The Astrophysical Journal, 720:205–225, 2010 September 1 doi:10.1088/0004-637X/720/1/205 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS Edward M. Cackett1,8, Jon M. Miller1, David R. Ballantyne2, Didier Barret3, Sudip Bhattacharyya4, Martin Boutelier3, M. Coleman Miller5, Tod E. Strohmayer6, and Rudy Wijnands7 1 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA;
[email protected] 2 Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA 3 Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex04, France 4 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005, India 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771, USA 7 Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands Received 2009 August 9; accepted 2010 July 4; published 2010 August 6 ABSTRACT A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines.