Quantitative Analysis of Nutrients and Biochemical Evaluation in Pomfret Fish (Pampus Argenteus) During Frozen Storage

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Analysis of Nutrients and Biochemical Evaluation in Pomfret Fish (Pampus Argenteus) During Frozen Storage ISSN: 2349-8889 International Journal for Research in Applied Sciences and Biotechnology Volume-8, Issue-3 (May 2021) www.ijrasb.com https://doi.org/10.31033/ijrasb.8.3.23 Quantitative Analysis of Nutrients and Biochemical Evaluation in Pomfret Fish (Pampus argenteus) During Frozen Storage Ms. Swagatika Tripathy1 and Mr. Utkalendu Suvendusekhar Samantaray2 1Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, INDIA 2Department of Vaccine Development, Virchow Biotech Pvt. Ltd, Hyderabad, INDIA 2Corresponding Author: [email protected] ABSTRACT created by endogenous sources such as the mitochondrial Marine fish are well-known for being a high- electron transport chain, endoplasmic reticulum, quality protein source having high concentration of cytochrome P450 activities, and chloroplasts in plants essential amino acids. It has high concentration of (Gulio and Meyer, 2008). (Fridovich, 1978; Halliwell mono unsaturated and poly unsaturated fatty acids, and Gutteridge et al., 1999).Exogenous sources, such as which may aid in the optimization of lipid profiles ionising radiation, create reactive oxygen species. and the reduction of the risk of coronary heart It has a beneficial effect on neutrophil and disease (CHD). The goal of this study was to estimate macrophage phagocytic activity. In higher eukaryotes, it the nutritional and biochemical status of raw sea fish aids in the regulation of gene expression (Meyer et al., Pampus argenteus after 30 days of frozen storage at - 1994). They're also crucial for differentiation and 200C with 15-day intervals. Nutrient study showed a development (Allen, 1991). It's also referred to as a free decrease in protein and lipid content. The changes of radical. Mitochondria are the primary physiological hydrogen peroxide and oxidized lipid products were source of reactive oxygen species in fish. Pescado estimated in the muscle tissue during fresh and Mitochondrial function changes because of variations in storage condition. Results indicate that during Reactive Oxygen Species generation and O2 storage the oxidative stress increased. An antioxidant consumption (Filho, 2007). In apoptosis, reactive oxygen enzyme (superoxide dismutase, smutase, catalase, species oxidise proteins, lipids, and nucleic acid glutathione peroxidase) measurement was (Messauodi, 2009). determined. The increased amount of oxidative stress Superoxide is produced when molecular oxygen during fish storage is shown by the differential (O2) is reduced, and it is the precursor to most Reactive activity of antioxidant enzymes. The amount of Oxygen Species (Turren, 2003). - . – protein in fish varies slightly between species and O2 + e → O2 even within species. Fish is high in protein, vitamins, Hydrogen peroxide is produced when superoxide is minerals, and omega-3 fatty acids, which are essential dismutated (H2O2) + . - . - for brain development (Spencer et al., 1971; Jacylin 2H + O2 + O2 →H2O2 + O2 et al., 2010). A well-balanced diet consists variety of Hydrogen peroxide is produced when superoxide is fish that can help in children's growth and dismutated (H2O2) - - . development as well as their heart health (Jinadasa, H2O2 + e → HO + OH + - 2014). 2H +2e +H2O2 →2H2O Pesticides and other xenobiotics produce ROS Keywords- Nutrients, Biochemical Evaluation, through a variety of mechanisms, including impaired Pomfret Fish membrane-bound electron transport, the accumulation of redox intermediates (Stolze and Nohl, 1994), redox recycling, photosensitization (Gulio and Meyer, 2008), I. INTRODUCTION the fenton reaction, and the inactivation of antioxidant enzymes (Kono and Fridovich, 1983). Lipid 1.1.1. Reactive Oxygen Species peroxidation, protein oxidation, certain illnesses, and Reactive Oxygen Species are liberated as a by- accelerated ageing are all caused by reactive oxygen product of normal oxygen metabolism in the body. species. According to vertebrate species, particularly laboratory 1.1.2. Reactive Oxygen Species (ROS) In Marine Fish: animals, mitochondria generate 90% of reactive oxygen The most prevalent trait of marine fishes is species (Halliwell, 2002). Stress factor responses in reactive oxygen species. Fertilized eggs have been found plants have a big impact on the formation of Reactive to produce Reactive Oxygen Species. The creation of Oxygen Species. The production of reactive oxygen reactive oxygen species (ROS) in larvae is unknown; species is triggered by a variety of mechanisms. Auto however, environmental factors may enhance ROS oxidation of vital components, reactive oxygen species formation. Reactive oxygen species (ROS) are an innate 180 This work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. ISSN: 2349-8889 International Journal for Research in Applied Sciences and Biotechnology Volume-8, Issue-3 (May 2021) www.ijrasb.com https://doi.org/10.31033/ijrasb.8.3.23 defensive system in embryos and larvae that protects 1.2. Oxidative Stress: them from invasive microorganisms. Oxidative stress is the balance between the 1. Reactive oxygen species in Devil stringer: creation of reactive oxygen species and the antioxidant Marine fish species influence reactive oxygen defence system in a healthy body .It is defined as an species to varying degrees. Rocky marine fish species increase in reactive species generation in defects that have greater amount of Reactive Oxygen Species, cause cell or organism damage or death (Davies, 1995). particularly in the late larva stage. The generation of In the environment and aquatic toxicology, oxidative reactive oxygen species (ROS) is a trait of rocky fish stress in fish is extremely important. Many substances, that is passed on from mother to child. During the including pesticides and pro-oxidant factors, generate growth of a marine fish like the Devil Stinger from oxidative stress in fish, which can be used to measure fertilized egg to early larval stage, it continuously creates global pollution. It's an inescapable part of living an reactive oxygen Species in normal rearing conditions active lifestyle. Substances such as pesticides, petroleum (Kurachi and Yamaguchi, 2006). The survival rates of pollutants, induce oxidative stress and transitional metal marine fish in the rearing stages are influenced by ions (Slaininova et al., 2009).By producing reactive reactive oxygen species. In the embryo of a devil stinger, oxygen species including hydrogen peroxide (H2O2) superoxide dismutase (SOD) reduced the quantity of and hydroxyl radicals, oxidative stress from oxidative reactive oxygen species. metabolism indirectly causes base damage (OH-). DNA When devil stinger embryos are treated with strands are also broken. It wreaks havoc on the body's streptomycin and penicillin G, the level of reactive regular signalling mechanisms. Oxidative stress has been oxygen species is significantly reduced (Kadomura and linked to cancer, Parkinson's disease, myocardial Nakashima, 2006). The Reactive Oxygen Species of this infarction, depression, and atherosclerosis in humans fish is influenced by environmental factors such as (Halliwell, 2013). The effects of oxidative stress are neighboring microorganism. Immunoblotting with an proportional to the size of the changes, with a cell's antibody against neutrophil cytochrome b558 large ability to recover from disruption .Various biological subunit produced reactive oxygen species in the devil processes, such as apoptosis, viral multiplication, and stinger embryo, implying the presence of a NADPH much inflammatory response, are influenced by oxidase-like enzyme system. No special stimulation or oxidative stress. The harmful element of oxidative stress trigger is required for the significant development of is the formation of reactive oxygen species (free radicals Reactive Oxygen Species in the embryos of zebra fish and peroxides). The presence of oxidative stress in and devil stinger fish. aerobic life is unavoidable. 2. Reactive oxygen species in Zebra fish: Aging is also caused by oxidative stress. Reactive oxygen species formation in fish Oxidative stress has cytotoxic effects and is involved in embryos has been discovered using Phorbol Myristate the modulation of messengers that control key cell Acetate (PMA) in zebra fish embryos, and macrophage membrane processes that are necessary for survival. It precursors found in the yolk sac are the main source of alters the intracellular redox status; causing protein reactive oxygen species (Hermann and Millard, 2004). kinases to become activated (Yoshikawa, 1998). 3. Reactive oxygen species in Rock fish: Cadmium accumulates in aquatic organisms, resulting in Reactive oxygen species are produced at higher an increase in highly reactive oxygen species (HROS) quantities in marbled and black rock fish than in other and oxidative stress (Roche and Boge, 1993; Atli et al., fish species. Reactive Oxygen Species production is 2006). linked to rapid mass mortality in these fish. To examine Environmental monitoring programmes may the location of reactive oxygen species in black rocky include oxidative stress biomarkers, according to some fish, researchers used hypersensitive photon counting reports (Cathy and Shugart, 1992). The fenton reaction microscopy with real-time digital CCD cameras that produces reactive oxygen species, which causes detect faint optical signals (Mizuguchi, 1998) .ROS oxidative stress (Amiard, 2006). The oxidative state and levels in marbled and black rock fish steadily increased antioxidant defences
Recommended publications
  • Pampus Argenteus >
    Propagation and Stock Enhancement of Silver pomfret ( Pamus argenteus ) in the North west of Persian Gulf Item Type Report Authors Mohammadi, Gholamhosin; Ansari, Hushang; Kashi, Mohammad Taghi; Alavi, Sayed Ali; Najaf Abadi, Mojteba; Saghavi, Hamid; Pagheh, Smaiel; Ranjbar, Amin; Hosieni, Sayed Javad; Kahkesh, Shahpor Publisher Iranian Fisheries Science Research Institute Download date 27/09/2021 22:47:57 Link to Item http://hdl.handle.net/1834/13275 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت ، آﻣﻮزش ﺗو ﺮوﻳﺞﻛ ﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه آﺑﺰي ﭘﺮوري ﺟﻨﻮب ﻛﺸﻮر ﻋﻨﻮان : : ﺗﻜﺜﻴﺮ و ﺑﺎزﺳﺎزي ذﺧﻴﺮه ﻣﺎﻫﻲ ﺣﻠﻮا ﺳﻔﻴﺪ Pampus argenteus در آب ﻫﺎي ﺷﻤﺎل ﺧﻠﻴﺞ ﻓﺎرس ﻣﺠﺮي : : ﻏﻼﻣﺤﺴﻴﻦ ﻣﺤﻤﺪي ﺷﻤ ﺎره ﺛﺒﺖ 41275 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﻋﻨﻮان ﭘﺮوژه : ﺗﻜﺜﻴﺮ و ﺑﺎزﺳﺎزي ذﺧﻴﺮه ﻣﺎﻫﻲ ﺣﻠﻮا ﺳﻔﻴﺪ Pampus argenteus در آﺑﻬﺎي ﺷﻤﺎل ﺧﻠﻴﺞ ﻓﺎرس ﺷﻤﺎره ﻣﺼﻮب : -87027 12 - 74- 4 ﻧ ﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎرﻧﺪه / ﻧﮕﺎرﻧﺪﮔﺎن : ﻏﻼﻣﺤﺴﻴﻦ ﻣﺤﻤﺪي ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : - - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : ﻏﻼﻣﺤﺴﻴﻦ ﻣﺤﻤﺪي ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎران : ﻣﺤﻤﺪﺗﻘﻲ ﻛﺎﺷﻲ، ﻫﻮﺷﻨﮓ اﻧﺼﺎري، ﺣﻤﻴﺪ ﺳﻘﺎو ي، ﻋﻠﻲ ﻋﻠﻮي، ﻣﺠﺘﺒﻲ ﻧﺠﻒ آﺑﺎدي، اﺳﻤﺎﻋﻴﻞ ﭘﻘﻪ، اﻣﻴﻦ رﻧﺠﺒﺮ، ﺳﻴﺪﺟﻮاد ﺣﺴﻴﻨﻲ، ﺷﺎﭘﻮر ﻛﺎﻫﻜﺶ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎوران -: -: ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ : - ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﺧﻮزﺳﺘﺎن ﺗﺎرﻳﺦ ﺷﺮوع /1/7: 87 ﻣﺪت اﺟﺮا : 2 ﺳﺎل و 3 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺷﻤﺎرﮔﺎن ( ﺗﻴﺘﺮاژ ) : 20 ﻧﺴﺨﻪ ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل 1392 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ . ﻧﻘﻞ ﻣﻄﺎﻟﺐ ، ﺗﺼﺎوﻳﺮ ، ﺟﺪاول ، ﻣﻨﺤﻨﻲ ﻫﺎ و ﻧﻤﻮدارﻫﺎ ﺑﺎ ذﻛﺮ ﻣﺄﺧﺬ ﺑﻼﻣﺎﻧﻊ اﺳﺖ .
    [Show full text]
  • Cobia Database Articles Final Revision 2.0, 2-1-2017
    Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator.
    [Show full text]
  • Resurrection and Re-Description of Pampus Candidus (Cuvier), Silver Pomfret from the Northern Indian Ocean
    Zoological Studies 58: 7 (2019) doi:10.6620/ZS.2019.58-07 Open Access Resurrection and Re-description of Pampus candidus (Cuvier), Silver Pomfret from the Northern Indian Ocean Divya P. Radhakrishnan1,*, Rahul G. Kumar1, Chelat Mohitha1, Rajool Shanis C.P.2, Bineesh K. Kinattumkara3, Basheer V. Saidumohammad1, and Achamveetil Gopalakrishnan4 1Peninsular and Marine Fish Genetic Resources, National Bureau of Fish Genetic Resources, Central Marine Fisheries Research Institute campus, P.B.No.1603, Ernakulam North, P.O., Kochi 682 018, Kerala, India. *Correspondence: E-mail: [email protected] (Divya) 2M.E.S. Ponnani College, Ponnani, Kerala, India 3Andaman and Nicobar Regional Centre, Zoological Survey of India (ZSI), Andamans, India 4Central Marine Fisheries Research Institute, P.B.No.1603, Ernakulam North, P.O., Kochi 682 018, Kerala, India Received 6 January 2019 / Accepted 9 April 2019 / Published 22 May 2019 Communicated by Hin-Kiu Mok Pomfrets (Genus Pampus) are commercially important fish in the Indo-Pacific region. The systematics of this genus is complicated because of morphological similarities between species. The silver pomfret from Indian waters has long been considered to be Pampus argenteus. Morphological and molecular examination of specimens from the Arabian Sea and Bay of Bengal regions suggested the silver pomfret from the region represents two species that are distinct both from each other and from P. argenteus from the South China Sea. Based on detailed morphological, meristic and molecular examinations, the most common species from the Indian Ocean was found to correspond with the descriptions of Stromateus candidus (Cuvier), which is resurrected from the synonymy of P. argenteus and redescribed here as Pampus candidus (new combination).
    [Show full text]
  • Pampus Argenteus (Euphrasen, 1788)
    Pampus argenteus (Euphrasen, 1788) Joe K. Kizhakudan, Shoba Joe Kizhakudan and Ritesh Ranjan IDENTIFICATION Order : Perciformes Family : Stromateidae Common/FAO Name (English) : Silver pomfret Local namesnames: Paplet, Vichuda (GujaratiGujarati); Paplet, Chandava, Saraga (MarathiMarathi); Surangat (Konkanionkani); Manji, Thondrette/Thondrotte (Kannadaannada); Vella-avoli, Karuvolli, Veluthaavoli (MalayalamMalayalam); Karuvaval, Vavval, Vellavavvel, Vellaivaval (Tamilamil); Chanduva, Nallachanduva, Thellachanduva (Teluguelugu); Chandee, Ghia (OriyaOriya); Chandi, Pomfret (BengaliBengali) MORPHOLOGICAL DESCRIPTION Oval shaped compressed body, grey above grading to silvery white towards the belly, with small black dots all over the body. No dorsal spines; dorsal soft rays 37-43. There are 5-10 blade-like spines before the dorsal and anal fins. No operculum; gill opening reduced to a vertical slit on the side of the body; gill membrane broadly united to isthmus. Pelvic fins absent. Deeply forked caudal fin with longer lower lobe. Dorsal, anal and caudal fins falcate. Source of image : CMFRI, Kochi 123 PROFILE GEOGRAPHICAL DISTRIBUTION Silver pomfret occurs in Indo-West Pacific waters, from Persian Gulf to Japan (north to Hokkaido), excluding Australia. They are also reported from the Adriatic, Hawaii and north-eastern Atlantic. HABITAT AND BIOLOGY They are schooling meso-pelagic fishes inhabiting shallow to deep waters and muddy bottoms, up to 100 m depth. Young are commonly reported from estuaries. Diet studies have indicated that the diet of silver pomfret consists of a broad spectrum of food types, but was dominated by crustaceans, with copepods and their eggs constituting 39 % and other non-copepod crustaceans constituting 16 %. Other major diet components were Bacillariophyta (21 %), mollusca (11 %), fish scales (10 %), fish eggs and larvae (3 %).
    [Show full text]
  • Fish Assemblage Structure Comparison Between Freshwater and Estuarine Habitats in the Lower Nakdong River, South Korea
    Journal of Marine Science and Engineering Article Fish Assemblage Structure Comparison between Freshwater and Estuarine Habitats in the Lower Nakdong River, South Korea Joo Myun Park 1,* , Ralf Riedel 2, Hyun Hee Ju 3 and Hee Chan Choi 4 1 Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin 36315, Korea 2 S&R Consultancy, Ocean Springs, MS 39564, USA; [email protected] 3 Ocean Policy Institute, Korea Institute of Ocean Science and Technology, Busan 49111, Korea; [email protected] 4 Fisheries Resources and Environment Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-54-780-5344 Received: 6 June 2020; Accepted: 3 July 2020; Published: 5 July 2020 Abstract: Variabilities of biological communities in lower reaches of urban river systems are highly influenced by artificial constructions, alterations of flow regimes and episodic weather events. Impacts of estuary weirs on fish assemblages are particularly distinct because the weirs are disturbed in linking between freshwater and estuarine fish communities, and migration successes for regional fish fauna. This study conducted fish sampling at the lower reaches of the Nakdong River to assess spatio-temporal variations in fish assemblages, and effects of estuary weir on structuring fish assemblage between freshwater and estuary habitats. In total, 20,386 specimens comprising 78 species and 41 families were collected. The numerical dominant fish species were Tachysurus nitidus (48.8% in total abundance), Hemibarbus labeo (10.7%) and Chanodichthys erythropterus (3.6%) in the freshwater region, and Engraulis japonicus (10.0%), Nuchequula nuchalis (7.7%) and Clupea pallasii (5.2%) in the estuarine site.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Phylogeny & Systematics of Non-Chordates – Module 2
    Department: Zoology M.Sc. Syllabus (Oceanography) ______________________________________________________________________________________ Semester I Course I: 18PS1ZO1 Phylogeny and Osteology Module 1: Phylogeny & Systematics of non-chordates – Phylogeny, salient features, classification up to class level (wherever applicable) of the following phyla 1.1 Protista (Protozoa) 1.2 Porifera 1.3 Coelenterata 1.4 Ctenophora 1.5 Mollusca 1.6 Bryozoa 1.7 Brachiopoda 1.8 Echinodermata 1.9 Chaetognatha 1.10 Platyhelminthes and Nemethelminthes 1.11 Acanthocephala 1.12 Annelida 1.13 Sipunculoidea 1.14 Arthropoda 1.15 Onychophora – Peripatus: A connecting link between Annelida and Arthropoda 1.16Hemichordata Module 2: Type study – Sepia and Protochordate phylogeny 2.1 Type Study Sepia 2.1.1 Habit, habitat and morphology of Sepia 2.1.2 Systems: Digestive, Circulatory, Nervous and Reproductive (male and female) 2.1.3 Economic Significance of Sepia ___________________________________________________________________________________ Page 1 of 31 Department: Zoology M.Sc. Syllabus (Oceanography) ______________________________________________________________________________________ 2.2 Protochordates 2.2.1 Urochordata and its affinities. 2.2.2 Cephalochordata and its affinities 2.2.3 Vertebrate ancestry and origin of Vertebrates. 2.2.4 Changes leading to first vertebrates. 2.2.5 Salient features and phylogeny of Ostracoderms. 2.2.6 Affinities of Cyclostomes a) resemblance with Cephalochordates b) differences from fishes. c) vertebrate characters. d) specialized characters. Module 3: Chordate phylogeny 3.1 Discovery of Coelacanth 3.2 Overview of fish phylogeny 3.3 Primitive tetrapods- Labrynthodonts 3.4 Crossopterigians- A blue print. 3.5 Dipnoi- a group that has failed to evolve as amphibian 3.6 Lissamphibia 3.7 Sphenodon- a living fossil 3.8 Extinct reptiles.
    [Show full text]
  • Genetic Diversity Comparison of Pampus Minor Between Chinese and Malaysian Populations Inferred from Mtdna Cytb
    Pakistan J. Zool., vol. 51(1), pp 149-157, 2019. DOI: http://dx.doi.org/10.17582/journal.pjz/2019.51.1.149.157 Genetic Diversity Comparison of Pampus minor between Chinese and Malaysian Populations Inferred from mtDNA Cytb Yuan Li1, Liyan Zhang2, Karhoe Loh3, Ji Feng1, Xinqing Zheng1, Puqing Song1 and Longshan Lin1,* 1Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China 2Fujian Institute of Oceanography, Xiamen 361012, China 3Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia Article Information Received 13 December 2017 Yuan Li and Liyan Zhang have contributed equally to this paper. Revised 24 February 2018 Accepted 04 April 2018 Available online 27 November 2018 ABSTRACT Authors’ Contribution Pampus minor is often mistakenly identified as the larva of Pampus argenteus or Pampus cinereus YL and LL conceived and designed because of its small size. Despite its importance, studies on the population genetics of P. minor are experiments. YL, XZ, PS and JF not yet available. In the present study, the mitochondrial Cytb gene was employed to investigate the performed all experiments and wrote the manuscript. LZ and KL analyzed population genetics of P. minor collected along the coasts of China and Malaysia. The genetic diversity the data. of all P. minor populations was moderate, and two major haplotype lineages were detected that were differentiated approximately 0.3 million years ago. These two haplotype lineages differed significantly Key words in frequency distribution of Chinese and Malaysian populations, showing an imperfect geographical Pampus minor, Genetic diversity, pedigree structure. Results of AMOVA also showed that the genetic differentiation was mainly among Population structure, Population populations.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Direct Identification of Fish Species by Surface Molecular Transferring
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 Supplementary materials for Direct Identification of Fish Species by Surface Molecular Transferring Mingke Shao, Hongyan Bi* College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China * To whom correspondence should be addressed. E-mail address: [email protected] E-mail address for the other authors: [email protected] S1 S1. Photos and information on the analyzed fish samples Fig. S1. Photos of fishes analyzed in the present study: (A) Oreochromis mossambicus (B) Epinephelus rivulatus (C) Mugil cephalus; (D) Zeus faber (E) Trachinotus ovatus (F) Brama japonica (G) Larimichthys crocea (H) Larimichthys polyactis (I) Pampus argenteus. Scale bar in each photo represents 1 cm. Table S1. List of the scientific classification of fishes analyzed in the study. The classification of fishes refers to https://www.fishbase.de/. Binomial Abbreviatio English Chinese name n common Scientific classification name (Scientific name name) Actinopterygii (class) > Perciformes (order) > Japanese Brama Brama BJ Bramidae (family) > Wufang japonica japonica Brama (genus) > B. brama (species) Actinopterygii (class) > Silver Scombriformes(order) > Baichang pomfret; Pampus PA ( Fish White argenteus Stromateidae family) > pomfret Pampus (genus) > P. argenteus (species) Haifang Zeus faber Actinopterygii (class) > (commonly Linnaeu; Zeus faber ZF Zeiformes (order) > called: John Dory; Zeidae (family) > S2 Yueliang target perch Zeus (genus) > Fish) Z. faber (species) Actinopteri (class) > OM Cichliformes (order) > Mozambique Oreochromis Cichlidae (family) > Luofei Fish tilapia mossambicus Oreochromis (genus) > O.mossambicus (species) Actinopterygii (class) > MC Mugiliformes (order) Xiaozhai Flathead Mugil Mugilidae (family) > Fish grey mullet cephalus Mugil (genus) > M.
    [Show full text]
  • Strom 1983 Fao Species Identification Sheets
    click for previous page STROM 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) STROMATEIDAE Butterfishes, fiatolas, silver pomfrets Body very deep and compressed, caudal peduncle short and compressed, with no keels or scutes. Head deep and broad, snout short and blunt; eyes small, centrally located and surrounded by adipose tissue which extends forward around the large nostrils; mouth sub-terminal, small and curved downward, the maxilla scarcely reaching to below eye, and the angle of gape located before eye; premaxilla not protractile; maxilla immobile, covered with skin and united to cheek; teeth minute, uniserial and flattened, with very small cusps; gill covers very thin, gill membranes broadly united to the isthmus in all Indian Ocean species, gill opening a straight slit. Single dorsal and anal fins, long-based and slightly to deeply falcate, preceeded by none or 5 to 10 flat, blade-like spines, pointed on both ends and resembling the ends of free interneurals; pectoral fins long and wing-like; no pelvic fins; caudal fin usually forked, in some species with very extended lobes. Lateral line single, high, following dorsal profile and extending onto caudal peduncle. Scales small, cycloid (smooth) very easily shed; head naked, with prominent canals visible under the thin skin. Colour: conspicuously silvery with a bluish cast on back; gill membranes and inside of mouth dark. Pomfrets are schooling, pelagic, medium-sized fishes (up to about 60 cm in length) inhabiting shallow waters, generally in coastal areas, sometimes entering estuaries. Soft-bodied coelenterates and pelagic crustaceans are important in their diet. They are usually captured by trawling, and are among the finest of food fishes, and one species in the family (Pampus argenteus) is of significant commercial importance in the area.
    [Show full text]
  • Morphometric Characteristics of Silver Pomfret, Pampus Argenteus from Southern Mon Coastal Areas, Myanmar
    ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 4 Issue 1 January 2020 Research Article Morphometric Characteristics of Silver Pomfret, Pampus argenteus from Southern Mon Coastal Areas, Myanmar Zarni Ko Ko* Received: Lecturer, Department of Marine Science, Mawlamyine University, Mon State, Published: Myanmar December 24, 2019 © All rights are reserved by Zarni Ko Ko. December 31, 2019 *Corresponding Author: Zarni Ko Ko, Lecturer, Department of Marine Science, Mawlamyine University, Mon State, Myanmar. DOI: 10.31080/ASAG.2020.04.761 Abstract This study was conducted to analyze some useful morphometric parameters of different specimen of Pampus argenteus of family - Stromateidae in order to analyze their significance in systematics. A total of 72 samples of this species ranging in size from 13 cm to 28.5 cm in total length were collected from the fish landing centres of Mon Coastal Areas during the period from June 2018 to De negative correlation between total length and other body parts (b<1) except head length and pre and post orbital length. cember 2018. About 13 morphometric characters were analyzed during this study. The relationship between variables observed that Keywords: Mophometric Characters; Analysis; Pampus argenteus; Kyaikkhami and Asin Landing Areas; Mon Coast; Myanmar Introduction white color, with few small scales. Their maximum weight 4-6 kg The sliver pomfret, Pampus argenteus belong to family Stro- P. argenteus is commonly known - (8-13lb) is more commonly seen. sumed in East Asian countries. P. argenteus can be found Indo-Pa- P. argenteus mateidae is one of the commercially important edible fishes con as Nga Moke Phyu and is regarded commercial fishes of Myanmar.
    [Show full text]