Relativistic Lines and Reflection from the Inner Accretion Disks Around Neutron Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relativistic Emission Lines from Accreting Black Holes
A&A 413, 861–878 (2004) Astronomy DOI: 10.1051/0004-6361:20031522 & c ESO 2004 Astrophysics Relativistic emission lines from accreting black holes The effect of disk truncation on line profiles A. M¨uller and M. Camenzind Landessternwarte Koenigstuhl, 69117 Heidelberg, Germany Received 30 July 2003 / Accepted 22 September 2003 Abstract. Relativistic emission lines generated by thin accretion disks around rotating black holes are an important diagnostic tool for testing gravity near the horizon. The iron K–line is of special importance for the interpretation of the X–ray emission of Seyfert galaxies, quasars and galactic X–ray binary systems. A generalized kinematic model is presented which includes radial drifts and non–Keplerian rotations for the line emitters. The resulting line profiles are obtained with an object–oriented ray tracer operating in the curved Kerr background metric. The general form of the Doppler factor is presented which includes all kinds of poloidal and toroidal motions near the horizon. The parameters of the model include the spin parameter, the inclination, the truncation and outer radius of the disk, velocity profiles for rotation and radial drift, the emissivity profile and a multi–species line–system. The red wing flux is generally reduced when radial drift is included as compared to the pure Keplerian velocity field. All resulting emission line profiles can be classified as triangular, double–horned, double–peaked, bumpy and shoulder–like. Of particular interest are emission line profiles generated by truncated standard accretion disks (TSD). It is also shown that the emissivity law has a great influence on the profiles. -
Thomas J. Maccarone Texas Tech
Thomas J. Maccarone PERSONAL Born August 26, 1974, Haverhill, Massachusetts, USA INFORMATION US Citizen CONTACT Department of Physics & Astronomy Voice: +1-806-742-3778 INFORMATION Texas Tech University Lubbock TX 79409 E-mail: [email protected] RESEARCH Compact object populations, especially in globular clusters; accretion and ejection physics; time INTERESTS series analysis methodology PROFESSIONAL Texas Tech University EXPERIENCE Lubbock, Texas Presidential Research Excellence Professor, Department of Physics & Astronomy August 2018-present Professor, Department of Physics & Astronomy August 2017- August 2018 Associate Professor, Department of Physics January 2013 - August 2017 University of Southampton Southampton, UK Lecturer, then Reader, School of Physics and Astronomy July 2005-December 2012 University of Amsterdam Amsterdam, The Netherlands Postdoctoral researcher May 2003 - June 2005 SISSA (Scuola Internazionale di Studi Avanazti/International School for Advanced Studies) Trieste, Italy Postdoctoral researcher November 2001 - April 2003 Yale University New Haven, Connecticut USA Research Assistant May 1997 - August 2001 Jet Propulsion Laboratory Pasadena, California USA Summer Undergraduate Research Fellow June 1994 - August 1994 EDUCATION Yale University, New Haven, CT USA Department of Astronomy Ph.D., December 2001 Dissertation Title: “Constraints on Black Hole Emission Mechanisms” Advisor: Paolo S. Coppi M.S., M.Phil., Astronomy, May 1999 California Institute of Technology, Pasadena, California USA B.S., Physics, June, 1996 HONORS AND Integrated Scholar, Designation from Texas Tech for faculty who integrate teaching, research and AWARDS service activities together, 2020 Professor of the Year Award, Texas Tech Society of Physics Students, 2017, 2019 Dirk Brouwer Prize from Yale University for “a contribution of unusual merit to any branch of astronomy,” 2003 Harry A. -
Arxiv:Astro-Ph/9601106V2 3 Feb 1997
Line Emission from an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging Benjamin C. Bromley1,2, Kaiyou Chen1,3 and Warner A. Miller1 1Theoretical Astrophysics, MS B288, Los Alamos National Laboratory, Los Alamos, NM 87545 2Theoretical Astrophysics, MS-51, Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138 3Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 ABSTRACT Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/c2. However, if the inner disk radius extends below this limit, as is pos- sible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk mod- els. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite for Cosmology and Astrophysics mission from MCG-6-30-15 (Tanaka et al. 1995) is 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. -
NL#135 May/June
May/June 2007 Issue 135 A Publication for the members of the American Astronomical Society 3 IOP to Publish President’s Column AAS Journals J. Craig Wheeler, [email protected] Whew! A lot has happened! 5 Member Deaths First, my congratulations to John Huchra who was elected to be the next President of the Society. John will formally become President-Elect at the meeting in Hawaii. He will then take over as President at the meeting in St. Louis in June of 2008 and I will serve as Past-President until the 6 Pasadena meeting in June of 2009. We have hired a consultant to lead a one-day Council retreat before the Hawaii meeting to guide the Council toward a more strategic outlook for the Society. Seattle Meeting John has generously agreed to join that effort. I know he will put his energy, intellect, and experience Highlights behind the health and future of the Society. We had a short, intense, and very professional process to issue a Request for Proposals (RFP) to 10 publish the Astrophysical Journal and the Astronomical Journal, to evaluate the proposals, and Award Winners to select a vendor. We are very pleased that the IOP Publishing will be the new publisher of our cherished and prestigious journals and are very optimistic that our new partnership will lead to in Seattle a necessary and valuable evolution of what it means to publish science journals in the globally- connected electronic age. 11 The complex RFP defining our journals and our aspirations for them was put together by a team International consisting of AAS representatives and outside independent consultants. -
A Strongly Heated Neutron Star in the Transient Z Source Maxi J0556-332
A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556-332 The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Homan, Jeroen, Joel K. Fridriksson, Rudy Wijnands, Edward M. Cackett, Nathalie Degenaar, Manuel Linares, Dacheng Lin, and Ronald A. Remillard. “A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556-332.” The Astrophysical Journal 795, no. 2 (October 22, 2014): 131. © 2014 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/795/2/131 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/94549 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 795:131 (12pp), 2014 November 10 doi:10.1088/0004-637X/795/2/131 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556–332 Jeroen Homan1, Joel K. Fridriksson2, Rudy Wijnands2, Edward M. Cackett3, Nathalie Degenaar4, Manuel Linares5,6, Dacheng Lin7, and Ronald A. Remillard1 1 MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139, USA; [email protected] 2 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands 3 Department of Physics & Astronomy, Wayne -
The Black Hole Candidate IGR J17091-3624 Going to Quiescence
UvA-DARE (Digital Academic Repository) The black hole candidate IGR J17091-3624 going to quiescence Altamirano, D.; Wijnands, R.; Belloni, T. Publication date 2013 Document Version Final published version Published in The astronomer's telegram Link to publication Citation for published version (APA): Altamirano, D., Wijnands, R., & Belloni, T. (2013). The black hole candidate IGR J17091-3624 going to quiescence. The astronomer's telegram, 5112. http://www.astronomerstelegram.org/?read=5112 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 ATel #5112: The black hole candidate IGR J17091-3624 going to quiescence This space for free for your Outside GCN conference. -
Dynamics of Self-Gravitating Disks
University of Cambridge May, 1994 Dynamics of self-gravitating disks Christophe Pichon Clare College and Institute of Astronomy A dissertation submitted to the University of Cambridge in accordance with the regulations for admission to the degree of Doctor of Philosophy ii Summary A fair fraction of observed galactic disks present a bar corresponding to elongated isophotes beyond the central core. Numerical simulations also suggest that bar instabilities are quite common. Why should some galaxies have bars and others not? This question is addressed here by investigating the stability of a self gravitating disk with respect to instabilities induced by the adiabatic re-alignment of resonant orbits. It is shown that the dynamical equations can be recast in terms of the interaction of resonant flows. Concentrating on the stars belonging to the inner Lindblad resonance, it is argued that this interaction yields an instability of Jeans’ type. The Jeans instability traps stars moving in phase with respect to a growing potential; here the azimuthal instability corresponds to a rotating growing potential that captures the lobe of orbital streams of resonant stars. The precession rate of this growing potential is identified with the pattern speed of the bar. The instability criterion puts constraints on the relative dispersion in angular frequency of the underlying distribution function. The outcome of orbital instability is investigated while constructing distribution functions induced by the adiabatic re-alignment of inner Lindblad orbits. These distribution functions maximise entropy while preserving the underlying axisymmetric component of the galaxy and the constraints of angular momentum, total energy, and detailed circulations conservation. -
Atel #13007: a Further X-Ray Flare from Sgr A* Detected by Swift
UvA-DARE (Digital Academic Repository) A Further X-ray Flare from Sgr A* Detected by Swift Reynolds, M.; Degenaar, N.; Wijnands, R.; Miller, J.; Kennea, J. Publication date 2019 Document Version Final published version Published in The astronomer's telegram License Unspecified Link to publication Citation for published version (APA): Reynolds, M., Degenaar, N., Wijnands, R., Miller, J., & Kennea, J. (2019). A Further X-ray Flare from Sgr A* Detected by Swift. The astronomer's telegram, 13007. http://www.astronomerstelegram.org/?read=13007 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 ATel #13007: A Further X-ray Flare from Sgr A* Detected by Swift This space -
Reflections on the Rossi X-Ray Timing Explorer” © 3/19/13 Hale Bradt
“Reflections on the Rossi X-ray Timing Explorer” © 3/19/13 Hale Bradt Reflections on the Rossi X-ray Timing Explorer A Personal Account by Hale Bradt An expanded version of the banquet talk at the Symposium, “Exploring Physics with Neutron Stars” in honor of the 65th birthday of Fred K. Lamb Tucson, Arizona, 18 Nov. 2010 Introduction When I retired in 2001 I had to reduce my office footprint because I was to share the office with Gordon Pettengill, another faculty retiree. Upon coming across files relating to the RXTE mission, it occurred to me that the 20 years we spent in bringing this mission to fruition (i.e. launch) was quite interesting and that the documents and correspondence in my files might well be donated to the MIT Archives. I thus left this pile, about 12 inches high, on top of one of my file cabinets with the intention of organizing it a bit and providing a brief contextual document to accompany them. Some months ago, Dimitrios Psaltis called and asked me to give a talk on the selling of the RXTE mission, and I said, “Why me and why that?” “Well,” he said, “this Symposium is to honor Fred Lamb and he was instrumental in helping bring about the mission. I recall that, at a conference in Rome, over dinner or lunch, you told me all about the adventures of getting RXTE into orbit and a lot of it was very funny, and I thought it would be appropriate for this symposium.” So, I agreed, and realized this was the goad I needed to address that pile of documents that had been untouched for 9 years. -
TESTING the KERR BLACK HOLE HYPOTHESIS USING X-RAY REFLECTION SPECTROSCOPY and a THIN DISK MODEL with FINITE THICKNESS Askar B
Draft version August 18, 2020 Preprint typeset using LATEX style emulateapj v. 12/16/11 TESTING THE KERR BLACK HOLE HYPOTHESIS USING X-RAY REFLECTION SPECTROSCOPY AND A THIN DISK MODEL WITH FINITE THICKNESS Askar B. Abdikamalov1,2, Dimitry Ayzenberg1, Cosimo Bambi1,y, Thomas Dauser3, Javier A. Garc´ıa4,3, Sourabh Nampalliwar5, Ashutosh Tripathi1, and Menglei Zhou1 Draft version August 18, 2020 ABSTRACT X-ray reflection spectroscopy is a powerful tool for probing the strong gravity region of black holes and can be used for testing general relativity in the strong field regime. Simplifications of the available relativistic reflection models limit the capability of performing accurate measurements of the properties of black holes. In this paper, we present an extension of the model relxill nk in which the accretion disk has a finite thickness rather than being infinitesimally thin. We employ the accretion disk geometry proposed by Taylor & Reynolds(2018a) and we construct relativistic reflection models for different values of the mass accretion rate of the black hole. We apply the new model to high quality Suzaku data of the X-ray binary GRS 1915+105 to explore the impact of the thickness of the disk on tests of the Kerr metric. 1. INTRODUCTION Einstein's theory of general relativity is a pillar of modern physics and in agreement with all the available observa- tional tests (Will 2014). However, the theory has been primarily tested in weak gravitational fields, while its predictions in the strong field regime have only recently being put to test. Astrophysical black holes are ideal laboratories for testing general relativity in the strong field regime and a number of theoretical reasonings point to the possibility that the spacetime metric around these objects can present macroscopic deviations from the predictions of Einstein's gravity (see, for instance, Dvali & Gomez 2011; Giddings & Psaltis 2016; Carballo-Rubio et al. -
Jürgen Ehlers
J¨urgen Ehlers In the 1950s the mathematical department of Hamburg University, with its stars Artin, Blaschke, Collatz, K¨ahler, Peterson, Sperner and Witt had a strong drawing power for J¨urgen Ehlers, student of mathematics and physics. Since he had impressed his teachers he could well have embarked on a dis- tinguished career in mathematics had it not been for Pascual Jordan and – I suspect – Hermann Weyl’s Space–Time–Matter. Jordan had just published his book “Schwerkraft und Weltall” which was a text on Einstein’s theory of gravitation, developing his theory of a variable gravitational “constant”. Only the rudiments of this theory had been for- mulated and Jordan, overburdened with countless extraneous commitments, was eager to find collaborators to develop his theory. This opportunity to breaknew ground in physics enticed J¨urgen Ehlers and Wolfgang Kundt to help Jordan with his problems, and their workwas acknowledged in the 1955 second edition of Jordan’s book. It didn’t take J¨urgen, who always was a systematic thinker, long to re- alize that not only Jordan’s generalization but also Einstein’s theory itself needed a lot more work. This impression was well described by Kurt Goedel in 1955 in a letter to Carl Seelig: “My own workin relativity theory refers to the pure gravitational theory of 19 of which I believe that it was left by Einstein himself and the whole contemporary generation of physicists as a torso – and in every respect, physically, mathematically, and its applications to cosmology”. When asked by Seelig to elaborate , Goedel added: “Concerning the com- pletion of gravitational theory of which I wrote in my last letter I do not mean a completion in the sense that the theory would cover a larger domain of phenomena (Tatsachenbereich), but a mathematical analysis of the equa- tions that would make it possible to attempt their solution systematically and to find their general properties. -
L39 DISCOVERY of KILOHERTZ QUASI-PERIODIC OSCILLATIONS in 4U 1735244 RUDY WIJNANDS,1 MICHIEL VAN DER KLIS,1 MARIANO Méndez,1,2
The Astrophysical Journal, 495:L39–L42, 1998 March 1 q 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISCOVERY OF KILOHERTZ QUASI-PERIODIC OSCILLATIONS IN 4U 1735244 Rudy Wijnands,1 Michiel van der Klis,1 Mariano MeÂndez,1,2 Jan van Paradijs,1,3 Walter H. G. Lewin,4 Frederick K. Lamb,5 Brian Vaughan,6 and Erik Kuulkers7 Received 1997 December 1; accepted 1997 December 31; published 1998 January 28 ABSTRACT We discovered a single kilohertz (kHz) quasi-periodic oscillation (QPO) near 1150 Hz in the Rossi X-Ray Timing Explorer X-ray light curve of the low-mass X-ray binary and atoll source 4U 1735244. The rms amplitude of this peak was 2%–3%, and the FWHM was 6–40 Hz. There are indications that the kHz QPO frequency decreased from 1160 to 1145 Hz when the count rate increased, which would be quite different from what is observed in other atoll sources for which kHz QPOs have been discovered. In the X-ray color-color diagram and hardness-intensity diagram, the source traced out the curved branch (the so-called banana branch) that has been found by previous instruments. The kHz QPO was detected only when the source was at the lowest count rates during our observations, i.e., on the lower part of the banana branch. When 4U 1735244 was at higher count rates, i.e., on the upper part of the banana branch and at a higher inferred mass accretion rate with respect to that on the lower part of the banana branch, the QPO was not detected.