Human AP Endonuclease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Krifka Publikation Glanzlicht 09
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Biomaterials 32 (2011) 1787e1795 Contents lists available at ScienceDirect Biomaterials journal homepage: www.elsevier.com/locate/biomaterials Activation of stress-regulated transcription factors by triethylene glycol dimethacrylate monomer Stephanie Krifka a, Christine Petzel a, Carola Bolay a, Karl-Anton Hiller a, Gianrico Spagnuolo b, Gottfried Schmalz a, Helmut Schweikl a,* a Department of Operative Dentistry and Periodontology, University of Regensburg, D-93042 Regensburg, Germany b Department of Oral and Maxillofacial Sciences, University of Naples “Federico II”, Italy article info abstract Article history: Triethylene glycol dimethacrylate (TEGDMA) is a resin monomer available for short exposure scenarios of Received 22 October 2010 oral tissues due to incomplete polymerization processes of dental composite materials. The generation of Accepted 14 November 2010 reactive oxygen species (ROS) in the presence of resin monomers is discussed as a common mechanism Available online 10 December 2010 underlying cellular reactions as diverse as disturbed responses of the innate immune system, inhibition of dentin mineralization processes, genotoxicity and a delayed cell cycle. -
Principles and Methods for the Risk Assessment of Chemicals in Food
WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTE EHC240: Principles and Methods for the Risk Assessment of Chemicals in Food SUBCHAPTER 4.5. Genotoxicity Draft 12/12/2019 Deadline for comments 31/01/2020 The contents of this restricted document may not be divulged to persons other than those to whom it has been originally addressed. It may not be further distributed nor reproduced in any manner and should not be referenced in bibliographical matter or cited. Le contenu du présent document à distribution restreinte ne doit pas être divulgué à des personnes autres que celles à qui il était initialement destiné. Il ne saurait faire l’objet d’une redistribution ou d’une reproduction quelconque et ne doit pas figurer dans une bibliographie ou être cité. Hazard Identification and Characterization 4.5 Genotoxicity ................................................................................. 3 4.5.1 Introduction ........................................................................ 3 4.5.1.1 Risk Analysis Context and Problem Formulation .. 5 4.5.2 Tests for genetic toxicity ............................................... 14 4.5.2.2 Bacterial mutagenicity ............................................. 18 4.5.2.2 In vitro mammalian cell mutagenicity .................... 18 4.5.2.3 In vivo mammalian cell mutagenicity ..................... 20 4.5.2.4 In vitro chromosomal damage assays .................. 22 4.5.2.5 In vivo chromosomal damage assays ................... 23 4.5.2.6 In vitro DNA damage/repair assays ....................... 24 4.5.2.7 In vivo DNA damage/repair assays ....................... 25 4.5.3 Interpretation of test results ......................................... 26 4.5.3.1 Identification of relevant studies............................. 27 4.5.3.2 Presentation and categorization of results ........... 30 4.5.3.3 Weighting and integration of results ..................... -
FDA Genetic Toxicology Workshop How Many Doses of an Ames
FDA Genetic Toxicology Workshop How many doses of an Ames- Positive/Mutagenic (DNA Reactive) Drug can be safely administered to Healthy Subjects? November 4, 2019 Enrollment of Healthy Subjects into First-In-Human phase 1 clinical trials • Healthy subjects are commonly enrolled into First-In-Human (FIH) phase 1 clinical trials of new drug candidates. • Studies are typically short (few days up to 2 weeks) • Treatment may be continuous or intermittent (e.g., washout period of 5 half- lives between doses) • Receive no benefits and potentially exposed to significant health risks • Patients will be enrolled in longer phase 2 and 3 trials • Advantages of conducting trials with healthy subjects include: • investigation of pharmacokinetics (PK)/bioavailability in the absence of other potentially confounding drugs • data not confounded by disease • Identification of maximum tolerated dose • reduction in patient exposure to ineffective drugs or doses • rapid subject accrual into a study 2 Supporting Nonclinical Pharmacology and Toxicology Studies • The supporting nonclinical data package for a new IND includes • pharmacology studies (in vitro and in vivo) • safety pharmacology studies (hERG, ECG, cardiovascular, and respiratory) • secondary pharmacology studies • TK/ADME studies (in vitro and in vivo) • 14- to 28-day toxicology studies in a rodent and non-rodent • standard battery of genetic toxicity studies (Ames bacterial reverse mutation assay, in vitro mammalian cell assay, and an in vivo micronucleus assay) • Toxicology studies are used to • select clinical doses that are adequately supported by the data • assist with clinical monitoring • Genetic toxicity studies are used for hazard identification • Cancer drugs are often presumed to be genotoxic and genetic toxicity studies are generally not required for clinical trials in cancer patients. -
Structure and Function of Nucleases in DNA Repair: Shape, Grip and Blade of the DNA Scissors
Oncogene (2002) 21, 9022 – 9032 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors Tatsuya Nishino1 and Kosuke Morikawa*,1 1Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan DNA nucleases catalyze the cleavage of phosphodiester mismatched nucleotides. They also recognize the bonds. These enzymes play crucial roles in various DNA replication or recombination intermediates to facilitate repair processes, which involve DNA replication, base the following reaction steps through the cleavage of excision repair, nucleotide excision repair, mismatch DNA strands (Table 1). repair, and double strand break repair. In recent years, Nucleases can be regarded as molecular scissors, new nucleases involved in various DNA repair processes which cleave phosphodiester bonds between the sugars have been reported, including the Mus81 : Mms4 (Eme1) and the phosphate moieties of DNA. They contain complex, which functions during the meiotic phase and conserved minimal motifs, which usually consist of the Artemis : DNA-PK complex, which processes a V(D)J acidic and basic residues forming the active site. recombination intermediate. Defects of these nucleases These active site residues coordinate catalytically cause genetic instability or severe immunodeficiency. essential divalent cations, such as magnesium, Thus, structural biology on various nuclease actions is calcium, manganese or zinc, as a cofactor. However, essential for the elucidation of the molecular mechanism the requirements for actual cleavage, such as the types of complex DNA repair machinery. Three-dimensional and the numbers of metals, are very complicated, but structural information of nucleases is also rapidly are not common among the nucleases. -
S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use
Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Silver Spring, MD 20993-0002 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (Tel) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1)....................................................................................................... 1 A. Objectives of the Guidance (1.1)...................................................................................................1 -
Comparative Genotoxicity of Adriamycin and Menogarol, Two Anthracycline Antitumor Agents
[CANCER RESEARCH 43, 5293-5297, November 1983] Comparative Genotoxicity of Adriamycin and Menogarol, Two Anthracycline Antitumor Agents B. K. Bhuyan,1 D. M. Zimmer, J. H. Mazurek, R. J. Trzos, P. R. Harbach, V. S. Shu, and M. A. Johnson Departments of Cancer Research [B. K. B.. D. M. Z.], Pathology and Toxicology Research [J. H. M., R. J. T., P. R. H.], and Biostatist/cs [V. S. S., M. A. J.], The Upjohn Company, Kalamazoo, Michigan 49001 ABSTRACT murine tumors such as P388 and L1210 leukemias and B16 melanoma (13). However, the biochemical activity of Adriamycin Adriamycin and menogarol are anthracyclines which cause and menogarol were markedly different in the following respects, more than 100% increase in life span of mice bearing P388 (a) at cytotoxic doses, Adriamycin inhibited RNA synthesis much leukemia and B16 melanoma. Unlike Adriamycin, menogarol more than DNA synthesis in L1210 cells in culture (10). In does not bind strongly to ONA, and it minimally inhibits DNA and contrast, menogarol caused very little inhibition of RNA or DNA RNA synthesis at lethal doses. Adriamycin is a clinically active synthesis at cytotoxic doses (10); (b) Adriamycin interacted drug, and menogarol is undergoing preclinical toxicology at Na strongly with DNA, in contrast to the weak interaction seen with tional Cancer Institute. In view of the reported mutagenicity of menogarol (10); (c) cells in S phase were most sensitive to Adriamycin, we have compared the genotoxicity of the two Adriamycin as compared to maximum toxicity of menogarol to drugs. Our results show that, although Adriamycin and meno cells in Gì(5).These results collectively suggested that meno garol differ significantly in their bacterial mutagenicity (Ames garol acts through some mechanism other than the intercalative assay), they have similar genotoxic activity in several mammalian DNA binding proposed for Adriamycin. -
Structural Comparison of AP Endonucleases from The
Biochimie 128-129 (2016) 20e33 Contents lists available at ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Research paper Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA Modesto Redrejo-Rodríguez a, 1, 2, Armelle Vigouroux b, 1, Aibek Mursalimov e, 1, Inga Grin a, c, d, 1, Doria Alili a, Zhanat Koshenov e, Zhiger Akishev f, Andrei Maksimenko a, Amangeldy K. Bissenbaev f, Bakhyt T. Matkarimov e, Murat Saparbaev a, * * Alexander A. Ishchenko a, , Solange Morera b, a Laboratoire «StabiliteGenetique et Oncogenese» CNRS, UMR 8200, Univ. Paris-Sud, Universite Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisee Ligue Contre le Cancer, F-94805 Villejuif Cedex, France b Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette 91198, France c SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia d Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia e National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan f Department of Molecular Biology and Genetics, Faculty of Biology, Al-Farabi Kazakh National University, Almaty 530038, Kazakhstan article info abstract Article history: Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase- Received 15 December 2015 initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide Accepted 20 June 2016 incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 30-blocking Available online 22 June 2016 moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 50 to an oxidized base. -
Human AP Endonuclease (APE)/Buffer
Human Apurinic/Apyrimidinic Endonuclease (APE) Catalog Number: EN004 Specifications and Use Contents Component Size Human APE 200 Units in 0.2 mL 10X DDR Buffer 2 (100 mM HEPES-KOH (pH 7.4), 1 M KCl, 100 mM MgCl2) 1 mL Description ♦ Human APE (also known as Ref-1) is the apurinic/apyrimidinic (AP) endonuclease required for efficient DNA base excision repair (BER). Following the removal of a damaged base by a DNA glycosylase, APE cleaves the AP site to allow resynthesis and ligation to complete repair. In addition, APE/Ref-1 acts as a factor that regulates the redox state of multiple transcription factors, including c-Jun, c-Fos, NF-κB, and p53. Source ♦ A cDNA corresponding to amino acid residues 2-318 of human APE was fused to a sequence encoding a 6X histidine epitope tag at the N-terminus. The recombinant fusion protein was expressed in E. coli. Unit Definition ♦ One unit is the amount of enzyme required to cleave the tetrahydrofuran (THF) synthetic AP Site Oligonucleotide (Cat. # 3854-100-OL) indicated below at the rate of 1 pmole/hour at 37° C. Comparable results were observed when the AP Site Oligonucleotide was used (Cat. # 3851-100-OL). ♦ Sequence: 5' CCTGCCCTGTHFGCAGCTGTGGG 3' 3' GGACGGGAC ACGTCGACACCC Specificity ♦ Human APE catalyzes the cleavage of the phosphodiester bond either 3’ or 5’ to an AP site. Assay Conditions ♦ Serial dilutions of human APE are incubated for 1 hour at 37° C in a 20 µL reaction containing 1X DDR Buffer 2 and 4 pmole THF-AP Site Oligonucleotide (Cat. # 3854-100-OL) labeled with 32P and annealed with 4 pmole Oligo Complement B (Cat. -
African Swine Fever Virus Protein Pe296r Is a DNA Repair Apurinic
JOURNAL OF VIROLOGY, May 2006, p. 4847–4857 Vol. 80, No. 10 0022-538X/06/$08.00ϩ0 doi:10.1128/JVI.80.10.4847–4857.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. African Swine Fever Virus Protein pE296R Is a DNA Repair Apurinic/Apyrimidinic Endonuclease Required for Virus Growth in Swine Macrophages Modesto Redrejo-Rodrı´guez, Ramo´n Garcı´a-Escudero,† Rafael J. Ya´n˜ez-Mun˜oz,‡ Marı´a L. Salas, and Jose´ Salas* Centro de Biologı´a Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientı´ficas-Universidad Auto´noma de Madrid), Universidad Auto´noma de Madrid, Cantoblanco, 28049 Madrid, Spain Received 15 December 2005/Accepted 21 February 2006 We show here that the African swine fever virus (ASFV) protein pE296R, predicted to be a class II apurinic/apyrimidinic (AP) endonuclease, possesses endonucleolytic activity specific for AP sites. Biochemical characterization of the purified recombinant enzyme indicated that the Km and catalytic efficiency values for the endonucleolytic reaction are in the range of those reported for Escherichia coli endonuclease IV (endo IV) and human Ape1. In addition to endonuclease activity, the ASFV enzyme has a proofreading 335 exonuclease activity that is considerably more efficient in the elimination of a mismatch than in that of a correctly paired base. The three-dimensional structure predicted for the pE296R protein underscores the structural similarities between endo IV and the viral protein, supporting a common mechanism for the cleavage reaction. During infection, the protein is expressed at early times and accumulates at later times. The early enzyme is localized in the nucleus and the cytoplasm, while the late protein is found only in the cytoplasm. -
Mechanism and Regulation Igh Chain Class Switch Recombination
IgH Chain Class Switch Recombination: Mechanism and Regulation Janet Stavnezer and Carol E. Schrader This information is current as J Immunol 2014; 193:5370-5378; ; of September 26, 2021. doi: 10.4049/jimmunol.1401849 http://www.jimmunol.org/content/193/11/5370 Downloaded from References This article cites 133 articles, 66 of which you can access for free at: http://www.jimmunol.org/content/193/11/5370.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology IgH Chain Class Switch Recombination: Mechanism and Regulation Janet Stavnezer and Carol E. Schrader IgH class switching occurs rapidly after activation of with an S region farther downstream. S regions are G rich and mature naive B cells, resulting in a switch from expres- have a high density of WGCW (A/T-G-C-A/T) motifs, the sion of IgM and IgD to expression of IgG, IgE, or IgA; preferred target for activation-induced cytidine deaminase this switch improves the ability of Abs to remove the (AID), the enzyme that initiates CSR by deaminating cytosines pathogen that induces the humoral immune response. -
Development and Validation of a High-Throughput Transcriptomic Biomarker to Address 21St Century Genetic Toxicology Needs
Development and validation of a high-throughput PNAS PLUS transcriptomic biomarker to address 21st century genetic toxicology needs Heng-Hong Lia,b,1, Renxiang Chena,b,c, Daniel R. Hydukea,b, Andrew Williamsd, Roland Frötschle, Heidrun Ellinger-Ziegelbauerf, Raegan O’Loneg, Carole L. Yaukd, Jiri Aubrechth, and Albert J. Fornace Jr.a,b,1 aDepartment of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057; bDepartment of Oncology, Georgetown University Medical Center, Washington, DC 20057; cTrevigen, Inc., Gaithersburg, MD 20877; dEnvironmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada K1A 0K9; eFederal Institute for Drugs and Medical Devices, D-53175 Bonn, Germany; fInvestigational Toxicology, Drug Discovery, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; gHealth and Environmental Sciences Institute, International Life Sciences Institute, Washington, DC 20005; and hDrug Safety Research and Development, Pfizer Global Research and Development, Groton, CT 06340 Edited by James E. Cleaver, University of California, San Francisco, CA, and approved November 2, 2017 (received for review August 10, 2017) Interpretation of positive genotoxicity findings using the current in The differentiation of relevant from irrelevant in vitro results vitro testing battery is a major challenge to industry and regulatory is crucial for the interpretation of positive findings in the context agencies. These tests, especially mammalian cell assays, have high of risk to human health. Such irrelevant positive results typically sensitivity but suffer from low specificity, leading to high rates of require expensive and time-consuming follow-up tests involving irrelevant positive findings (i.e., positive results in vitro that are not animal testing. When cost is a consideration, or when animal relevant to human cancer hazard). -
Guidance for Industry S2B Genotoxicity: a Standard Battery for Genotoxicity Testing of Pharmaceuticals
Guidance for Industry S2B Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals July 1997 ICH Guidance for Industry S2B Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals Additional copies are available from: the Drug Information Branch (HFD-210), Center for Drug Evaluation and Research (CDER), 5600 Fishers Lane, Rockville, MD 20857 (Tel) 301-827-4573 http://www.fda.gov/cder/guidance/index.htm or Office of Communication, Training, and Manufacturers Assistance (HFM-40) Center for Biologics Evaluation and Research (CBER) 1401 Rockville Pike, Rockville, MD 20852-1448, http://www.fda.gov/cber/guidelines.htm (Fax) 888-CBERFAX or 301-827-3844 (Voice Information) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 1997 ICH Table of Contents I. INTRODUCTION (1) ..................................................1 II. GENERAL PURPOSE OF GENOTOXICITY TESTING (2) ....................1 III. THE STANDARD TEST BATTERY FOR GENOTOXICITY (3) ................2 IV. MODIFICATIONS OF THE 3-TEST BATTERY (4) ..........................3 A. Limitations to the Use of Bacterial Test Organisms (4.1) ..................4 B. Compounds Bearing Structural Alerts for Genotoxic Activity (4.2) ...........4 C. Limitations to the Use of Standard in Vivo Tests (4.3) ....................4 D. Additional Genotoxicity Testing in Relation to the Carcinogenicity Bioassay (4.4) 4 V.