Upcpostgrau Upc

Total Page:16

File Type:pdf, Size:1020Kb

Upcpostgrau Upc ENGINYERIA ENGINYERIA AEROESPACIAL AEROESPACIAL The Moon: The Next International Space Station This book stems from the work carried out by students during a single semes- ter of the course Space Resources and Planetary Settlements of the Master degree in Space and Aeronautical Engineering of the Universitat Politècnica de Catalunya. It aims to provide a scientific and engineering view on the Moon as a place where humans can live and work for the benefit of huma- nity, sustainably. After a review of the Moon’s environmental conditions and natural resources, important issues such as energy, life support systems and the analysis of robotic vs. human activities are discussed in detail. Travel to and from the Moon is also considered, including the lessons learned about transportation strategies on continuous round trips to and from the Interna- tional Space Station during the early 21st century. Finally, a set of different activities that can be carried out and, in the authors’ opinion, fully justify the return to our natural satellite, are treated in some detail.tail. Travel to and from the Moon is also considered, including the lessons learned about transportation strategies on continuous round trips to and from the Interna- tional Space Station during the early 21st century. Finally, a set of different activities that can be carried out and, in the authors’ opinion, fully justify the return to our natural satellite, are treated in some detail. Ignasi Casanova and Miquel Sureda work at the Universitat Politècnica de Catalunya. Casanova is a planetary geologist, currently a professor of Envi- ronmental Geochemistry at the Department of Civil and Environmental En- gineering. He has participated as a scientist in several missions of NASA and the European Space Agency to the Moon and Mars. Sureda, a physicist and aeronautical engineer, currently coordinates the Master degree in Space and Aeronautical Engineering. His research interests include the design of nano- satellites and interplanetary missions. The Moon: Next International Space Station 9 7884988 http://www.barcode-generator.de POSTGRAU 808254 UPCPOSTGRAU UPC www.upc.edu/idp The Moon: The Next International Space Station Ignasi Casanova Miquel Sureda Miquel Sureda Ignasi Casanova ENGINYERIA AEROESPACIAL UPCPOSTGRAU The Moon: The Next International Space Station Ignasi Casanova, Miquel Sureda, eds. Almirall Toribio, Oriol Murnaghan, Murrough Boix, Alvaro Navarro Trastoy, Angel Díez, Carlos Partal, Nuria Greaves, Jack Puljic, Stjepan Molina Ordoñez, Carlos Sharique, Syed Abdul Hadi Primera edició: juliol 2020 © Els autors, 2020 © Iniciativa Digital Politècnica, 2020 Oficina de Publicacions Acadèmiques Digitals de la UPC Edifici K2M, Planta S1, Despatx S103-S104 Jordi Girona 1-3, 08034 Barcelona Tel.: 934 015 885 www.upc.edu/idp E-mail: [email protected] © Image Credit: NASA. This view of Earth rising over the Moon’s horizon was taken from the Apollo 11 spacecraft. Last Updated: July 15, 2019 Editor: Sarah Loff ISBN: 978-84-9880-826-1 DL: B 13769-2020 Qualsevol forma de reproducció, distribució, comunicació pública o transformació d’aquesta obra només es pot fer amb l’autorització dels seus titulars, llevat de l’excepció prevista a la llei. Contents Nomenclature ...................................................................................................9 1. Space Exploration ..................................................................................11 1.1 Farming the Cosmos ................................................................................12 2. The Moon ................................................................................................15 2.1 Earth’s Moon ............................................................................................15 2.2 Environmental Conditions ........................................................................16 2.2.1 Gravitational Distribution ................................................................16 2.2.2 Lack of Atmosphere .......................................................................17 2.2.3 Lunar Dust ......................................................................................18 2.2.4 Temperature and Heat Transfer .....................................................22 2.2.5 Light ...............................................................................................24 2.2.6 Radiation ........................................................................................28 2.3 Resources ................................................................................................29 2.3.1 Light ...............................................................................................29 2.3.2 Regolith ..........................................................................................35 2.3.3 Topography ....................................................................................41 2.3.4 Water .............................................................................................42 3. Energy generation ..................................................................................45 3.1 Energy Requirements on the Moon .........................................................45 3.1.1 Human Energy Requirements ........................................................45 3.1.2 Life Support Systems .....................................................................46 3.1.3 Power Requirements for the First Lunar Outpost ..........................46 3.2 Fission ......................................................................................................49 5 The Moon: The Next International Space Station 3.2.1 Nuclear Structure ...........................................................................49 3.2.2 The Fission Process .......................................................................50 3.2.3 Hazards ..........................................................................................51 3.3 Solar Energy .............................................................................................51 3.3.1 Energy storage ...............................................................................52 3.3.2 Photovoltaic cells ...........................................................................52 3.4 Satisfying Needs ......................................................................................53 4. Life support systems .............................................................................55 4.1 Life Support Systems ...............................................................................55 4.2 Subsystems .............................................................................................55 4.2.1 Environmental Control and Life Support System ...........................56 4.2.2 Water Management .......................................................................56 4.2.3 Atmospheric Control ......................................................................60 4.2.4 Radiation ........................................................................................62 4.2.5 Waste Management ......................................................................64 5. Robotic vs. Human activity ...................................................................67 5.1 Exterior Base Maintenance Tasks ............................................................67 5.2 Interior Base Maintenance Tasks .............................................................68 5.3 Exploration and the Search for Resources ...............................................68 5.4 Extraction of Resources ...........................................................................69 5.5 Manufacturing ..........................................................................................70 5.6 Moon base science experiments .............................................................70 5.7 Food Processing .......................................................................................70 5.8 Health .......................................................................................................71 5.9 Housekeeping ..........................................................................................72 5.10 Transport ..................................................................................................72 5.11 Base Management ...................................................................................73 6. Cislunar Travelling .................................................................................75 6.1 Going to the Moon ...................................................................................75 6.1.1 Past Missions: The Apollo Program ...............................................75 6.1.2 Future Missions in Development ...................................................76 6.1.3 Travelling between the Earth and the Moon Base .........................76 6.2 Survival .....................................................................................................76 6.3 Returning from the Moon ........................................................................79 6.3.1 Lunarport ........................................................................................80 6.4 Safety Plan ...............................................................................................82 6.4.1 ISS Evacuation Procedures Overview ............................................82 6.4.2 Moon Evacuation Procedures ........................................................82
Recommended publications
  • The Surrender Software
    Scientific image rendering for space scenes with the SurRender software Scientific image rendering for space scenes with the SurRender software R. Brochard, J. Lebreton*, C. Robin, K. Kanani, G. Jonniaux, A. Masson, N. Despré, A. Berjaoui Airbus Defence and Space, 31 rue des Cosmonautes, 31402 Toulouse Cedex, France [email protected] *Corresponding Author Abstract The autonomy of spacecrafts can advantageously be enhanced by vision-based navigation (VBN) techniques. Applications range from manoeuvers around Solar System objects and landing on planetary surfaces, to in -orbit servicing or space debris removal, and even ground imaging. The development and validation of VBN algorithms for space exploration missions relies on the availability of physically accurate relevant images. Yet archival data from past missions can rarely serve this purpose and acquiring new data is often costly. Airbus has developed the image rendering software SurRender, which addresses the specific challenges of realistic image simulation with high level of representativeness for space scenes. In this paper we introduce the software SurRender and how its unique capabilities have proved successful for a variety of applications. Images are rendered by raytracing, which implements the physical principles of geometrical light propagation. Images are rendered in physical units using a macroscopic instrument model and scene objects reflectance functions. It is specially optimized for space scenes, with huge distances between objects and scenes up to Solar System size. Raytracing conveniently tackles some important effects for VBN algorithms: image quality, eclipses, secondary illumination, subpixel limb imaging, etc. From a user standpoint, a simulation is easily setup using the available interfaces (MATLAB/Simulink, Python, and more) by specifying the position of the bodies (Sun, planets, satellites, …) over time, complex 3D shapes and material surface properties, before positioning the camera.
    [Show full text]
  • Deutsche Nationalbibliografie 2013 T 09
    Deutsche Nationalbibliografie Reihe T Musiktonträgerverzeichnis Monatliches Verzeichnis Jahrgang: 2013 T 09 Stand: 18. September 2013 Deutsche Nationalbibliothek (Leipzig, Frankfurt am Main) 2013 ISSN 1613-8945 urn:nbn:de:101-ReiheT09_2013-6 2 Hinweise Die Deutsche Nationalbibliografie erfasst eingesandte Pflichtexemplare in Deutschland veröffentlichter Medienwerke, aber auch im Ausland veröffentlichte deutschsprachige Medienwerke, Übersetzungen deutschsprachiger Medienwerke in andere Sprachen und fremdsprachige Medienwerke über Deutschland im Original. Grundlage für die Anzeige ist das Gesetz über die Deutsche Nationalbibliothek (DNBG) vom 22. Juni 2006 (BGBl. I, S. 1338). Monografien und Periodika (Zeitschriften, zeitschriftenartige Reihen und Loseblattausgaben) werden in ihren unterschiedlichen Erscheinungsformen (z.B. Papierausgabe, Mikroform, Diaserie, AV-Medium, elektronische Offline-Publikationen, Arbeitstransparentsammlung oder Tonträger) angezeigt. Alle verzeichneten Titel enthalten einen Link zur Anzeige im Portalkatalog der Deutschen Nationalbibliothek und alle vorhandenen URLs z.B. von Inhaltsverzeichnissen sind als Link hinterlegt. Die Titelanzeigen der Musiktonträger in Reihe T sind, wie sche Katalogisierung von Ausgaben musikalischer Wer- auf der Sachgruppenübersicht angegeben, entsprechend ke (RAK-Musik)“ unter Einbeziehung der „International der Dewey-Dezimalklassifikation (DDC) gegliedert, wo- Standard Bibliographic Description for Printed Music – bei tiefere Ebenen mit bis zu sechs Stellen berücksichtigt ISBD (PM)“ zugrunde.
    [Show full text]
  • Galaktika Group: Orbital City «EFIR» «Ethereal Dwelling» Space Colony Concept by Tsiolkovsky
    Galaktika group: Orbital city «EFIR» «ethereal dwelling» space colony concept by tsiolkovsky BASIC PRINCIPLES OF CONSTRUCTING A SPACE COLONY UPON THE CONCEPT BY K.E. TSIOLKOVSKY: IN-SPACE ASSEMBLING MANKIND WILL NOT FOREVER REMAIN ON EARTH, BUT IN THE PURSUIT OF LIGHT AND SPACE WILL FIRST USING MATERIALS FROM PLANETS AND ASTEROIDS TIMIDLY EMERGE FROM THE BOUNDS OF THE ATMOSPHERE, AND THEN ADVANCE UNTIL HE HAS CONQUERED THE WHOLE ARTIFICIAL GRAVITY OF CIRCUMSOLAR SPACE. PLANTS CULTIVATION HE PRESENTED HIS RESEARCHES IN THE BOOKS: BEYOND THE PLANET EARTH, BIOLOGICAL LIFE IN COSMOS, ETHEREAL ISLAND, ETC. COLONY CONCEPTS [SHORT] REVIEW BERNAL'S SPHERE, STANFORD TORUS, O’NEILL’S CYLINDER BERNAL’S SPHERE STANFORD TORUS O’NEILL’S CYLINDER JOHN DESMOND BERNAL 1929 POPULATION: STUDENTS OF THE STANFORD UNIVERSITY 1975 GERARD K. O'NEILL, 1979 POPULATION: 20 MLN. 20—30 THOUSAND INHABITANTS DIAMETER POPULATION: 10 THND. AND MORE INHABITANTS INHABITANTS DIAMETER OF CYLINDERS: 6.4 KM ABOUT 16 KM DIAMETER1.8KM AND MORE LENGTH OF CYLINDERS: 32 KM ORBITAL CITY «EFIR» scheme and characteristics TOP VIEW residential torus ASSEMBLY DOCK radiators electric power station elevator 10,000 INHABITANTS DIAMETER OF TORUS – 2 KILOMETRES variable gravity module MASS OF ORBITAL CITY – 25 MLN. TONS RESIDENTIAL AREA DESCRIPTION OF THE INTERIOR AREA RESIDENTIAL AREA CHARACTERISTICS DIAMETER OF TORUS - 2 KILOMETRES ROTATION PERIOD - ONE FULL-CIRCLE TURN PER 63 SECONDS RESIDENTIAL AREA WIDTH - 300 METERS RESIDENTIAL AREA HEIGHT - 150 METERS AREA OF RESIDENTIAL ZONE - 200 HA MAXIMUM POPULATION - 10-40 THOUSAND DESIGNED POPULATION DENSITY IS 50 PEOPLE/HA TO 200 PEOPLE/HA RESIDENTIAL AREA DESCRIPTION OF THE INTERIOR AREA LOGISTICS transport plans for passengers and cargoes ORBITAL CITY AT THE LAGRANGIAN POINT INTERPLANETARY 25 MLN.
    [Show full text]
  • Domi Inter Astra
    Team members Alice Sueko Müller | Anshoo Mehra | Chaitnya Chopra | Ekaterina Seltikova Isabel Alonso Serrano | James Xie | Jay Kamdar | Julie Pradel | Kunal Kulkarni Matej Poliaček | Myles Harris | Nitya Jagadam | Richal Abhang | Ruvimbo Samanga | Sagarika Rao Valluri Sanket Kalambe | Sejal Budholiya | Selene Cannelli Space Generation Advisory Council Team 1 Contents Society and Culture 3 Tourist Attractions 3 Astronaut and Tourist Selection 3 Architecture 4 Module 1: Greenhouse, Guest Amenities, Medicine, and Environmental Control 5 Module 2: Social Space and Greenhouse 5 Module 3: Kitchen, Fitness, Hygiene, and Social 6 Module 3: Sky-view 6 Module 4: Crew Bedrooms and Private Social Space 6 Module 5: Workspace 6 Management and Politics 7 Governance, Ownership, and Intellectual Property 7 Crew Operations 7 Base Management System 8 Safety & Emergency Planning 8 Engineering 9 Landing & Settlement Site 9 Settlement Structure 10 Robotics and Extravehicular Activities (EVAs) 10 Construction Timeline 11 Communications System 12 Critical Life Support (Air & Water) Systems 12 Thermal System 13 Food & Human Waste Recycling 14 Other Waste 14 Technical Floor Plan 14 Power Generation & Storage 14 Economy 16 Capital & Operating Costs 16 Revenue Generation 17 Tourism & Outreach 17 Commercial Activities 18 Lunar Manufacturing 18 References 20 ntariksha, aptly meaning ‘the universe’ in to be a giant leap for all the young girls around the Sanskrit, is an avid stargazer fascinated world, and she knew something incredible is waiting by the blanket of splurging stars she saw to be known. from her village in North East India. To- day, her joy knew no bounds upon learn- “Each civilization must become space-faring or ex- ingA that she would get a chance to visit Domi Inter tinct”.
    [Show full text]
  • TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
    The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi.
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • Radar Remote Sensing of Pyroclastic Deposits in the Southern Mare Serenitatis and Mare Vaporum Regions of the Moon Lynn M
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, E11004, doi:10.1029/2009JE003406, 2009 Click Here for Full Article Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon Lynn M. Carter,1 Bruce A. Campbell,1 B. Ray Hawke,2 Donald B. Campbell,3 and Michael C. Nolan4 Received 21 April 2009; revised 12 July 2009; accepted 3 August 2009; published 5 November 2009. [1] We use polarimetric radar observations to study the distribution, depth, and embedded rock abundance of nearside lunar pyroclastic deposits. Radar images were obtained for Mare Vaporum and the southern half of Mare Serenitatis; the imaged areas contain the large Rima Bode, Mare Vaporum, Sulpicius Gallus, and Taurus-Littrow pyroclastic deposits. Potential pyroclastic deposits at Rima Hyginus crater, the Tacquet Formation, and a dome in Mare Vaporum are also included. Data were acquired at S band (12.6 cm wavelength) using Arecibo Observatory and the Green Bank Telescope in a bistatic configuration. The S band images have resolutions between 20 and 100 m/pixel. The pyroclastic deposits appear dark to the radar and have low circular polarization ratios at S band wavelengths because they are smooth, easily penetrable by radar waves, and generally contain few embedded blocks. Changes in circular polarization ratio (CPR) across some of the pyroclastic deposits show areas with increased rock abundance as well as deposits that are shallower. Radar backscatter and CPR maps are used to identify fine-grained mantling deposits in cases where optical and near-infrared data are ambiguous about the presence of pyroclastics.
    [Show full text]
  • Project Horizon Report
    Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre­ sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com­ plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • Mobile Lunar and Planetary Base Architectures
    Space 2003 AIAA 2003-6280 23 - 25 September 2003, Long Beach, California Mobile Lunar and Planetary Bases Marc M. Cohen, Arch.D. Advanced Projects Branch, Mail Stop 244-14, NASA-Ames Research Center, Moffett Field, CA 94035-1000 TEL 650 604-0068 FAX 650 604-0673 [email protected] ABSTRACT This paper presents a review of design concepts over three decades for developing mobile lunar and planetary bases. The idea of the mobile base addresses several key challenges for extraterrestrial surface bases. These challenges include moving the landed assets a safe distance away from the landing zone; deploying and assembling the base remotely by automation and robotics; moving the base from one location of scientific or technical interest to another; and providing sufficient redundancy, reliability and safety for crew roving expeditions. The objective of the mobile base is to make the best use of the landed resources by moving them to where they will be most useful to support the crew, carry out exploration and conduct research. This review covers a range of surface mobility concepts that address the mobility issue in a variety of ways. These concepts include the Rockwell Lunar Sortie Vehicle (1971), Cintala’s Lunar Traverse caravan, 1984, First Lunar Outpost (1992), Frassanito’s Lunar Rover Base (1993), Thangavelu’s Nomad Explorer (1993), Kozlov and Shevchenko’s Mobile Lunar Base (1995), and the most recent evolution, John Mankins’ “Habot” (2000-present). The review compares the several mobile base approaches, then focuses on the Habot approach as the most germane to current and future exploration plans.
    [Show full text]
  • Template for Two-Page Abstracts in Word 97 (PC)
    SAMPLE CURATION AT A LUNAR OUTPOST. C. C. Allen 1, G. E. Lofgren1, A. H. Treiman2, and M. L. Lindstrom3 1NASA Johnson Space Center, Houston, TX 77058 USA [email protected] [email protected] 2Lunar and Planetary Institute, Houston, TX 77058 USA [email protected] 3NASA Headquarters, Washing- ton, DC 20546 USA [email protected] Introduction: The six Apollo surface missions re- particularly iron-rich pyroclastic glass and ilmenite- turned 2,196 individual rock and soil samples, with a bearing material. Ice-rich deposits have been pre- total mass of 381.6 kg [1]. Samples were collected dicted in permanently-shadowed locations, and the based on visual examination by the astronauts and con- verification of such deposits is an import goal for lunar sultation with geologists in the science “back room” in exploration. Other volatiles, derived from volcanic Houston. The samples were photographed during col- emissions or implanted by the solar wind, may also lection, packaged in uniquely-identified containers, prove valuable resources. and transported to the Lunar Module. All samples Lunar Outpost Curation Studies: Concepts for collected on the Moon were returned to Earth. the collection of samples at lunar outposts were stud- NASA’s upcoming return to the Moon will be dif- ied intensively in the years following Apollo. The ferent. Astronauts will have extended stays at an out- 1988 “Geoscience at a Lunar Base” workshop [2] care- post and will collect more samples than they will re- fully considered the curation and analysis of samples turn. They will need curation and analysis facilities on on the Moon’s surface.
    [Show full text]
  • List of Targets for the Lunar II Observing Program (PDF File)
    Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc.
    [Show full text]