Maintenance of Key Tree Species

Total Page:16

File Type:pdf, Size:1020Kb

Maintenance of Key Tree Species Maintenance of key tree species SCIENCE FOR CONSERVATION 190 Robert B. Allen, Geoff M. Rogers and Glenn H. Stewart Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Titles are listed in the DOC Science Publishing catalogue on the departmental website http:// www.doc.govt.nz and printed copies can be purchased from [email protected] © Copyright March 2002, New Zealand Department of Conservation ISSN 11732946 ISBN 0478222335 This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing and layout by Lynette Clelland. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Background 6 2. Objective 8 3. Case studies of selected species 8 3.1 Kamahi (Weinmannia racemosa)8 3.2 Southern rata (Metrosideros umbellata)11 3.3 Northern rata (Metrosideros robusta)14 3.4 Hinau (Elaeocarpus dentatus)18 3.5 Red beech (Nothofagus fusca)20 3.6 Pahautea (Libocedrus bidwillii)23 3.7 Halls totara (Podocarpus hallii)28 4. Critical stages of life history in indigenous trees 31 4.1 Flowering and pollination 31 4.2 Seed productionasynchrony across species 31 4.3 Seed predation 32 4.4 Dispersal 33 4.5 Seed predation following dispersal 33 4.6 Seedling establishment 34 4.7 Canopy defoliation 34 4.8 Stage of stand development 35 4.9 Modifications to disturbance regimes and successional development 35 5. Establishing priorities among species 36 5.1 Using demographic parameters to show that there is reason for concern about the maintenance of a tree species 38 5.2 Understanding the causes of any imbalances in the demographics of a tree species 41 5.2.1 Measure the correct parameters in the most appropriate way 41 5.2.2 Develop an encompassing framework for the demographics of tree species 43 5.3 Determining the significance of maintaining a tree species within a context of its contribution to ecosystem dynamics 44 5.4 Showing that the population trajectory of a tree species can be changed to something considered more desirable 47 5.4.1 The traditional option of minimising introduced animal impacts 47 5.4.2 Is there a need for more direct management? 48 5.5 Comparing the vulnerability of tree species 49 5.5.1 Vulnerability of tree species 49 5.5.2 A systematic approach to scoring species 50 6. Recommendations 52 7. Acknowledgements 52 10. References 53 4 Allen et al.Maintenance of key tree species Maintenance of key tree species Robert B. Allen1, Geoff M. Rogers2, Glenn H. Stewart3 1Landcare Research, PO Box 69, Lincoln 8152 2Department of Conservation, PO Box 5244, Dunedin 3Lincoln University, PO Box 84, Lincoln 8152 ABSTRACT There is a widespread perception that certain dominant (key) tree species are declining on conservation lands in New Zealand. This concern is usually based on observations suggesting undesirable shifts in the demographic processes regulating the distribution, size and viability of tree populations. Our project was initiated to define a process to understand and compare the vulnerability to population decline of key tree species at a range of scales and to set priorities for conservation management. We first consider in detail observations and possible causes of population decline of seven selected tree species, then consider more generally the critical stages in tree life cycles likely to affect population viability of indigenous species and, finally, suggest an approach to establishing priorities among tree species. Prioritising tree species should involve: showing there is reason for concern about the maintenance of a tree species in terms of a population imbalance; understanding the causes of any imbalances in the demographics of a tree species; determining the significance of maintaining a tree species within a context of its contribution to ecosystem functions; and showing that the trajectory of a tree species population can be changed to something judged more desirable. In all of these we assess the adequacy of knowledge, suggest research questions in need of answers, and consider the implications for management. Keywords: Forest, tree species, vulnerability, risk assessment, monitoring, forest health, indicators. © March 2002, Department of Conservation. This paper may be cited as: Allen, R.B.; Rogers, G.M.; Stewart, G.H. 2002: Maintenance of key tree species. Science for Conservation 190. 60 p. Science for Conservation 190 5 1. Background There is a widespread perception among indigenous forest managers, ecologists, and the wider public, that certain dominant (key) tree species are declining in indigenous forests. In a general sense, this is not a new concern as numerous examples of extensive tree death can be listed from around New Zealand over the past century (e.g. Morgan 1908; Chavasse 1955; Holloway 1959; Stewart & Veblen 1982b; Rose et al. 1992). Usually this concern is based on observations suggesting undesirable shifts in the demographic processes regulating population size and viability, e.g.: Low numbers of mountain beech (Nothofagus solandri var. cliffortioides) seedlings in the Kaweka Range (Allen & Allan 1997). Extensive mortality of pahautea (Libocedrus bidwillii) trees at Hihitahi (Rogers 1997). To assess the significance of such observations, a number of related questions should be asked, such as: Is pahautea regenerating in stands where trees are dying, or in other nearby stands at Hihitahi? Is recent mortality of pahautea a feature of most forests in the Hihitahi area, or certain areas of the country, or nationally? Are there some areas where there is compensatory regeneration of pahautea? Is the imbalance of mortality and regeneration of pahautea at an area or na- tional scale of more concern than that for other tree species (e.g. mountain beech or Halls totara (Podocarpus hallii)? Addressing such a sequence of questions is essential in establishing whether there is a problem, the scale of any problem and, therefore, our ability to prioritise which species should be of most concern. This prioritisation is necessary because of the need to make informed management choices and focus research efforts. The process of prioritising which species are of most concern should also take account of what is causing any undesirable shifts in the demographic processes regulating population size and viability. The difficulty of ascribing cause has bedeviled pathologists, ecologists, and forest managers for a long time (e.g. Chavasse 1955; Wardle 1966; Veblen & Stewart 1982a; Bellingham et al. 1999a). Too often a simplistic view is presented that does not stand further scrutiny, for example: In a simple sense it could be argued, as many authors have, that defoliation by possums (Trichosurus vulpecula) kills southern rata (Metrosideros umbellata) trees. However, not all southern rata trees that die are killed by possums. For example, most tree death in natural populations is the result of competitive thinning. The important question, then, becomes: what proportion of southern rata tree death is primarily caused by possums defoliating trees?. In a general sense, this last question is difficult to answer for at least two reasons. Firstly, the structure, composition and functioning of forest ecosystems is driven by a wide range of interacting factors (Table 1), some of 6 Allen et al.Maintenance of key tree species TABLE 1. FACTORS COMMONLY INFLUENCING THE COMPOSITION OF FORESTS. SOME OF THE VARIABLES COMMONLY MEASURED TO REPRESENT THESE FACTORS, AS WELL AS SOME OF THE MECHANISMS THROUGH WHICH THESE FACTORS MAY OPERATE, ARE GIVEN (MODIFIED FROM ALLEN 2000). )$&7256 9$5,$%/(6 (;$03/(Ã2)Ã0(&+$1,60 'LVWXUEDQFH &KDQJHVÃLQÃELRPDVVÃRUÃQXPEHUÃRIÃWUHHV ,QGLYLGXDOVÃNLOOHGÃRIÃRQHÃRUÃPRUHÃVSHFLHV +HUELYRU\ /HYHOÃRIÃGHIROLDWLRQÃLQGLYLGXDOÃKHLJKWÃJURZWK 5HGXFHGÃSKRWRV\QWKHWLFÃDELOLW\ 6SHFLHVÃHIIHFWV /LWWHUÃTXDOLW\ 0RGLILHVÃWKHÃDELOLWLHVÃRIÃVHHGVÃRIÃRWKHUÃVSHFLHV WRÃJHUPLQDWHÃDQGÃJURZ &OLPDWH 7HPSHUDWXUHÃSUHFLSLWDWLRQ &KDQJHVÃSK\VLRORJLFDOÃSURFHVVHV 6RLO 7H[WXUHÃ1ÃDYDLODELOLW\ÃFDWLRQÃDYDLODELOLW\ ,QIOXHQFHVÃUHVRXUFHVÃHVVHQWLDOÃIRUÃJURZWKÃDQG GHYHORSPHQW 'LVSHUVDO 6HHGÃGLVSHUVDOÃDYDLODEOHÃUHJHQHUDWLRQÃQLFKHV 6HHGVÃGRÃQRWÃDUULYHÃDWÃDQÃRWKHUZLVHÃVXLWDEOH VLWH 7LPH 7UHHÃDJHÃUHODWLYHÃELRPDVV 6SHFLHVÃGLIIHUHQWLDOÃORQJHYLW\ which are relatively easy to measure (e.g. rainfall), others we know little about (e.g. infrequent disturbance impacts); and finally, we must add chance. Additionally, because many of these factors are correlated with each other at any particular temporal or spatial scale, it is difficult to separate the influence of an individual factor and define causal relationships. The following example shows this limitation for spatial data. A study in south Westland evaluated tree mortality in three localities along a possum invasion front; it was only in the write-up stage of this study that the invasion front was also shown to coincide with a compositional gradient usually related to soil fertility (Stewart 1992). Because we know from elsewhere that mortality in such forests apparently relates to a soil fertility gradient, it was therefore difficult to partition the effects of a possum density gradient along the Westland invasion front from those
Recommended publications
  • Elaeocarpus Dentatus Var. Dentatus
    Elaeocarpus dentatus var. dentatus COMMON NAME Hinau SYNONYMS Dicera dentata J.R.Forst. et G.Forst., Elaeocarpus hinau A.Cunn., Elaeocarpus cunninghamii Raoul FAMILY Elaeocarpaceae AUTHORITY Elaeocarpus dentatus (J.R.Forst. et G.Forst.) Vahl var. dentatus FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE Reikorangi Valley. Mar 1986. Photographer: ELADEN Jeremy Rolfe CHROMOSOME NUMBER 2n = 30 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION An image of hinau flowers. Photographer: DoC Canopy tree bearing harsh thin leaves that have obvious pits on the underside and with small teeth along margins. Twigs with small hairs. Adult leaves 10-12cm long by 2-3cm wide, with a sharp tip, Juvenile leaves narrower. Flowers white, lacy, in conspicuous sprays. Fruit purple, oval, 12-15mm long. DISTRIBUTION Endemic. North, and South Island as far South Westland in the west and Christchurch in the east. HABITAT Common tree of mainly coastal and lowland forest though occasionally extending into montane forest. FEATURES Tree up to 20 m tall (usually less), with broad spreading crown. Trunk 1 m diam., bark grey. Branches erect then spreading, branchlets silky hairy when young. Petioles stout, 20-25 mm long. Leaves leathery, (50-)100-120 x 20-30 mm, narrow- to obovate-oblong, broad-obovate, oblanceolate, apex obtuse or abruptly acuminate, dark green and glabrescent above, off-white, silky-hairy below; margins somewhat sinuate, recurved, serrate to subentire. Inflorescence a raceme 100-180 mm long, 8-12(-20)-flowered.
    [Show full text]
  • The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
    The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con­ considered.
    [Show full text]
  • Keystone Species: the Concept and Its Relevance for Conservation Management in New Zealand
    Keystone species: the concept and its relevance for conservation management in New Zealand SCIENCE FOR CONSERVATION 203 Ian J. Payton, Michael Fenner, William G. Lee Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Titles are listed in the DOC Science Publishing catalogue on the departmental website http:// www.doc.govt.nz and printed copies can be purchased from [email protected] © Copyright July 2002, New Zealand Department of Conservation ISSN 11732946 ISBN 047822284X This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Lynette Clelland and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 2. Keystone concepts 6 3. Types of keystone species 8 3.1 Organisms controlling potential dominants 8 3.2 Resource providers 10 3.3 Mutualists 11 3.4 Ecosystem engineers 12 4. The New Zealand context 14 4.1 Organisms controlling potential dominants 14 4.2 Resource providers 16 4.3 Mutualists 18 4.4 Ecosystem engineers 19 5. Identifying keystone species 20 6. Implications for conservation management 21 7. Acknowledgements 22 8. References 23 4 Payton et al.Keystone species: the concept and its relevance in New Zealand Keystone species: the concept and its relevance for conservation management in New Zealand Ian J.
    [Show full text]
  • Revegetation of the Stockton Coal Mine, Buller©
    114 Combined Proceedings International Plant Propagators’ Society, Volume 57, 2007 Revegetation of the Stockton Coal Mine, Buller© Michael Kingsbury Solid Energy New Zealand Limited, P.O. Box 250, Westport Email: [email protected] INTRODUCTION Stockton Coal Mine is situated 25 km north-east of Westport and stretches from 1 km to 5 km from the coast. The 2,200-ha coal mining licence is located within the western sector of the Buller Coal Field on a plateau 400 to 1,100 m above the coastal plain. The opencast mine currently has a disturbed area of 750 ha and is expected to have a footprint of more than 900 ha at end of mine life. Thick seams of generally high quality coal exported for use in thermal, coking, and specialised markets overlies a basement of weathered granite rock. This ma- terial is quarried for mine road aggregate and, due to its phosphate content, is capable of supporting vegetation. Overlying the coal is a thick layer of hard, mas- sive quartz sandstone overburden, which is fragmented by blasting and stripped using 180-tonne excavators. It has poor plant-supporting characteristics, being low in fertility and having low water and nutrient-holding capacity. Remnants of the Kaiata mudstone exist on top of the sandstone and contribute to acid rock drainage through oxidation of sulphide-bearing minerals. Stockton Mine experiences a moist (some would say very moist) temperate cli- mate, which, combined with strong prevailing west/north westerly winds, means extreme weather conditions are common. Annual mean precipitation of 6,500 mm (predominantly as rain) and common, intense rainfall events (e.g., 140 mm in 6 h) produce extreme soil nutrient leaching and, along with severe winter frosts, causes high erosion rates of unprotected soil particles.
    [Show full text]
  • Dynamics of Even-Aged Nothofagus Truncata and N. Fusca Stands in North Westland, New Zealand
    12 DYNAMICS OF EVEN-AGED NOTHOFAGUS TRUNCATA AND N. FUSCA STANDS IN NORTH WESTLAND, NEW ZEALAND M. C SMALE Forest Research Institute, Private Bag, Rotorua, New Zealand H. VAN OEVEREN Agricultural University, Salverdaplein 11, P.O. Box 9101, 6700 HB, Wageningen, The Netherlands C D. GLEASON* New Zealand Forest Service, P.O. Box 138, Hokitika, New Zealand and M. O. KIMBERLEY Forest Research Institute, Private Bag, Rotorua, New Zealand (Received for publication 30 August, 1985; revision 12 January 1987) ABSTRACT Untended, fully stocked, even-aged stands of Nothofagus truncata (Col.) Ckn. (hard beech) or N. fusca (Hook, f.) Oerst. (red beech) of natural and cultural origin and ranging in age from 20 to 100 years, were sampled using temporary and permanent plots on a range of sites in North Westland, South Island, New Zealand. Changes in stand parameters with age were quantified in order to assess growth of these stands, and thus gain some insight into their silvicultural potential. Stands of each species followed a similar pattern of growth, with rapid early height and basal area increment. Mean top height reached a maximum of c. 27 m by age 100 years. Basal area reached an equilibrium of c. 41 m2/ha in N. truncata and 46 m2/ha in N. fusca as early as age 30 years. Nothofagus truncata stands had, on average, a somewhat lower mean diameter at any given age than N. fusca stands, and maintained higher stockings. Both species attained similar maximum volume of c. 460 m3/ha at age 100 years. Keywords: even-aged stands; stand dynamics; growth; Nothofagus truncata; Nothofagus fusca.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886
    The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886 Sascha Nolden, Simon Nathan & Esme Mildenhall Geoscience Society of New Zealand miscellaneous publication 133H November 2013 Published by the Geoscience Society of New Zealand Inc, 2013 Information on the Society and its publications is given at www.gsnz.org.nz © Copyright Simon Nathan & Sascha Nolden, 2013 Geoscience Society of New Zealand miscellaneous publication 133H ISBN 978-1-877480-29-4 ISSN 2230-4495 (Online) ISSN 2230-4487 (Print) We gratefully acknowledge financial assistance from the Brian Mason Scientific and Technical Trust which has provided financial support for this project. This document is available as a PDF file that can be downloaded from the Geoscience Society website at: http://www.gsnz.org.nz/information/misc-series-i-49.html Bibliographic Reference Nolden, S.; Nathan, S.; Mildenhall, E. 2013: The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886. Geoscience Society of New Zealand miscellaneous publication 133H. 219 pages. The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886 CONTENTS Introduction 3 The Sumner Cave controversy Sources of the Haast-Hooker correspondence Transcription and presentation of the letters Acknowledgements References Calendar of Letters 8 Transcriptions of the Haast-Hooker letters 12 Appendix 1: Undated letter (fragment), ca 1867 208 Appendix 2: Obituary for Sir Julius von Haast 209 Appendix 3: Biographical register of names mentioned in the correspondence 213 Figures Figure 1: Photographs
    [Show full text]
  • Plant Charts for Native to the West Booklet
    26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• ••
    [Show full text]
  • Pacific Islands Area
    Habitat Planting for Pollinators Pacific Islands Area November 2014 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements This document is the result of collaboration with state and federal agencies and educational institutions. The authors would like to express their sincere gratitude for the technical assistance and time spent suggesting, advising, reviewing, and editing. In particular, we would like to thank the staff at the Hoolehua Plant Materials Center on the Hawaiian Island of Molokai, NRCS staff in Hawaii and American Samoa, and researchers and extension personnel at American Samoa Community College Land Grant (especially Mark Schmaedick). Authors Written by Jolie Goldenetz-Dollar (American Samoa Community College), Brianna Borders, Eric Lee- Mäder, and Mace Vaughan (The Xerces Society for Invertebrate Conservation), and Gregory Koob, Kawika Duvauchelle, and Glenn Sakamoto (USDA Natural Resources Conservation Service). Editing and layout Ashley Minnerath (The Xerces Society). Updated November 2014 by Sara Morris, Emily Krafft, and Anne Stine (The Xerces Society). Photographs We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Jolie Goldenetz-Dollar, American Samoa Community College. Cover bottom left: John Kaia, Lahaina Photography. Cover bottom right: Gregory Koob, Hawaii Natural Resources Conservation Service. Funding This technical note was funded by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and produced jointly by the NRCS and The Xerces Society for Invertebrate Conservation. Additional support was provided by the National Institute for Food and Agriculture (USDA). Please contact Tony Ingersoll ([email protected]) for more information about this publication.
    [Show full text]
  • Polarised Light Microscopy: an Old Technique Casts New Light on Māori Textile Plants
    Polarised light microscopy: an old technique casts new light on Māori textile plants Rachel A. Paterson1, Bronwyn J. Lowe1*, Catherine A. Smith1, Janice M. Lord2, Roka Ngarimu-Cameron3 1Department of Applied Sciences/Te Tari Pūtaiao Whakahāngai, University of Otago/Te Whare Wānanga o Otāgo, PO Box 56, Dunedin/Ōtepoti 9054, New Zealand/Aotearoa 2Department of Botany/Te Tari Huaota o Otāgo, University of Otago/Te Whare Wānanga o Otāgo, PO Box 56, Dunedin/Ōtepoti 9054, New Zealand/Aotearoa 32806 State Highway 35, Hawai Bay, Opotiki 3197, New Zealand/Aotearoa Corresponding author: *[email protected] ABSTRACT Understanding the composition of an artefact has ramifications for advancing human history and behaviour knowledge, providing cultural information about trade, agricultural practices and adaptation to new environments. However, accurate plant identification from artefacts is problematic, since textile production, age, dirt and/or conservation treatments obscure morphological features, and specimen size and/or ethical considerations hamper modern analytical methods. This study tested the efficacy of polarised light microscopy (PLM) in the identification of New Zealand plant species commonly used in Māori textiles, and demonstrates that morphological and birefringent features observed using PLM have the potential to distinguish between- and within- plant genera. KEYWORDS Māori textiles, New Zealand flax, Phormium, Cordyline, Freycinetia, sign of elongation, modified Herzog test, plant material identification INTRODUCTION Accurate plant material identification is critical for advancing study of material culture, since an object’s composition provides an insight into its origin, additionally revealing important cultural information such as human interactions and emigration pathways (Schaffer 1981; Jakes et al. 1994). However, one of the main challenges for accurate identification of plant species in textile artefacts is the scarcity of distinct morphological features, evident from whole plants or individual leaves (e.g.
    [Show full text]
  • Re-Establishing North Island Kākā (Nestor Meridionalis Septentrionalis
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Re-establishing North Island kākā (Nestor meridionalis septentrionalis) in New Zealand A thesis presented in fulfilment of the requirements for the degree of Master of Science In Conservation Biology Massey University Auckland, New Zealand Tineke Joustra 2018 ii For Orlando, Aurora and Nayeli “I don’t want my children to follow in my footsteps, I want them to take the path next to me and go further than I could have ever dreamt possible” Anonymous iii iv Abstract Recently there has been a global increase in concern over the unprecedented loss of biodiversity and how the sixth mass extinction event is mainly due to human activities. Countries such as New Zealand have unique ecosystems which led to the evolution of many endemic species. One such New Zealand species is the kākā (Nestor meridionalis). Historically, kākā abundance has been affected by human activities (kākā were an important food source for Māori and Europeans). Today, introduced mammalian predators are one of the main threats to wild kākā populations. Although widespread and common throughout New Zealand until the 1800’s, kākā populations on the mainland now heavily rely on active conservation management. The main methods of kākā management include pest control and re-establishments. This thesis evaluated current and past commitments to New Zealand species restoration, as well as an analysis of global Psittacine re-establishment efforts.
    [Show full text]
  • West Coast Crimson Trail
    WEST COAST CRIMSON TRAIL The West Coast is the rata capital of New Zealand. In the North, from the Heaphy Track to Greymouth, northern rata often dominates the forest landscape, mainly near the coast and on limestone faces. Huge trees festooned with climbing and perching plants billow above the forest canopy. On higher ground southern rata is scattered on bluffs and through beech forest. Northern rata South of Hokitika in the valleys and slopes of the beech-free main divide, Northern rata (Metrosideros robusta) is one of New Zealand’s tallest flowering trees and grows from southern rata becomes a dominant canopy tree reaching high into the Alps. Hokitika northwards. It usually begins life as an epi- And, in the far South, it forms emergent giants on the flood plains, or gnarled phyte (perching plant) high in the forest’s canopy. groups around the precipitous shores of the fiords. As its roots descend to the ground, the rata smoth- ers its host. Grows to 25m or more in height with a This Crimson Trail is a journey from the north to south on the West coast of trunk up to 2.5m in diameter. Prefers warm moist New Zealand’s South Island. As you travel some 500 kilometres you will see areas such as north-west Nelson and Northland. significant glaciers, wild coastline and large tracts of primeval forest. Northern rata grows from sea level to a maximum of 900m above sea level. Southern rata Southern rata (Metrosideros umbellata) is the most widespread rata, growing throughout New Zealand as well as in the sub-antarctic Auckland Islands.
    [Show full text]