Relativistic Emission Lines from Accreting Black Holes

Total Page:16

File Type:pdf, Size:1020Kb

Relativistic Emission Lines from Accreting Black Holes A&A 413, 861–878 (2004) Astronomy DOI: 10.1051/0004-6361:20031522 & c ESO 2004 Astrophysics Relativistic emission lines from accreting black holes The effect of disk truncation on line profiles A. M¨uller and M. Camenzind Landessternwarte Koenigstuhl, 69117 Heidelberg, Germany Received 30 July 2003 / Accepted 22 September 2003 Abstract. Relativistic emission lines generated by thin accretion disks around rotating black holes are an important diagnostic tool for testing gravity near the horizon. The iron K–line is of special importance for the interpretation of the X–ray emission of Seyfert galaxies, quasars and galactic X–ray binary systems. A generalized kinematic model is presented which includes radial drifts and non–Keplerian rotations for the line emitters. The resulting line profiles are obtained with an object–oriented ray tracer operating in the curved Kerr background metric. The general form of the Doppler factor is presented which includes all kinds of poloidal and toroidal motions near the horizon. The parameters of the model include the spin parameter, the inclination, the truncation and outer radius of the disk, velocity profiles for rotation and radial drift, the emissivity profile and a multi–species line–system. The red wing flux is generally reduced when radial drift is included as compared to the pure Keplerian velocity field. All resulting emission line profiles can be classified as triangular, double–horned, double–peaked, bumpy and shoulder–like. Of particular interest are emission line profiles generated by truncated standard accretion disks (TSD). It is also shown that the emissivity law has a great influence on the profiles. The characteristic shoulder–like line profile observed for the Seyfert galaxy MCG–6–30–15 can be reproduced for suitable parameters. Key words. galaxies: active – galaxies: Seyfert – accretion – relativity – black hole physics – line: profiles 1. Introduction Broad X–ray emission lines originate from the hot inner parts of accreting black hole systems, typically from radii com- Emission lines originating from regions where the influence of parable to the radius of marginal stability. Naturally, these lines curved space–time can not be neglected are found in accret- hint for a proximity of hot and cold material: hot material ing black hole systems like Active Galactic Nuclei (AGN), can be found in an optically thin corona, a place where cold microquasars and Galactic Black Hole Candidates (GBHC). seed photons are Comptonized to hard radiation. It is expected These astrophysical systems exhibit hot plasma falling into that the corona becomes optically thick at super-Eddington ac- the deep potential well of black holes. The ion species in cretion rates and is dominated by Comptonization. This lat- the plasma still have some electrons on lower shells so that ter scenario seems to hold for narrow-line Seyfert-1 galax- there are several transitions between electron states that gen- ies (NLS1s), whereas classical broad-line Seyfert-1 galaxies erate emission lines in the X–ray range. The most prominent (BLS1s) accrete at sub-Eddington to Eddington rates. line is the Fe Kα line at 6.4 keV rest frame energy (near- neutral iron). Additionally, the Fe Kβ line at 7.06 keV and Relatively cold material hides in the radiatively–efficient, rarely Ni Kα at 7.48 keV and Cr Kα at 5.41 keV can be ap- geometrically thin and optically thick accretion disk, the so plied to fit X–ray emission line systems. The fluorescence pro- called standard disk, hereafter SSD (Shakura–Sunyaev Disk) cess and its transition energies depend on the ionization state (Shakura & Sunyaev 1973). The resulting structure equations of the species. One can distinguish hot and cold regimes of line for this standard disk have been generalized to the relativistic emission which can be described by an ionization parameter case later (Novikov & Thorne 1974). The hard coronal input (Ballantyne et al. 2001). Generally, X-ray astronomers observe radiation usually described by a power law illuminates the cold a multi–component emission line complex of these species. disk. As a consequence, the surface of the disk is ionized in a The Fe Kα line dominates the line system due to its high rela- thin layer. In a fluorescence mechanism the hard radiative input tive strength and is often indicated in unreduced global X-ray is absorbed (threshold at 7.1 keV) and re–emitted in softer fluo- spectra. rescence photons. But in the dominant competitive process, the auger effect, the excited ions emit auger electrons and enrich Send offprint requests to:A.M¨uller, the environment with hot electrons. One of the first applications e-mail: [email protected] of this X–ray fluorescence was performed at the microquasar Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20031522 862 A. M¨uller and M. Camenzind: Relativistic emission lines from accreting black holes Cyg X–1 (Fabian et al. 1989). These observations were supple- mented by radio–quiet AGN, e.g. Seyfert galaxies, showing the same X–ray reflection signatures (Pounds et al. 1990; Tanaka et al. 1995; Reynolds & Nowak 2003). But there are also sources exhibiting narrow X–ray emis- sion lines. The narrow lines do not show distortion by relativis- tic effects. It has been proposed that narrow X–ray emission lines can be explained by reflection at the large–scale dusty torus (Turner et al. 1997). Here, the narrow line is overimposed on broad line profiles. This interpretation has been applied to some sources, like Seyfert galaxies, e.g. MCG–6–30–15 (Wilms et al. 2001), MCG–5–23–16 (Dewangan et al. 2003) and Quasars, e.g. Mrk 205 (Reeves et al. 2001). The absence of the line feature in several Sefert–1 galaxies (Pfefferkorn et al. 2001) can be explained by global accretion models. The first possible interpretation is that the inner edge of the disk seems to be far away from the black hole. If the Fig. 1. Prototype X–ray spectrum of a type–1 AGN (illustration idea fluorescence process is still possible in that distance, the skew- taken from Fabian 1998). The spectrum is dominated by the global ness of the X–ray emission line vanishes and becomes rather Comptonized continuum. At low energies, there is the soft excess,in Newtonian-like. In even larger distances, it is supposed that the principle a composition of some black bodies belonging to the disk di- vided into rings. At energies around 1 keV, one can recognize a com- emission line feature disappears completely because irradiation plex of absorption dips, originating from the warm absorbers.There- and fluorescence is reduced. Accretion theory states that this flection component consists of a broad bump peaking around 20 keV scenario holds for low accretion rate: then the transition radius and the prominent fluorescence emission line complex around 6.4 keV. between standard accretion disk and optically thin disk is large (Esin et al. 1997). The mass determinations for Seyfert black holes confirm this interpretation while being in the intermedi- independently from the accretion model! This is accessable by ate range of 106 to 108 M . These lighter supermassive black analytical investigations. holes seem to accrete very weakly. Another basic ingredient to calculate emission lines and X–ray spectra of AGN and X–ray binaries are dominated spectra in general is the emissivity law that determines the by broad Comptonized continua. The properties of these spec- emission behaviour of the line emitting region. In Sect. 5, alter- tra are discussed in the next section. The first step for as- native emissivity shapes besides th classical single power law tronomers is to reduce the observed data files and to extract the are applied. line profile by subtracting this global continuum emission. This Ray racing provides in a first step disk images. It may be procedure is already complicated because the intrinsic curva- possible to resolve these images observationally in near future. ture of the Comptonized radiation is still topic of an ongoing In any case, disk images as presented in Sect. 6 are very instruc- debate. tive unrevealing GR effects and influence of plasma dynamics. The resulting emission line profile serves for diagnostics In Sect. 7, the calculation and basic properties of the emis- and to constrain essential parameters of the accreting black sion lines are discussed. hole system. So, astronomers found an X–ray imprint of black In the final Sect. 8, the parameter space of relativistic emis- holes and can derive properties concerning the relative position sion lines is investigated and suitable criteria to fix line features from the inner accretion disk (standard disk) to the observer, are presented. One can apply these criteria to observed line pro- the inclination i or the rotational state of the black hole, the files and derive a classification in the line jungle. Kerr rotational parameter a, the extension of the geometrically thin and optically thick standard disk, like inner radius rin and 2. X–ray spectra and topology of type–1 AGN outer radius rout, the velocity field of the plasma, separated in Φ Θ r toroidal v , poloidal v and radial v components and the rela- The data quality increased conspicuously with the launch of the tive position of hot corona to cold accretion disk. space–based X–ray observatories Chandra and XMM–Newton. Let us follow up the theoretical steps from black hole the- The challenge in interpreting X–ray spectra of AGN and XRBs ory needed here until one gets simulated emission line pro- is to correctly reduce the data and subtract the continuum. files: Sect. 3 introduces the metric of rotating black holes, the Afterwards one can discuss the formation of other spectral Kerr geometry, and provides the standard co–ordinate system components, such as emission lines.
Recommended publications
  • Arxiv:Astro-Ph/9601106V2 3 Feb 1997
    Line Emission from an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging Benjamin C. Bromley1,2, Kaiyou Chen1,3 and Warner A. Miller1 1Theoretical Astrophysics, MS B288, Los Alamos National Laboratory, Los Alamos, NM 87545 2Theoretical Astrophysics, MS-51, Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138 3Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 ABSTRACT Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/c2. However, if the inner disk radius extends below this limit, as is pos- sible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk mod- els. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite for Cosmology and Astrophysics mission from MCG-6-30-15 (Tanaka et al. 1995) is 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system.
    [Show full text]
  • Dynamics of Self-Gravitating Disks
    University of Cambridge May, 1994 Dynamics of self-gravitating disks Christophe Pichon Clare College and Institute of Astronomy A dissertation submitted to the University of Cambridge in accordance with the regulations for admission to the degree of Doctor of Philosophy ii Summary A fair fraction of observed galactic disks present a bar corresponding to elongated isophotes beyond the central core. Numerical simulations also suggest that bar instabilities are quite common. Why should some galaxies have bars and others not? This question is addressed here by investigating the stability of a self gravitating disk with respect to instabilities induced by the adiabatic re-alignment of resonant orbits. It is shown that the dynamical equations can be recast in terms of the interaction of resonant flows. Concentrating on the stars belonging to the inner Lindblad resonance, it is argued that this interaction yields an instability of Jeans’ type. The Jeans instability traps stars moving in phase with respect to a growing potential; here the azimuthal instability corresponds to a rotating growing potential that captures the lobe of orbital streams of resonant stars. The precession rate of this growing potential is identified with the pattern speed of the bar. The instability criterion puts constraints on the relative dispersion in angular frequency of the underlying distribution function. The outcome of orbital instability is investigated while constructing distribution functions induced by the adiabatic re-alignment of inner Lindblad orbits. These distribution functions maximise entropy while preserving the underlying axisymmetric component of the galaxy and the constraints of angular momentum, total energy, and detailed circulations conservation.
    [Show full text]
  • TESTING the KERR BLACK HOLE HYPOTHESIS USING X-RAY REFLECTION SPECTROSCOPY and a THIN DISK MODEL with FINITE THICKNESS Askar B
    Draft version August 18, 2020 Preprint typeset using LATEX style emulateapj v. 12/16/11 TESTING THE KERR BLACK HOLE HYPOTHESIS USING X-RAY REFLECTION SPECTROSCOPY AND A THIN DISK MODEL WITH FINITE THICKNESS Askar B. Abdikamalov1,2, Dimitry Ayzenberg1, Cosimo Bambi1,y, Thomas Dauser3, Javier A. Garc´ıa4,3, Sourabh Nampalliwar5, Ashutosh Tripathi1, and Menglei Zhou1 Draft version August 18, 2020 ABSTRACT X-ray reflection spectroscopy is a powerful tool for probing the strong gravity region of black holes and can be used for testing general relativity in the strong field regime. Simplifications of the available relativistic reflection models limit the capability of performing accurate measurements of the properties of black holes. In this paper, we present an extension of the model relxill nk in which the accretion disk has a finite thickness rather than being infinitesimally thin. We employ the accretion disk geometry proposed by Taylor & Reynolds(2018a) and we construct relativistic reflection models for different values of the mass accretion rate of the black hole. We apply the new model to high quality Suzaku data of the X-ray binary GRS 1915+105 to explore the impact of the thickness of the disk on tests of the Kerr metric. 1. INTRODUCTION Einstein's theory of general relativity is a pillar of modern physics and in agreement with all the available observa- tional tests (Will 2014). However, the theory has been primarily tested in weak gravitational fields, while its predictions in the strong field regime have only recently being put to test. Astrophysical black holes are ideal laboratories for testing general relativity in the strong field regime and a number of theoretical reasonings point to the possibility that the spacetime metric around these objects can present macroscopic deviations from the predictions of Einstein's gravity (see, for instance, Dvali & Gomez 2011; Giddings & Psaltis 2016; Carballo-Rubio et al.
    [Show full text]
  • Jürgen Ehlers
    J¨urgen Ehlers In the 1950s the mathematical department of Hamburg University, with its stars Artin, Blaschke, Collatz, K¨ahler, Peterson, Sperner and Witt had a strong drawing power for J¨urgen Ehlers, student of mathematics and physics. Since he had impressed his teachers he could well have embarked on a dis- tinguished career in mathematics had it not been for Pascual Jordan and – I suspect – Hermann Weyl’s Space–Time–Matter. Jordan had just published his book “Schwerkraft und Weltall” which was a text on Einstein’s theory of gravitation, developing his theory of a variable gravitational “constant”. Only the rudiments of this theory had been for- mulated and Jordan, overburdened with countless extraneous commitments, was eager to find collaborators to develop his theory. This opportunity to breaknew ground in physics enticed J¨urgen Ehlers and Wolfgang Kundt to help Jordan with his problems, and their workwas acknowledged in the 1955 second edition of Jordan’s book. It didn’t take J¨urgen, who always was a systematic thinker, long to re- alize that not only Jordan’s generalization but also Einstein’s theory itself needed a lot more work. This impression was well described by Kurt Goedel in 1955 in a letter to Carl Seelig: “My own workin relativity theory refers to the pure gravitational theory of 19 of which I believe that it was left by Einstein himself and the whole contemporary generation of physicists as a torso – and in every respect, physically, mathematically, and its applications to cosmology”. When asked by Seelig to elaborate , Goedel added: “Concerning the com- pletion of gravitational theory of which I wrote in my last letter I do not mean a completion in the sense that the theory would cover a larger domain of phenomena (Tatsachenbereich), but a mathematical analysis of the equa- tions that would make it possible to attempt their solution systematically and to find their general properties.
    [Show full text]
  • Simultaneity and Precise Time in Rotation
    universe Article Simultaneity and Precise Time in Rotation Don Koks Defence Science and Technology Group, CEWD 205 Labs, P.O. Box 1500, Edinburgh SA 5111, Australia; [email protected] Received: 4 October 2019; Accepted: 12 November 2019; Published: 16 December 2019 Abstract: I analyse the role of simultaneity in relativistic rotation by building incrementally on its role in simpler scenarios. Historically, rotation has been analysed in 1+1 dimensions; but my stance is that a 2+1-dimensional treatment is necessary. This treatment requires a discussion of what constitutes a frame, how coordinate choices differ from frame choices, and how poor coordinates can be misleading. I determine how precisely we are able to define a meaningful time coordinate on a gravity-free rotating Earth, and discuss complications due to gravity on our real Earth. I end with a critique of several statements made in relativistic precision-timing literature, that I maintain contradict the tenets of relativity. Those statements tend to be made in the context of satellite-based navigation; but they are independent of that technology, and hence are not validated by its success. I suggest that if relativistic precision-timing adheres to such analyses, our civilian timing is likely to suffer in the near future as clocks become ever more precise. Keywords: rotating disk; clock synchronisation; precise timing; Sagnac effect; accelerated frame; circular twin paradox; Selleri’s paradox PACS: 03.30.+p MSC: 83A05 1. Introduction The analysis of relativistic rotation has evolved from a theoretical problem to a practical one in recent years as clock technology has grown ever more precise, and the question of what constitutes “the best time” on a rotating Earth becomes more urgent to resolve.
    [Show full text]
  • Event Horizons, Gravitational Waves and Astrophysical Kicks in Black-Hole Spacetimes J
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 10-1-2011 Event horizons, gravitational waves and astrophysical kicks in black-hole spacetimes J. Marcelo Ponce Castro Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Ponce Castro, J. Marcelo, "Event horizons, gravitational waves and astrophysical kicks in black-hole spacetimes" (2011). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Event Horizons, Gravitational Waves and Astrophysical Kicks in Black-Hole Spacetimes Ph.D. Doctor of Philosophy in Astrophysical Sciences and Technology M.Sc. Marcelo Ponce C. Rochester Institute of Technology Rochester, New York October 2011 ASTROPHYSICAL SCIENCES AND TECHNOLOGY COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph.D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of J. Marcelo Ponce Castro has been examined and approved by the dissertation committee as satisfactory for the dissertation requirement for the Ph.D. degree in Astrophysical Sciences and Technology. Dr. Douglas Meadows, Committee Chair Dr. Manuela Campanelli, Committee Member Dr. Joshua A. Faber, Committee Member Dr. Joel Kastner, Committee Member Dr. Carlos Lousto, Committee Member Dr. Jorge Pullin, Committee Member Professor Dr. Yosef Zlochower, Thesis Advisor Date EVENT HORIZONS, GRAVITATIONAL WAVES AND ASTROPHYSICAL KICKS IN BLACK HOLES SPACETIMES By J. Marcelo Ponce Castro A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D.
    [Show full text]
  • The Kerr/CFT Correspondence and Its Extensions
    Living Rev Relativ (2017) 20:1 DOI 10.1007/s41114-017-0003-2 REVIEW ARTICLE The Kerr/CFT correspondence and its extensions Geoffrey Compère1 Received: 9 June 2016 / Accepted: 12 December 2016 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract We present a first-principles derivation of the main results of the Kerr/CFT correspondence and its extensions using only tools from gravity and quantum field theory. Firstly, we review properties of extremal black holes with in particular the con- struction of an asymptotic Virasoro symmetry in the near-horizon limit. The entropy of extremal spinning or charged black holes is shown to match with a chiral half of Cardy’s formula. Secondly, we show how a thermal 2-dimensional conformal field the- ory (CFT) is relevant to reproduce the dynamics of near-superradiant probes around near-extremal black holes in the semi-classical limit. Thirdly, we review the hidden conformal symmetries of asymptotically-flat black holes away from extremality and present how the non-extremal entropy can be matched with Cardy’s formula. We fol- low an effective field theory approach and consider the Kerr–Newman black hole and its generalizations in various supergravity theories. The interpretation of these results by deformed dual conformal field theories is discussed and contrasted with properties of standard 2-dimensional CFTs. We conclude with a list of open problems. Keywords Black holes · Holography · AdS/CFT · Conformal field theory This article is a revised version of http://dx.doi.org/10.12942/lrr-2012-11. Change summary Major revision, updated and expanded.
    [Show full text]
  • Pos(P2GC)004 Ce
    PoS(P2GC)004 Black-Hole Phenomenology Neven Bilic´ ∗ Rudjer Boškovi´cIntitute, Zagreb, Craotia E-mail: [email protected] This set of lectures is an introduction to black-hole astrophysics. The emphasis is made on the phenomenology of X-ray binaries and of supermassive compact objects at galactic centers. School on Particle Physics, Gravity and Cosmology August 21 -September 2, 2006 Dubrovnik ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Black-Hole Phenomenology Neven Bilic´ Contents 1. Introduction 4 2. Preliminaries 4 2.1 Spherical Configurations 4 2.2 Schwarzschild Solution 5 PoS(P2GC)004 2.2.1 Birkhoff’s Theorem 6 2.3 Spherical Stars 6 2.4 Newtonian Limit 6 2.4.1 Polytropes 7 3. Compact Astrophysical Objects 8 3.1 White Dwarfs 8 3.1.1 Equation of State 8 3.2 Neutron Stars 10 3.3 Black Holes 12 3.3.1 Spherical Collapse 13 3.3.2 Eddington-Finkelstein Coordinates 15 4. Rotating Black Holes 16 4.1 Geodesic Motion 17 4.1.1 Photon Circular Orbit 18 4.1.2 Angular Velocity 18 4.1.3 Innermost Stable Circular Orbit 18 4.2 Ergosphere 19 4.2.1 Penrose Process 20 5. Stellar Mass BHs versus NSs 21 5.1 X-ray Binaries 21 5.1.1 Binary X-ray Pulsars 21 5.1.2 Mass Measurements 22 5.2 Black-Hole Binaries 23 5.2.1 Cygnus X-1: A Black-Hole Candidate 23 5.3 Spin Estimates 24 6.
    [Show full text]
  • Redalyc.Timelike and Null Equatorial Geodesics in the Bonnor-Sackfield
    Revista Integración ISSN: 0120-419X [email protected] Universidad Industrial de Santander Colombia González, Guillermo A.; López-Suspes, Framsol Timelike and null equatorial geodesics in the Bonnor-Sackfield relativistic disk Revista Integración, vol. 29, núm. 1, 2011, pp. 59-72 Universidad Industrial de Santander Bucaramanga, Colombia Available in: http://www.redalyc.org/articulo.oa?id=327028019005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 58 F.R. González Díaz Se puede ver que p es una proyección en el álgebra C(G/K, ( )). Mas aún, esta L H Revista Integración álgebra actúa como endomorfismo sobre el A-módulo libre C(G/K, ), evidente- Escuela de Matemáticas H mente de manera puntual, y se puede demostrar que p es la proyección sobre el Universidad Industrial de Santander Vol. 29, No. 1, 2011, pág. 59–72 recorrido de Φ (ver una demostración en [3, p. 25]). Por lo tanto, el recorrido de Φ, y así Ξπ, es proyectivo. Timelike and null equatorial geodesics in the Hagamos hincapié en que el fibrado vectorial correspondienteaΞπ puede ser visto como la asignación de cada punto x˙ de G/K al recorrido del subespacio de p(x). Bonnor-Sackfield relativistic disk Nótese que para una representación (π, ) dada, puede haber muchas elecciones H a, ∗ a, b para la representación (π, ), y como consecuencia, muchas elecciones para la Guillermo A. González , Framsol López-Suspes H a proyección p.
    [Show full text]
  • General Relativistic Radiative Transfer: Applications to Black-Hole Systems
    Chin. J. Astron. Astrophys. Vol. 0, TO. 0, (200x) 000-00o Chinese Journal of (http1www.chjaa.ory) Astronomy and Astrophysics .' General Relativistic Radiative Transfer: Applications to Black-Hole Systems Kinwah WUI *, Steven V. FUerst2, Yosuke Mizuno3, Ken-Ichi Nishikawa3 , Graziella Branduardi-Raymont1 and Khee-Gan Lee',· 1 Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey 1U15 6NT, United Kingdom 2 Kavli lllstitute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94304, USA 3 ASA-MSFC/ SSTC, 320 Sparkman Drive, Rnntsville, AL 35805, USA 4 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA Received 2007 month day; accepted 2007 month day Abstract We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are consid­ ered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is dis­ cussed qualitatively. Key words: accretion, accretion disks - black hole physics - galaxies:active ­ radiative transfer - relativity 1 INTRODUCTION Observations of the ACN MCC-6-3Q-15 hy ASCA showed Fe Ko emissinn line with a very broad asymmetric profile (Tanaka et al. 1995). The presence of the line was confirmed hy later observations using e.g. Chandra and XMM-Newton. The broad asymmetric Fe Ko lines have also been seen in the spectra of several other ACN (e.g.
    [Show full text]
  • Disk Collapse in General Relativity
    PHYSICAL REVIEW' D VOLUME 50, NUMBER 12 15 DECEMBER 1994 Disk collapse in general relativity Andrew M. Abrahams, ' Stuart I . Shapiro, t and Saul A. Teukolsky~ Center for Radiophysics and Space Research, Cornell University, Ithaca, ¹zv York 14853 {Received 25 May 1994) The radial collapse of a homogeneous disk of collisionless particles can be solved analytically in Newtonian gravitation. To solve the problem in general relativity, however, requires the full machinery of numerical relativity. The collapse of a disk is the simplest problem that exhibits the two most significant and challenging features of strong-Seld gravitation: black hole formation and gravitational wave generation. We carry out dynamical calculations of several diferent relativistic disk systems. We explore the growth of ring instabilities in equilibrium disks, and how they are suppressed by sufhcient velocity dispersion. We calculate waveforms &om oscillating disks, and &om disks that undergo gravitational collapse to black holes. Studies of disk collapse to black holes should also be useful for developing new techniques for numerical relativity, such as apparent horizon boundary conditions for black hole spacetimes. PACS number(s): 04.25.Dm, 04.20.Jb, 04.30.Db, 04.70.—s I. INTRODUCTION but because of conservation of angular momentum this motion. is not dynaxnical. We consider cases in which the The simplest example of gravitational collapse is that disk particles are initially at rest and also in which they of a homogeneous sphere of particles initially at rest. have initial angular motion. In the latter case we focus This collapse solution is analytic both in Newtonian grav- on disks with total J = 0, i.e., with equal numbers of ity and general relativity.
    [Show full text]
  • Relativistic Lines and Reflection from the Inner Accretion Disks Around Neutron Stars
    The Astrophysical Journal, 720:205–225, 2010 September 1 doi:10.1088/0004-637X/720/1/205 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS Edward M. Cackett1,8, Jon M. Miller1, David R. Ballantyne2, Didier Barret3, Sudip Bhattacharyya4, Martin Boutelier3, M. Coleman Miller5, Tod E. Strohmayer6, and Rudy Wijnands7 1 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 2 Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA 3 Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex04, France 4 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005, India 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771, USA 7 Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands Received 2009 August 9; accepted 2010 July 4; published 2010 August 6 ABSTRACT A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines.
    [Show full text]