Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Geofysisk Borrhålsloggning I Apatitjärnmalmer, Norra Bergslagen
Total Page:16
File Type:pdf, Size:1020Kb
Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2017: 32 Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Geofysisk borrhålsloggning i apatitjärnmalmer, norra Bergslagen Philip Johansson DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2017: 32 Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Geofysisk borrhålsloggning i apatitjärnmalmer, norra Bergslagen Philip Johansson Copyright © Philip Johansson Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2017 Abstract Downhole Physical Property Logging of the Blötberget Iron Deposit, Bergslagen, Sweden Philip Johansson Geophysical methods are frequently applied in conjunction with exploration efforts to increase the understanding of the surveyed area. Their purpose is to determine the nature of the geophysical response of the subsurface, which can reveal the lithological and structural character. By combining geophysical measurements with the drill core data, greater clarity can be achieved about the structures and lithology of the borehole. The purpose of the project was to give the student an opportunity to discover borehole logging operations and to have a greater understanding of the local geology, in particular the iron mineralizations in the apatite iron ore intersected by the boreholes. In order to do this, the student participated in performing a geophysical borehole survey and analyzing the results. These were combined with a drill core log in order to cross plot the results and increase understanding. Key words: Borehole logging, resistivity logging, magnetic susceptibility, magnetite, Bergslagen Independent Project in Earth Science, 1GV029, 15 credits, 2017 Supervisor: Alireza Malehmir Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) The whole document is available at www.diva-portal.org Sammanfattning Geofysisk borrhålsloggning i apatitjärnmalmer, norra Bergslagen Philip Johansson Geofysiska metoder används ofta i samband med prospektering för att öka förståelsen av området. Utförda från ytan ger de en relativt god tolkning av vad som kan finnas på djupet och är även kostnadseffektiva jämfört med provborrning. Borrhålsloggning sker däremot efter att själva hålet borrats och ändamålet är ofta att utöka förståelsen om området omedelbart kring det loggade hålet. Genom att kombinera geofysisk fältdata med tolkning av borrkärnan kan man erhålla en ökad förståelse för borrhålets strukturer och litologi. Syftet med det här projektet var att utöka studentens förståelse inom borrhålsloggning, samt att avgöra hur relevant metoden är för att identifiera järnmineraliseringar i apatit- järnmalmen som kännetecknar norra Bergslagen. Nyckelord: Borrhålsloggning, geofysik, apatitjärnmalm, Bergslagen Självständigt arbete i geovetenskap, 1GV029, 15 hp, 2017 Handledare: Alireza Malehmir Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) Hela publikationen finns tillgänglig på www.diva-portal.org Table of Contents 1. Background ....................................................................................................................................... 1 1.1 Geological setting....................................................................................................................... 1 2. Method ............................................................................................................................................... 2 2.1 Setup ............................................................................................................................................ 3 2.2 Temperature & resistivity .......................................................................................................... 4 2.3 Magnetic susceptibility probe ................................................................................................... 4 2.4 Sonic probe ................................................................................................................................. 4 2.5 Geoelectric probe ....................................................................................................................... 4 2.6 Background gamma radiation .................................................................................................. 5 3. Results ............................................................................................................................................... 6 4. Discussion ....................................................................................................................................... 10 5. Conclusions ..................................................................................................................................... 12 Reference list....................................................................................................................................... 12 Appendix .............................................................................................................................................. 14 1. Background The area around Ludvika has been mined for iron since the 16th century. In the 1970’s the mine was shut down due to falling iron prices and international competition. Higher prices have, as of a few years ago, stimulated a boom in exploration companies worldwide. The one consequence being that old deposits become re-evaluated for potential mining. By going through old mining logs and performing new surveys, companies strive to more accurately determine the grade and magnitude of ore viable for extraction (the so called ore evaluation). In Ludvika, this means that the old iron mines’ archives have been evaluated and new drill cores have been retrieved from the field (Nordic Iron Ore, 2015). 1.1 Geological setting Located in southern Dalecarlia, Ludvika is at a low point in the topography, surrounded by forest dominated by evergreens. The soil is almost without exception of glacial till, owing to the last ice age. Because of the location in central Sweden, the area shows similar mineralization as the rest of Bergslagen. The most significant rock types are different metavolcanics, in which the iron mineralization is mainly found. Appearing as both hematite and as magnetite, the ore body in Blötberget contains a mix of the two as well as localized parts where they are found isolated. The inferred magnitude of extractable ore at Blötberget (see figure 1) is currently 10,2Mt, with an iron percentage of around 42,9% (Lindholm, 2011). The remaining 57,1% are non-iron bearing minerals as well as minerals containing iron but including impurities complicating practical extraction. The surveyed hole in my study went to a depth of 480 metres, and was Figure 1. Map of the general area in which the steeply oriented to the N-S direction. The survey took place, shown are Blötberget mountain as well as the town of Ludvika. Source: “GSD- bedrock in the area is mainly a mixture of Fastighetskartan”, 1:10 000 © Lantmäteriet. intrusive and extrusive meta-granites and meta-diorites, with light, felsic to intermediary minerals predominating. The formations emplaced approximately 1,9Ga in a volcanic back-arc setting (Allen, et al., 1996) and the iron mineralization is mingled with apatite and is recently claimed to be of the “Kiruna type” apatite-iron-oxide ore. The apatite frequently occurs as fluorapatite, and contains trace amounts of rare earth elements (REE) (Frietsch & Perdahl, 1995). The main mineralization 1 includes both magnetite and hematite. The ore occurs in gently dipping massive bands with a thickness ranging from a few metres to about 15m. The mineralized body is open at depth beyond 700 metres, which is where the deepest borehole ends (Nordic Iron Ore, 2015). Figure 2. Petrological map of the area. Red and orange areas represent massive granite respective rhyolite deposits. Source: “Berggrundskarta”, 1:5000, © SGU. 2. Method As the borehole was 76mm in diameter, the process of slimhole logging was used. Various long, thin probes were employed for different measurements. The depth of the borehole was estimated to be 480m. The casing of the borehole went to a depth of 5m.The method mainly focused on measuring the various physical properties of the formations intersected by the borehole, correlating the readings with the depth and consulting Nordic Iron Ore about the cores. In order to plot the data from the loggings, MATLAB software was used in conjunction with scripts from an earlier logging of the same character. Later R was used to plot and correlate the data. The probes were from Robertson Geologging Ltd. and included instruments for measuring magnetic susceptibility, natural gamma radiation, borehole fluid temperature, acoustic properties, and electrical conductivity. These properties were measured by four probes, all of which had the ability to measure the natural gamma radiation. A petroleum generator powered the winch as well as the logging equipment. Nordic Iron Ore supplied a core log. Knowing the general stratigraphy of the borehole, the data was combined with reference values for 2 the physical properties of the rocks contained therein. These results were a reference against which to test the readings from the field survey.