be developed. Data acquired with these non-nuclear techniques must be demonstrated to correlate with that acquired using isotope sources and historic records. To enable isotopic source reduction there is a need to assess technologies to determine (i) if it is technically feasible to replace isotopic sources with alternate sensing technologies and (ii) to provide independent technical data to guide DOE (and the Nuclear Regulatory Commission [NRC]) on issues relating to replacement and/or reduction of radioactive sources used in well logging. -
Drilling Azimuth Gamma Embedded Design
MATEC Web of Conferences 63, 01008 (2016) DOI: 10.1051/matecconf/20166301008 MMME 2016 Drilling azimuth gamma embedded design a Yi Ren ZHOU , Xiao Lin QIU, Zhi Qiang GUO, Jian Hui ZHANG Nanchang Institute of TechnologyˈNo.901 Heroe Ave , Qingshanhu ,Nanchang ,Jiangxi , 330044.China Abstract: Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360 ° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells. Keywords: Embedded; LWD; azimuth gamma; numerical simulation; Monte Carlo method 1. Introduction loggingwhile drilling application and development of the oil well logging industry. The design of embedded MWD gamma position to LWD with wired and wireless are two types of msp430 embedded MWD gamma position consider to be transmission. There are cable transmission, special drill the carrier, industrial-oriented research applications can pipe transmission and optical transmission>@. -
Risk Assessment and Evaluation of the Conductor Pipe Setting Depth on Shallow Water Wells
Jerome J. Schubert, Ph.D. PE. Assistant Professor 501 K Richardson Building 979-862-1195 [email protected] RISK ASSESSMENT AND EVALUATION OF THE CONDUCTOR PIPE SETTING DEPTH ON SHALLOW WATER WELLS MMS PROJECT NO. 495 Final Report Authors, Yong B. Tu, Texas A&M University Graduate Assistant Research Jerome J. Schubert, Ph.D. PE, Texas A&M University Assistant Professor Sulistyo Protomo, Texas A&M University Graduate Assistant Amirsaman Paknejad, Texas A&M University Graduate Assistant 3116 TAMU, College Station, Texas 77843-3116 (979) 845-2241 / FAX (979) 845-1307 / http://pumpjack.tamu.edu Risk assessment and evaluation of the conductor pipe setting depth on shallow water wells Yong B. Tu, and Jerome J. Schubert, Texas A&M University Executive Summary Introduction Faced with geopolitical and global economic uncertainties, many leading O&G corporations have placed deliberate emphasis on marketing their “shallow water” and “economically volatile” assets to small independent O&G companies. However, due to recent technological advancements in production systems, it is economically feasible for small independent O&G companies to pursue these “unwanted” assets as part of own portfolio. It is anticipated that these operators will introduce new wells into these mature fields to perform further well testing and new developments to the acquired assets. Early drilling studies and guidelines have mentioned casing design and well control issues. However, they have neglected situations where upward fluid migration can lead to abnormally pressured shallow formations, especially in a developed field. Even in situations where there has not been any artificial charging of shallow formations, selection of conductor and surface casing setting depths has, in the past, been based more on tradition than sound engineering practices. -
Appendix C: Well Drilling Procedure
Table L1. Proposed CO2 Injection Well – Casing Specifications Tensile Depth Size Weight Collapse/ TUBULAR Grade Thread Body/Joint (ft) (in) (lb./ft) Burst (psi) (X 1000 lbs.) Conductor 0 - 40 13-3/8 48 H-40 ST&C 770/1,730 541/322 Surface Casing 0 – 965 9-5/8 36 J-55 ST&C 2,020/3,520 564/394 Protection Casing 0 – 4,000 5-1/2 15.5 J-55 LT&C 4,040/4,810 248/217 Well Drilling Program The following sections contain the proposed step-by-step program for drilling and completing the proposed CO2 Injection Well. The CO2 Injection Well will be used for baseline monitoring and characterization, injection of the CO2 fluid during the active experiment, and post-injection monitoring of the intervals of interest. DRILLING PROCEDURE CONDUCTOR HOLE 1. Prepare surface pad location and install well cellar. 2. Mobilize drilling rig. Perform safety audit during rig-up to ensure that equipment setup complies with project requirements. 3. Notify Arizona Oil and Gas Conservation Commission at least 48 hours prior to spudding the well. 4. Drill mouse and rat holes. 5. Drill 17-1/2” conductor hole to +/-40 feet. Install 13-3/8” casing and grout annular space from set depth to surface with concrete. 6. Wait on concrete to cure for 12 hours. SURFACE HOLE 7. Rig up mud logging unit and test equipment. Collect and save 10-foot samples from 40 feet to total depth. A set of samples is required to be submitted to the Oil and Gas Administrator, Arizona Geological Survey, within 30 days of completion of the well. -
Thermochemical Oxidation of Methane Induced by High-Valence Metal Oxides in a Sedimentary Basin
ARTICLE DOI: 10.1038/s41467-018-07267-x OPEN Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin Wen-Xuan Hu1, Xun Kang1, Jian Cao1, Xiao-Lin Wang1, Bin Fu2 & Hai-Guang Wu1 Thermochemical oxidation of methane (TOM) by high-valence metal oxides in geological systems and its potential role as a methane sink remain poorly understood. Here we present evidence of TOM induced by high-valence metal oxides in the Junggar Basin, located in 1234567890():,; northwestern China. During diagenesis, methane from deeper source strata is abiotically 13 oxidized by high-valence Mn(Fe) oxides at 90 to 135 °C, releasing C-depleted CO2, soluble Mn2+ and Fe2+. Mn generally plays the dominant role compared to Fe, due to its lower Gibbs free energy increment during oxidation. Both CO2 and metal ions are then incorporated into authigenic calcites, which are characterized by extremely negative δ13C values (−70 to −22.5‰) and high Mn content (average MnO = 5 wt.%). We estimate that as much as 1224 Tg of methane could be oxidized in the study area. TOM is unfavorable for gas accumulation but may act as a major methane sink in the deep crustal carbon cycle. 1 State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. 2 Research School of Earth Science, The Australian National University, Canberra ACT 0200, Australia. These authors contributed equally: Wen-Xuan Hu, Xun Kang. Correspondence and requests for materials should be addressed to W.-X.H. (email: [email protected]) or to X.K. -
Formation Evaluation with Pre-Digital Well Logs Formation Evaluation with Pre-Digital Well Logs
Formation Evaluation with Pre-Digital Well Logs Formation Evaluation with Pre-Digital Well Logs RICHARD M. BATEMAN Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States Copyright © 2020 Richard M. Bateman. Published by Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.