<<

Characterisation of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter Géraldine Maynaud, Céline Druilhe, Mylène Daumoin, Julie Jimenez, Dominique Steyer, Michel Torrijos, Anne-Marie Pourcher, Nathalie Wéry

To cite this version:

Géraldine Maynaud, Céline Druilhe, Mylène Daumoin, Julie Jimenez, Dominique Steyer, et al.. Characterisation of the biodegradability of post-treated digestates via the chemical accessibil- ity and complexity of organic matter. Bioresource Technology, Elsevier, 2017, 213, pp.65-74. ￿10.1016/j.biortech.2017.01.057￿. ￿hal-01606007￿

HAL Id: hal-01606007 https://hal.archives-ouvertes.fr/hal-01606007 Submitted on 26 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version postprint errors maybediscoveredwhichcould affect content,and the al review oftheresultingproofbe manu The manuscript. the of version early this providing are we acce been has that manuscript unedited an of file PDF a is This 2017.01.057 matter, organic of complexity and pos of biodegradability the of Characterisation N., Wéry, A-M., Please 27January2017 cite this article as: Maynaud, G., Druilhe, C., Daumoin, January2017 24 2016 2December Accepted Date: Revised Date: S0960-8524(17)30094-9 Received Date: BITE17552 To appearin: Reference: DOI: PII: Dominique Patureau,MichelTorrijo Géraldine Maynaud,CélineDruilh ical accessibilityandcomplexityoforganicmatter Characterisation of the biodegradability of post-treated digest Accepted Manuscript post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Bioresource Technology http://dx.doi.org/10.1016/j.biortech.2017.01.057 fore it is published in its fin fore itispublishedinits Comment citer cedocument: e, MylèneDaumoin,JulieJimene s, Anne-MariePourcher,Natha Bioresource Technology

al form. Please note that during the production process during the form. Pleasenotethat al ates via the chem- the via ates M., Jimenez, J., Patureau, D., Torrijos, M., Pourcher, (2017), doi: l legaldisclaimers that app pted for publication. As a service to our customers our to service a As publication. for pted t-treated digestates via the chemical accessibility chemical the via digestates t-treated script will undergo copyediting, typesetting, and typesetting, copyediting, undergo will script lie Wéry z, http://dx.doi.org/10.1016/j.biortech. ly to the journalpertain. Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, Here, the organic matter stability Here,compared bet matter wasthe organic digestateTheismatter organicstability keyof a Abstract Tel: 51 42 4 *Corresponding68 E-ma 86; author. +33 c b a Patureau GéraldineMaynaud mattercomplexity and accessibility organic of biodegradability post-tr Characterisation the of of with biodegradableorganic significantmatter a eas phaseaftersolidfractions obtained con separation slowly composted digestateswhichcomprised accessi biodegradability complexityorganic matter. of and complexityPost-treatmentsprese matter. organicof biodegradabilityfluorescenceandspectroscopy, was usingassessedcomplexitywerematter organicofch typeslinearbothbiodegrada ofcorrelation between highlighted complexitythe organic between matter relationship Université France BretagneLoire, AvenueEtangs,INRA, des LBE, F-11100 102 Narbonne, Irstea, UR OPAALE, 17 avenue de Cucillé, CS64427, R Cucillé, avenue UR 17 CS64427, OPAALE,Irstea, de Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 a , Michel, Torrijos .

Respirometric activity CH and Comment citer cedocument: a ,Céline Druilhe a , Anne-Marie , Pourcher

b,c ,

MylèneDaumoin 4 yields in batch tests showed a yields tests in positive showed batch parameter for its use in itsuse for agriculture. parameter tained aremainingoftained substantial part b,c ily accessible fraction comprisingfractionilyaccessible bility(R Biodegradabilitylow for was ween 14 post-treated ween digestatesand post-treated 14 nted a significanta thented on effect and biodegradabilityand was , and , Nathalie Wéry emical extractions combined with emicalcombined extractions mostly anti-correlated with mostly anti-correlated eated digestateseated thevia chemical il address: [email protected]:il ble complex molecules. Inversely,molecules.ble complex b, c b, ennes, F-35044, ennes, France F-35044, ,France , Julie , Jimenez 2 =0.8). The accessibilityThe =0.8). and a*

a , Dominique ,

1 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, CODtot: Total chemicalTotal(gO CODtot: demand oxygen CO (gO BOD:oxygendemand Biological potentialBMP:Biomethane (NLCH biodegradabilityBDana:Anaerobic CODtot) (% AerobicBDaero: CODtot) biodegradability(% AT AD:digestion Anaerobic Abbreviations Keywords: todigestates help valorizati should optimize their simplerpost effectmolecules.Understanding of the (mmO rate OUR: uptake Oxygen OM:Organicmatter OFMSW:wastemunicipalOrganicof fraction solid O organicextractableCODtot) NEOM: Non (% matter MSW:Municipalwaste solid fraction MH: (%BDaero) biodegradable slowly easilyMB:fraction (%BDaero) biodegradable DRI DOM: dissolved organicmatter 2 Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 : Oxygen 4 2 : Cumulativeoxygen in (gOfour days uptake 24 : Carbon dioxide :O Average digestate; biodegradability; complexity; biodegradability;digestate; anaerobic Comment citer cedocument: 2 uptake rate in the 24 h of maximum activityin hmaximum24 of uptake rate the (mgO

2 h -1 4 kg kg 2 kg -1 -1 VS) VS) VS) VS) -1 VS) 2 kg -1 on. on. 2 kg VS) VS) -treatment on theon -treatment biodegradability of -1 VS) digestion;respirometry 2 h -1 kg -1 VS) VS)

2

Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, which(Tam ideallycaninorganic fertilizer replace potentialdigestateorganicThe fu isfertilizer. a methaneinto (CH Introduction 1. VS: Volatilesolid solidTotal TS: CODtot) SolubleSPOM: particularextractable from fraction Slowly (% SEOM: organicextractableCODtot) matter RT:time Retention ReadilyREOM:organicextractableCODtot) (% matter PoorlyCODtot) (% PEOM: matter organic extractable landfully prior toapplication.to be The assessed fulfil also standards, current landbefore are generallyapplication recommended a Consequently,assuch post-treatments solid-liquid which compounds ca cellulosic process the digestion containpresentbiodegradability residual compl and times,when2010).applicationAt (Tegliad al., et digestateassessment value theof agronomic and of theon CH focus optimization of

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Anaerobic digestionis Anaerobicbiological (AD) a treatment To be used as anas be To organicstabilityused b fertilizer, or Comment citer cedocument: 4 ). It can thus produce energy, It digestatecanproduce whilethethus ). i.e.

efficiency safetyal., 2011). et (Teglia and 4 production from rarely from organicthebut productionwaste on lly fermented nutrient-rich llyfermented material biodegradability of organic residues biodegradability residues organicof igestate is not fullycanit igestateisnot stabilized, bone et al., al., 2010).bone et Many studies separation, separation, composting, drying or ex organic elements such assuch exorganic ligno- elements its valorisation through land land itsvalorisation through extractable (% matter organic nnot degrade (Bayard et al.,(Bayard et degrade 2015). nnot nd the fertilizer produced should thefertilizernd produced iodegradabilityhasdigestate a of

thatconverts organic is regarded as a regardeda as is

3 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, their application, they can be exposed toaeroapplication,theirexposed boththey be can can conditions. organicAsbe direc either residues (CO dioxide theThesemethodsare based oxygenaerobic on (O and (Cossu respirometricbeen tests considered have (>30time-consuming Forthese a days). method reaso anotheret thusle (Raposo laboratoryal., 2011) to al.,the(Schievano2008). et However,residues BMP applied method measuringb common for the anaerobic assessing potentialboth wastof the organicbiogas Thecontent theofbiome al., use 2004). et (Godley includingbiological methods ma organicdry matter, Zach,(BinnerWagl and anaerobic testmethods 1999; incluusingcanevaluated (i)biological be methods solidfractions dried seven digestateof solid and anaerobicaerobicconditions post-treated and 14 of investigate to Thethis are(i) study objectives of digestates. informational.,However, et is conc 2015). scarce Raga,andal.,Barrena Ponsá (Cossu2008; 2008; et its organic for ,biological before tests havebetweenanaerobic aerobicand repor been theircomplementaryprovideson information charact assessmentaerobic biodegradabilitytheirof under Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 2 ) production which are related to OM )to related which production are Comment citer cedocument:

the biodegradabilityboth the under fractions of digestate obtained after fractionsdigestateof obtained suchcompostingprocesses AD as or ading to large ading to discrepancies.is also It bic and anaerobic and environments. An bic tly applied on land or stored stored land prior on to or tlyapplied erning sucherning on correlations e and and It e digestate. is most the and anaerobicandconditions thus ding aerobic respirometric tests and dingaerobicrespirometric tests and thane potential test (BMP) aims attest(BMP) thane potential 2 digestates (seven composted ordigestates (seven composted ) measurementcarbon uptakeor ) et al., 2009; Bohm et al., et al., Bohm 2009; et Liu2010; Raga, 2008; ScagliaRaga,2008; al., 2010). et tter (OM) and(OM) totaltter organic carbon tedespecially severalbyauthors, test vary one protocolcan from eristics. Furthermore, correlations Furthermore, eristics. ns,alternativeapproachesas such and et al., 2009) and al.,2009) (ii) et non- and iodegradabilityorganicof under controlledunder

4 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, phase separation, 1 dried and composted solid fract composted phaseand solid 1 dried separation, T4S)T2S,A1S, SL2S,T1S, digestate T3S, obt (SL1S, AD sitesFourteen i from 13 digestatesweresampled Sampling 2.1. digestates of Materialmethods 2. and theseof organic residues. help theto could define This stability.digestate characterizationbiodegradability descriOM and and 3Dchemicalfluorescencespectros fractionationsto Thi has wastesbeenal.,2015) et applied. (Jimenez characterizethe to method accessibi both developed post-treatmentsof their impact characteristics on characterizeseparation)(ii) to liquid-solid and t characterisationPhysico-chemical 2.2. digestate of forfurtherkg 50 werehomogenized analyses. each) theirin digestates origins arepresented and Table ther digestiondry,ormesophilic (wet processes or food (FPW (OFMSW), processingfraction waste MSW of municipal wastewatertreatment(WWTP), solid various includingwaste,sitestypes treated agrof solidA4C,fractions S composted (A3C, digestateof Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Comment citer cedocument:

heir OM in order to better assess OMheir into better theorder better strategies for agriculturalstrategies betterre-use for icultural waste, sludge from a sewageiculturalwaste, from sludge and stability. In this view, astability.recent and view, this In 1. All of the samples collected (about theAll (about ofsamples 1. collected mophilic). The designationThethe mophilic). of s method combinessmethod successive ion of digestate (A2D) and of ion (A2D) 6 digestate copy. The final goalfinalThe copy. was correlating litycomplexityorganic and of s s bingpost-treatmentofthe on effect L1C, O1C,O2C,The M1C). L1C, AD n France: 7 solidfractions nFrance: of 7 waste(MSW),the organic ained following ained solid-liquid ), all ), different accordingto

5 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 2007). The respirometric device consisted of 10 L respirometric2007). The device ofh consisted 10 thebulk density)accordingdynamic a resp using to biodegradabilityThe freshon measured aerobic was (BDaero)Aerobic 2.3.1. biodegradability assay Residual biodegradability2.3. assays expressedin gO K wasby Then,afterCODtot titrationdetermined µm. samplemeasurements,(CODtot) thedemand was dried sampleh. °Cthis calcination 3 550 dried for at of 105(VS)°Cvolatileatsampleh.The 48 for solid each(TS) the sample, tests.For solidconten total kg) Representative2digestateof w aliquots (about and stablelow value. a fellto Zurich,respirometricThefi testwas Switzerland). every mingases aweremonitored 2 using paramagnet theduringexperiment,oxygen therespirometric con thetoInme substrate. conditions order throughout h airL (360the recirculationexhaust part of of to thetemperaturewaterwhilepreheated a bath the airwithwasrate flow70 of continuous supplied a inertascellat Each maintained bulkingwas agent. Thesewithsubstrate cells. studied werefilled the 2 Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Cr 2 O 7 in accordance T90-101. AFNORNFstandard with the 2 kg Comment citer cedocument: -1 -1 VS. All measurements were performed in triplicate.VS.wereperformed measurements All

-1

), thus ensuring homogeneous ),thus homogeneous ensuring smixedwith actingringsPall plastic Prior to total chemical to Prior oxygen g measured wast of drying by100 content was measured after contentwasmeasured nally halted when nallyO halted the asure the asure O Lh 40 °C by means of a water bath and°Cwaterbath a means by 40 of ere used to all ereused theperform analytical eration system also included a included rapid erationsystem also irometrical.,et (Berthemethod ermetically sealed stainless ermeticallysealed steel centrations of thecentrationsoutlet ofinlet and digesting 1 g of TS withgH TS 1 of digesting digestates (between 2 and4(between2 kg digestates -1 ic analyser (Magnos 206, ABB,ic(Magnos analyser 206, . The incoming air was. ground toground a 500 size particleof 2 2 uptake rate uptakerate (OUR) CODtotwere results 2 uptakerate 2 SO

4 and 6 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, associated withassociatedtheallof biodegrada disappearance thirdlyand consumption, the of (iii) stabilization that(MH) the toOM be be has slowlybiodegradable OURto andexponentialgrowthassumed decrease corr and OM biomassthe(MB) biodegradable growth easily OURmax, a risevalue, (2005): firstly a peak to (i) conceptual typicalA approach b profiles hasof OUR (BOD(gO BDaero(%CODtot)= according Equational., CODtot, et 1 (Liu 2015). to couldexpresse aerobicbiodegradabilitybe (BDaero) maximum activityin averagehthe of OUR 24 (Ponsa ATsubstrate: O (BOD) Thetheofoxygendigestate demand biological thevalues2represented3) or cumulative (i=1, O second and during theoffirst, th the rising phase andvaluesMB2MB3peak: the the MB1, represented c andsimplifiedMHestimation thepeaks.wasMB A of singletypicalatypical a profiles peak,OURwith p endogenousrespiration. todiffeDuring study, this characterisedvaluethecumulative O cumulativeO and carriedthe MHestimation M could MB ofbe out: Onthe the biomass. respirationtheseof of p basis 2 Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 classicalindi the uptakeduring Two test. aerobic 2 4 consumption duringconsumption risinguntil thephase, OURmax, related to therelated to cumulative O Comment citer cedocument:

2 2 kg -1 2 VS) x/ VS)CODtot(gO 100) uptake during the decrease phase, from OURmax phase,decreasefrom uptakeduring the 2 uptake in four inandfour daysDRIuptake OURconstantlow and value a at ird peak respectively, and the respectively, MHi peakird and 2 revious assumptions, a simplified a assumptions, revious consumption during consumption decreasing the associated withassociatedof the biodegradation rent OUR profilesOURrent wereobtained: rofiles with two or three rofilesO or with two

ble OM and OM the endogenous ble ces were also calculated for each werealsoces calculated for d as theas betweenratio and BOD d een al. et bydescribed Trémier hydrolysed before hydrolysedbiological before Bvalue representedthe corresponded to thetocorrespondedcumulative et al., 2010). Moreover, the al., 2010). et Moreover, n performed for each for n separated performed espond the biodegradation to of umulative O umulative , secondly , in a the break (ii) 2 kg -1 VS) (1) while the MHwhile the 2 consumption consumption 24 related to thetorelated 2 uptake

7 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, respectively.The CH and displacementgas chromatographymethod (Perkin gas and twice production compositionwereestimated andconstant a under darkdigestate Each shaking. w and stoppers aluminiumi gas-tightsealsrubber and withsolutionin flushedflaskwas N (2.5g L bicarbonatesolution gfresh 200following of weres digestate protocol: inocul fresh Thison wasdigestate measured without to Antest wasquantify batch re used anaerobic the (BDana)Anaerobic 2.3.2. biodegradability assay calculations,MBidescribed MHi and wereexpressed and thefirst, thirdphasesecond peak,respecti of theend at theofexperimentproduction was i taken theanaerobic analyscurves of tests werenotbatch (2) = (CH BDana(%CODtot) al. Liuet (2015). CH biodegradabilityas Anaerobic expressed was (BDana) hPa). 1013 inNL CH Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 4 yieldCODtot and theof studied in digestate, acco Due to thelow frequencyDue CH of 4 kg -1 of VS under standard temperaturestandardcondunder VS of pressure and Comment citer cedocument: 4 yield wasyield calculated experimentalresult using the 4 yield(NLCH -1 ) inmLflasks.ensure anaerobic 500 conditions,) To

2 for a fewseconds. flasksa The for with weresealed 4 4 measurements (twice a week), themeasurements(twicekinetic week), a kg -1 VS) x 100) / x CODtot(gO(0.35 VS)x 100) vely. Followingvely.thepreviously

uspended in 200 mL of sodiummL in ofuspended 200 ed. Onlycumulativeed. the CH sidualCH nto account. account. nto ncubated at 37 °Cat for ncubated days 40 in 37 the as tested inBiogas tested as duplicate. ation for 40 ationdays40 the for using a weekwatera a using in%BDaero. the betweenofratio themean rdance with the Equation 2 rdanceof Equation 2 with the Elmer Clarus®580), Elmer 4 production in production digestate. itions°C and (0 s and expressed sand 2 4 kg

the -1

VS)) 8 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, sequential acid extractions (25 mL of H mLof sequential acidextractions (25 °C rpm, and (iv) 30 h300 atpoorly extractibleOM NaOHmL sequentialstrongof basic(30 extractions °C minrpm, and 15 (iii) slowly30 300 at extractib NaOH salineNaClmLof basic (30 extractions and 10 300 rpm, (ii)°C (REOM) readily extractibleand OM CaClmL extractionsof (30 werethenextractible soluble (SPO obtained: OM (i) gsample.fract Four wereperformed 0.5 on dried of th mm grindedand was to and 1 particle dried size, according characterised JimenwasOrganic matter to extractionssequentialChemical 2.4.1. Organicmattercharacterisation 2.4. Fluorescence 2.4.2. spectroscopy analysis %aseachof ResultsareCODtot expressed fraction. ISO accordance15705:2002with inthestandard orde totalresidues (COD) The ofoxygen chemical demand at filtered µm. 0.45 recoveredwas OM bythe centrifugation solubilised extractedfromthe sample subtractingOM thetotal rpm.°C 30 300 at the non-extractibleand Finally, Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057

Comment citer cedocument: 2 solution 10 mM) of themin mM) 10 of remaining15 solution pellet for

2 SO 4 72% (w:w)) of theremaining h 72% of 3 (w:w)) pelletfor OM (NEOM)calculatedwas OM by le OM (SEOM) produced after fourafter le (SEOM) OM produced e following e sequential extractions from the initial OM. At eachAt from theinitial step, OM. (PEOM)after produced two ions of decreasing accessibility ionsdecreasing of M) produced after four sequentialafter four M) produced . . (18600 g at 4 °C for g°C at min) 20 and4 for (18600 0.1 M)theremaining pellet of 4 0.1 for ez et al. (2015). Firstly,al. et (2015). sample the ez produced after foursequentialafter produced r tocontent characterise r OM the mM) of the mM) of remaining pelletfor and extracts and in was measured at 30 at

9 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, Where: influorescencepresented zonesSupplementar is the Anexample and Equations according4. spectof to 3 givenina “i” zone biochemicalcorrespondingto family-ty fluorescence al.(2014), al.Muller et (2014)and the et spectra nmto inwithnm from wavelengths 600 varied 10 200 The be fluorescencequantified. w used spectrometer theextractedfractions spectroscopyto applied was the procedure Similarto bydeveloped alet Jimenez multipleB variablescorrelations includingbetween were analyticalprocessed using comp principal data using(BDaero)biodegradabilities wereinvestigated respirometryAT (BOD, CorrelationstheCH between Statisticalanalysis 2.5. Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 i i P zone(nm²): a S(i) the areaof i, COD V UAmgCODL % = % f f (i) (%): the fluorescence proportion of a zonea(%): the proportion of (i) i. fluorescence (i) (U.A. mg L COD (U.A. (i)

sample (mg L Comment citer cedocument: P 100 × -1 = i ):the sample, theconcentrationCOD of was calculated fromvolumesthe fluorescence calculated was zone 4 and DRI and -1 (4) ):i,thetheofrawzone volume 4 yieldthe each and from of obtained parameters

24 ),and aerobic anaerobic(BDana)between and × 1 (3) wereseveninto decomposed zones , fromwhichcomplexity , could OM Dana, BDaero, MBi and MHi andMBi BDaero, Dana, (i=1, . (2014 and 2015), 3D fluorescenceand (2014 2015), . linear regressionThe evaluation. linear onent analysis (PCA) to identifyto onent analysis(PCA) y 1. figure as a Perkin Elmer LS55. Excitationas PerkinLS55. a Elmer pes. The proportion of fluorescenceThe proportion of pes. ra decomposed into seveninto ra decomposed crements. According to Accordingto Jimenez crements.

V f (i)

10 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, fractions the TS content varied between 22.3-26.4 contentfractionsthe between % 22.3-26.4 varied TS forthefractions, beingthe value highest observed content% The betweenfor 40.9-74.6ranged TS dried respectively,with BOD, c andCODtot to respectand aerobicdigestates.biodegradabilitie and Anaerobic Characterization 3.1.digestates of Results discussion and 3. (RStatistical R-Software for Foundation Computing, extractedfraction.each Statisticalp was analysis correlations testandfor between anaerobicaerobic fraction. Pearson A NEOM correlation fractions and fluorescence thetocomplexity2 3), or and related thefractionofthatsolid the composting sign step gO237.0-550.0 higherNLCH showed (41.1-93.8 values CODtot%BDaero CODtot. % and <0.5-5.2 2.8-18.6 of NLCH (0-28 BODand solid fractions digestatecomposted dried or of wer differencespresented amongstdigestatesdepending theapplied notabledifferences to related post-tre theCODtot and gO betweenTS % 1245-1696 Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 The calculated aerobicanaerobiccalculatedThe and biodegradabili summarizes Table thebiologiphysico-chemical and 2 2 kg Comment citer cedocument: -1 VS, BDaero=14.6-38.0 % CODtot).% These BDaero=14.6-38.0 VS, results demon 4 kg -1 VS and 39.8-254.4 gOVS 39.8-254.4 and

4 kg -1 VS, BDana=7.2-18.6 % CODtot and CODtot%VS, BDana=7.2-18.6 2 kg erformed package Rcmdr usingof the atment. ificantly reduce the biodegradable OM thebiodegradableOM reduce ificantly dried sample A2D. InA2D.sample dried soliddigestate -1 -1 the %CODtot of extracted OM extractedOM the of %CODtot e characterized CHbye low 2 2 biodegradabilities and %CODtot andofbiodegradabilities s were calculatedwith the swere CH VS inVS any thewithout digestates,all kg on post-treatment applied. Indeed,applied. post-treatment on . The VS ranged between 39.3-86.5 VSThe between. 39.3-86.5 ranged matrix was performed in order toin was matrixorder performed Vienna, Austria). ontentof digestate. or composted soliddigestate or -1 VS) corresponding to BDana VS)correspondingof to The solidThefractionsof digestate ties (BDaero and BDana) and ties(BDaero cal properties of of properties cal 4 strated strated yields 4

yield

11 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, been previously reported (Teglia et al., 2011; Baya been(Tegliaal., previouslyet 2011; reported adigestatesof contained significant portion still COD.% and Consequently, 44.1 between 19.8 despite and ranged orsolid waste31. between 14.6 biowaste that Thesedigestatesreported theBDana authors of valuesfractions werein thepreviouslyrange of ob Theresidualof digestate.inbiodegradability this the and to 95 T other digestates(between15 days). (betweenA1S wasan the14 short line for treatment BDaero=38conditions and % bothCODto% (BDana=18.6 solidsamples.A1Sfractions, presentedstudied For CODtot),thus%suggesting BDaero=2.8 OM o that the anaerobic aerobicand biodegradabilityc both under A4C fractioncontent.was thesolidAmong , municipalagriculturalorganicwastes, offraction digestatedigestate di after composted obtained and s between(2011) Tegliareported digestates. al. et CODtot.% representedaccessib Inof 2.7-10.6 terms CODtot).Theaccessible% most(SEOM+PEOM=25-78 fra inthe allOM essentiallydigestateswasremaining (% C extractions theaccessibilityOM of describing OM. differencescharacterizofThe in thestructure between biodegradability, thedifferences observed moreconditions,thiscanpost-treatment portion be Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Comment citer cedocument:

residual biodegradable OM, as hasas residual biodegradableOM, values of biodegradability for the of values solid for biodegradability imilarof results: theremaining OM solid waste and sludgewastewaterandwaste solid of tained by Bayard et al. et in by tained 2005. Bayard ation of OM OM ationbysequential of chemical rd et al., 2015). Dependingal., et rd the2015). on his could explain the important part explainhis importantpart the could composedlessof fractions accessible or less Inof or important. terms gestion of food processingfood gestionwaste, of highest under biodegradableCOD digestates were probably due to theprobably digestateswere due from ADmunicipal residual from of ODtot for each for that extract) showed ODtot onditions (BDana<0.5 % and% onditions (BDana<0.5 d 20 tablewhen1) days, compared 20 d 4 % COD and the and COD% rangedBDaero 4 ility, no difference was observed ility,differenceobserved wasno characterized characterized thelowest by thecertain digestionprocess, f A4C wasfstable A4Callof themost t). The totalTheretention t). of time ctions SPOM+REOM ctionsSPOM+REOM only

12 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 3.2. Correlation 3.2.bothanaerobic and between aerobic CODtot. CODtot),alsoand % presentedSL1C, <20 (A3C NEOM a presentdried or study,e digestates, thecomposted %%for CODtot withthe CODtot 43.1 than more di 40 that theslu (2015) reported Jimenez al. NEOM et of fraction the represe digestates 14) of out NEOM (10 CODtot largerepresented(betw fractions, a of part fractioncalcdigestates. non-extracted (NEOM), The CODobservable%di no distinction between withraw thatthe fractiondemonstrated easily biodegradable slowly treatmentplant, mostly comprised biodegrada andFig.digestate, one A1S (pointsurrounded 1b on the respectively).to This underestimationwas due AT betweenCH Significant wereobtained correlations bet positive shown). %, (coefficientdatanot<15 variation of values inFig.1 in chosen duplicatewasfor because Concerninganaerobic meanbiodegradability,thethe AT from (BOD, respirometry data andbiodegradabilities BDaero) between (BDana, CH Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 4 and betweenCH Fig. 1 illustrates linearFig.1 correlations positive bet 4 yieldBOD and (R Comment citer cedocument: 4 yield andyieldDRI

2 =0.8), whereas =0.8), theCH correlations between 4 and DRI and 24 wereless significant(R 24 ) for ) the digestates. post-treated 14 ween BDana and BDaero and and BDaero ween and BDana xcepting two composted xceptingdigestatestwo een 15.3-70.8 %). For mostthe %).een Forof 15.3-70.8 of theofaerobic biodegradabilityof of OM and ranged 6.3 OM ofbetween 2.7 dicated a good reproducibilitygood a dicated dge digestate ranged fromto digestate dge 30.0 ranged %than CODtot. more nted 40 Fig. 1c), Fig.1c), usingAT ulated according to the accordingextracted to ulated value of theCH value of ble OM.These bleauthors 4 yield and obtained parameters biodegradabilities ween anaerobic and aerobic and ween anaerobic gestates and composted gestatescomposted and gested sludgegested Incompost. the fraction% greater 40 than 2 of 0.7 and of0.6, 0.7 4 yieldmeasured 4 and DRI and 4 yield and 24

. . 13 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, (2008) also reported aalso positive (2008) betweenreported correlation residual four municipalraw digestates from solid w lineara demonstrated regression biode between both studiesthis2015). haveFew reported correlation f andCossuBarrenaRaga,al., 2 et Zach, 1999; 2008; organicconsideringwasteduring residues co or raw indicesbiodegradabilitiesbeen and has biological estimated case,with better value.BOD the longer a highwith aandlevelfor period activity representoverallthis biodegradabilitytype the of aerobic Short-term AT indices assuch ratemmOabout of40 this theIndeed, respirome presented slowest sample Fig.suggestedthat (1.8,in1d) contained the OM a treated separationbycomposting. and phase anaerobiccorrelationaerobicandindi between both tothethefirst Hence,study be present appears th including biodegradation digestates digesta raw and wasteanaerobicorganic stabilityfor indices solid al.linear Ponsaet a (2008)described positiveand wasteswastmunicipal fraction organicsolid and of O and Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 2 samplesincludinguptake46 rate on mixtures waste A significant positive correlation between both aersignificant positive A between both correlation Interestingly, the slope of the Interestingly,correlationofslope linear the Comment citer cedocument: 2 h -1 kg -1

VS after 200 h,and VSOURthree200 after3b) (Fig. clearpeaks 4 and DRI and 24 of time.The inis,biodegradabilitythisof of substrate stillsubstrate ofhighly biodegradable at hassignificant a at demonstrated s during differentof sduring stages correlation between aerobicand correlation appeared to be insufficient to appeared to be observed instudies previous observed or digestates. Bayard et al. (2015) al. et (2015) Bayard digestates.or ll lessdigestateswas biodegradable anaerobic biogasification potential e) and their and rawFinally,e) digestates. aste and biowaste. Schievanoal. et and astebiowaste. tes post-treated by tescomposting. post-treated cesdigestate for samplespost- tric kinetic, withtric anoxygenuptake 009; Bohm et al.,Liuet et Bohm al., 2010; 009; mposting and treatment (Binner gradabilitiesfour substratesand for between BDaero and BDana and between BDaero obic and anaerobic and obic (agricultural, agro-industrial(agricultural,

. . 14 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 3.3. Relation biodegradability,3.3. between accessibili Barrenaal.,Bay Ponsá2009; 2008;et al., 2008; et assessing toolsbiologicalfor the efficiency tr of the digestatethe stabilityand of biodegradability aerobicthan lower conditions. under reportedthatalsomicrobial al. (2009) growth effi structuralthe characteristicsand of compositional not microorga biodegradablepartsaccessibleare to According and waste municipal biowaste. Mo solid to al.et(2015) alreadybyra obtained on Bayard been conditions anaerobic under aerobicconditions. than accessibilitybiodegradability OM confirmed was and component, were withparticularlyBDaero correlated wellthev ThecorrelationaccessibilityOM.PCA circles al of mainly anaerobic PCA2 biodegradabilities, whilethe the describes complexityaccessibleeach fractio of % describe the ofdata76.3 variabili sufficient to compon fluorescenceThemajor and two spectroscopy. and byaccessibilityOM itscomplexity, obtained of anaerobic and biodegradabilitie betweentheaerobic Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 The full dataset wasthough fulldatasett analysed The PCAin order ConsequentlyCH the i. e. i. the OM complexity. the correlationbetw values OM low The Comment citer cedocument: 4 yield and BOD constitute good indicators forandyieldconstituteBOD indicatorsgood descr

eatment process (Cossu and Raga, and eatment(Cossu process ty (Fig. 2). The2).essentially(Fig. PCA1 ty s. They can thusalso representusefulThey s. can ciency under anaerobic conditionsunder ciencywas ligno-cellulosic materials. Wagland et et Wagland ligno-cellulosicmaterials. ard et al., et ard 2015). n (1-7 zones) and n(1-7 the aerobic and ty and complexity of OMcomplexity and ty of so illustrated thatillustrated BDana and so nisms during AD, most likely due tomostlikely AD, nisms due during residual AD ofdigestates from w ariables describing thefirst describingariables This on digestatehasresult samples combiningextractions chemical s (BDana and BDaero), the BDaero), and s(BDana describes thechemical describes by Pearson’s a correlation nlau et al.certain et nlau (2012), ents, PCA1 and PCA2, and wereents, PCA1 o highlight correlationso eendigestate ibing

15 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, complexity have already been reported in complexityhaveca alreadybeenstudies reported correlations previous molecules.Thebetween anaero melanoidin-,as suchfluorescence)acid-, li fulvic with negativelymolecules(zonescomplexcorrelated complexit moleculesof simplest forms 1-3 of (zones thatthe illustrated indicatorbiodegradabilitytwo humic fractionrespectively. substances, Here, and negative and COD, watersoluble correlations betwee significanttoThese fractions.a p authors pointed theet(2015)studied Bayard al. correlations betwe accessiblewithnot otherand fractionstheREOM, S easily with correlated most thefraction accessible thatthis Indeed, demonstrated theBDana a analysis %CODtot and BDana,extr each analysis BDaero of for complexitincluding (zonescomplex 4-7 molecules of assoc containedtheslowly SEOM fraction accessible anaerobic and werecharacterizedlow aerobic by bio andCompostedresidual andwaste. municipal solid d al.subst et (2015)on reported also bybeen Bayard thesignificantlybiochemic affectedand biological revealingsolidfractionsdigestate,of that co the fractionsComposted solid and (Fig. of dried 2b). d treated (Gunaseelan, processesby2007) (Jime or AD Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 The PCA1 axisthe classificationPCA1 governed Thedigestof Comment citer cedocument:

mposting post-treatment step mpostingstep post-treatment s were positivelywithswere the correlated ositive correlation between BMP and and ositive correlation between BMP gnocellulose- or humicorgnocellulose- acid-like SPOM (R SPOM en the BMP and and differententhe BMP OM al properties of Thisal hasdigestate. of properties igestate were clearly separated from igestatewereclearly separated the PCA correlation circle (Fig 2a) thecorrelation circle(Fig2a) PCA rates and digestates from ratesdigestatesfrom biowaste and nd BDaero biodegradabilitiesBDaero nd only rried out on intended for ADfor rried wastesintended on out EOM and PEOM.Likewise,EOM and degradabilities.They mostly yfluorescence) wereto and related bic biodegradability and OM bicbiodegradability and to complexity 4-7 of related n BMP and Van Soest residual VanSoest n BMPand ried solidriedfractions digestate of nez et al., 2014). nez al., 2014). et iatedto humic-like substances yfluorescence) to as related acted fraction of OMfraction (Table 3). of acted ates into two distinct groups twoatesgroups into distinct 2 =0.8 and 0.6, respectively), =0.8and 0.6,

16 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, be more stable than be thussolid fractions,digestate lowdigestateof characterized biodegradabilityby the post-treatment.complexity accordingto applied (SPOM+REOM+SEOM). easily in observed slof fluorescence1-3 zones and molecules.fractions simpleSolid of diges of forms largeacontained indicators and easily of part acc aerof treatmentwerecharacterizedhigh byamounts Inversely,biodegradable. solidfractionsdigestof which fractionsbe known(SPOM+REOM+SEOM), r to are foundthe incompounds zonesof ea fluorescence4-7 toattributed humic anddigestatebe offulvi could Indeed,thecomp reported byal. et (2015). Jimenez usingfasteandfluorescence spectroscopyiseasier impact propertiesalso theorganicdigestof matter such factors thattypesasoutother feedstocksof inorganic matter solid-fractionswas digestate of Although agriculturalofthe purposes. impact post- ensuretheirin to storage stabilizati period order most coto a complexity, subjected likely should be digestatecharacterized bywhichfractions, were a Tegliaspreading albyetal.,2008; et land (Ponsá Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 These results suggest that OM contained incontainedThese thatsuggest OM digestat results Comment citer cedocument:

on before they can be re-used for re-usedfor they before be can on or digesteror canoperating conditions allowing for their allowing re-use for agricultural essible fraction (SPOM) comprising(SPOM)fraction essible ate without a composting a without post- ate ., 2011). On the contrary, solid 2011). the ., here demonstrated, it must be pointed demonstrated, here c acid-likelignocellulosic-like and c ates. Finally, OM characterizationates. Finally, OM higher biodegradability and lower biodegradabilityhigher and r to perform than to and perform r aerobic highto complexityand werefound owly accessiblefractions tate contained proteins molecules contained tate proteins treatmentstheof biodegradabilityon mplete composting step or to ampleteto composting step or lexitysolidfractions composted of Compostedsolid fractions or dried obic and anaerobicand obic biodegradability sily and slowlysilyaccessible and es presentes ofdifferent levels ecalcitrantslowly and

17 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, second (SL1S, T1S, T2S, T3S and(SL1S,andA1S)thirdT3ST2S, a T1S, second OU the2009).At (Mohajeral.,five opposite, et diges as such (Adhikari al., waste 2013) municipalet or respiration 3a). endogenous(Fig. These we profiles profileaO with peak only one of andcompostedsolidfractio including dried all the thevarious di showed studied profiles accordingto rate(twice Duringa production week). respirom the theO Indeed, Kineticsrespirometricof 3.4. activity digestateofthe relatively stabilizeda as status thereforeto e anaerobic beapplied tests; could it wastes territdifferent (agriculturewaste, treated andT3S) an thermophilic mesophilicT2S, (A1S (T1S, Atypical waste. municipalkineticsof solid werehe in digestreported al.on bystudy(2016) a Zeng et kineticsitst Atypicalprofile. with respirometric compositionalsowaste the OM treated impact could component (ii)accessibilityOM and/or thereleased explainedcombiningOM phasesby biodegradat two of Atyp(Fig.reachingrespiration the3b). endogenous Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 The applied AD process (e.g., temperature and process appliedAD Thereten (e.g., respirometricOnly havekinetics beenint taken the 2 wasfrequently more uptakerate measured 2 (every Comment citer cedocument:

2 consumption, followed by a decrease of activityconsumption,by followed decrease a of un fertilizer. orial waste, urban sludge). Thesesludge). urban waste,orialresults wo OUR peaks havewoOUR peaks alreadybeen valuate the biodegradability and thus thebiodegradability valuate and tates showed atypical profilesshowed tates with a ates obtained after thermophilicafter obtained ates AD ns of digestate, werecharacterized digestate, ns byof mixtures of sludge and mixtures bulkingof agent gestate (Fig. 3). Ninegestate 3). (Fig. digestates, re observed inobserved re digestatesfrom both re classical on solid organicclassical re solidon wastes, ical kineticsOURbe could s, that both changed withchanged that s,time. both etric experiments, thekineticsOUR etricexperiments, of theasdigestate ofobtained as well d SL1S) with AD and processes, d ion(i) the OM according to R peak (T3S and A1S)and before (T3S Rpeak oinaccount results. the tion time) and the andtime) of type tion min)CH than the

4

til 18 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, shown). Evenshown). otwithusingthe data description the of 0.5-0.7, fluorescencezonesSPOM+REOM+SEOM = 1-3 andOMR fractions molecules of 4a (Fig. posit waswas OM. MB1 thechemical accessibilityof forAsresults,the previous fraction (zones 1-7). tothefirst linkedthefluorescence- and peak, OUR whichaxis MB1 describing thePCA1 were characteriz andwerePCA2, sufficient PCA1 describe o %67.4 to inOUR number 2.3. peaksof described (calculations (i intotheBDaero MHiand and MBi of fractionation thedifferentcarriedon out describingparameters explainatypical r seemto theofkineticsobserved digestiondemonstrate and that ofprocess the type molecularapparentweightchromat exclusion by size compartmentthecouMoreover, OM the aqueous of OM. sequencingalso contribu throughput analysis)could enzymaticfungaltest, activitiesbacterial and and comprehensionFormultiplee thepeaks. ofobserved isatypical workkinetics.observed sti Further OUR in thesuff notto used studydescribe thisOM were thefivefour out atypical digestatesof presenting axes shown).led notto (data the PCA Moreover, of withsignificantlynot MHi thewere correlated axes Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 In order totheunderstandtwo thr orderIn appearance of or Comment citer cedocument:

2 of theand of correlation betweenMB1 the variable describing the PCA2 axis thevariabledescribing PCA2 the kinetics (Fig. 4b). The parameters thenThe parameters 4b). kinetics (Fig. community composition (by high-community(by composition the OM accessibility,itscomplexity theOM espirometric activity. espirometric the nature of treated waste naturetreated not do theof related complexityrelatedaccessibleeach of icient and/or relevant to explain relevant theicientto and/or her PCA axes, the other MBi andMBi PCAaxes,theherother ll required for afor required ll better accessibility and/or theaccessibilitycomplexity and/or te te the evolution the ofnature to of separation fromseparation digestatesof other xample, respirometric duringthe 1) (Fig. components,Two 1) 4). =1, 2 or 3) according to the according3)or =1, 2 to ography. ively correlated with ivelythecorrelated simpler f the data variability.fthe Variablesdata ed theeasily OM ed biodegradable ld ld be characterized in of terms ee OURPCAwas a ee peaks,

p-values <0.05, data not <0.05, data

19 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 2. 1. seven fluorescence isintozones analysisof presen digestatesfertilizers.of as stability contributetothe theseOM data on should the on post-treatmentsb stabilitydigestates to of inbiodegradabilityhas demonstrated this been that stable Themore the a OM. relation betw presence of containing characterizedbiodegradablebyOM co low Com biodegradableOM thedespitedigestion process. Conclusions 4. References l’Energie(grantla 130 Maitrise(ADEME) number: de Acknowledgement

An example of of a spectra obtained exampleAnspectra b of a obtained of decomposition Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 A., Adani,In reliablea F., 2009. A., of searchtechni Ponsà,Gea,T., S., G., A d’Imporzano, Barrena,R., Wasttest. organicrespirometricmunicipal a waste: A., Tremier,Barrington, S., B., Martinez Adhikari, This research was financially supported by Thistheresearch financially was supported Agen comprisefractions to Solid awerefound significan Comment citer cedocument:

e Consequently, understood. better ted inFigure the ted 1. Supplementary improvement of agricultural re-useimprovement agricultural of study has allowed forstudythe effect has allowed of que for thethe determination que of een and complexity , J., 2013. Biodegradability J., , 2013. of posted solidfractions posted were e Biomasse Valor. 331-340.4, mplex molecules, thusimplying mplexmolecules, rtola, A.,F.,Vazquez, Sancheza, rtola, y fluorescence spectroscopy 6C0032). t part of t remainingpart ce de l’Environnement de et de ce

20 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 8. 7. 6. 5. 4. 3.

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 and Solutions. Stratford-upon-Avon, UK, 28-30 Septe 28-30 Solutions.Stratford-upon-Avon, and UK, PollutionWasteManagement and Integrated Control: municipalof ofdetermination anevaluationwaste: Barker,Lewin, H., R., S K., A., Graham, A. Godley, doi:10.1016/j.wasman.2007.01.014 waste. Waste28(2), Manage. 381–388. biodegradable assessimethodsfor Raga,R., Test R., 2008. Cossu, 30(4), doi:10.1016/j.wasman.2009.09.037 583–590. failures avoid identify statisticalapproachto and MBT-wasteinfrared reactivity DeterminationAnof - Smidt,Schwanninger,E., M.,Binner,K., E., Böhm, 255–261. residualOrganic99 pretreated ORBIT wastes. Recove Laboratory A.,1999. Zach, E., Binner,tests descri composting.75-88.Eng. during97, Biosyst. ato studyand respirometer biodegr pycnometer, the Druilhe,A.,Tremier, Massiani, L.,C., Berthe, C., 9411-2 6(5), Biodegradability.Valor. Waste 759–76 Biomass DigestatesandOrganicCharacteristicsofWastes to R., 2015. Correlat StatisticalAnalysisGourdon, to Guendouz,Gonzalez-Ramirez, R., J., L.,Ben Bayard, Hazard. doi:10.1016/ 1065–1072. 162(2-3), Mater. J. instabilitymatter thebiological organic m the of Comment citer cedocument:

of biologicalof tests.Waste Manage. echanical-biological treated waste. waste. echanical-biologicaltreated de Guardia, A.,Guardia, Coupling de 2007. a bingreactivitytheof biological e Bio-physicaleChemical and ngstabilitythe of biological methods. Proc. WasteProc.Conf. methods. 2004 Their Anaerobic adability of solid organicadabilitywastessolid of mith, R., Biodegradabilitymith, 2004. R., Tintner, J., Lechner, J., P., Tintner, 2010. j.jhazmat.2008.05.141 spectroscopicmultivariate and belkacem, H., Buffiere, P., H.,Buffiere,P., belkacem, 9. doi:10.1007/s12649-015- 9. mber, 40–49. Policy and Practice,Research and Policy ry and Biological and ry Treatment,

21 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 14. 13. 12. 11. 10. 9.

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Environ. Sci. Technol. 46(21), Technol. 12217–12225. doi:10.Sci. Environ.46(21), featuresstructural thecompositionalon and based Predictive H., ofCarrere, 2012. P., biohydr models Barakat,X. A., Sambusiti,Guo, C., F., M., Monlau, 2257–2264. doi:10.1016/j.wasmaWaste29(8), Manage. as influenced Microbialbyoxygen uptakein sludge Barrington,A.,A., Martinez, Trémier, Mohajer, S., doi:10.1016/j.biombioe.2015.06.021543. theiranddigestion process biochemical characteris betweenlignocthe biodegradabilitycorrelations of X.,Benbelkacem,Bayard, R., Buffiere,P., Liu, H., doi:10.1016/j.watres.2013.10.048 variables Res.50, Water ADM1 359 characterization. byextractionssludge fluocoupling sequential with Prediction anaerobicof biodegradability2014. and CachoE.,A.,Latr J. Gonidec, J., Rivero, Jimenez, doi:10.1016/j.biortech.2015.07.037 344–353. treatment optimcomplexity and for characterization fractionationmatter or new organic for methodology Steyer,Aemig, P. J. Q.,J., Doussiet, Jimenez, N., Technol. 98(6),doi:10.1016/j 1270–1277. Bioresour. napiergrassandsorghumsolid vegetablewastes, on Regression 2007. V.ultimGunaseelan, of N., models Comment citer cedocument:

, S.,A D., Patureau,2015. Houot, ille, E., Vedrenne,J. ille, Steyer, P., E., F., of lignocellulosic of materials. ogen and biomethane production production ogenand biomethane 534– tics.Bioenergy Biomass 81, ellulosicfeedstocksin anaerobic rescence spectroscopy:Towards Gourdon, R.,Evaluation Gourdon, of2015. bioaccessibilitymunicipal of J., Teglia, C., Carone, Carone, M. J., C., 2009. Teglia, Latrille, E., Steyer,Trably, E., Latrille, J. E., ization. Bioresour. Technol.ization. Bioresour. 194, chemicalcomposition. physical parameters. parameters. compost physical ganicwastes:Bioaccessibility .biortech.2006.05.014 1021/es303132t ate methane yields of fruits andfruitsyields methaneof ate –372. –372. n.2009.03.017

22 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 15. 18. 17. 16. 20. 19.

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 10.2134/jeq2009.0294 10.2134/jeq2009.0294 EnviroJ.in biodegradabilitywastes. organic solid doi:10.1016/j.wasman.2014.07.0282572–2580. 34(12), characterize or fluorescence spectroscopyto sludge (2014).D.Combining Patureau, chemical sequential Antonini,Y., Dudal, M., Jimenez, L J., Muller,M.,

Ponsá, S., Gea, S.,Cerezo, L.,Sánchez, Alerm, T., J., Ponsá, doi:10.1016/j.biortech.2008.03.030 doi:10.1016/j.biortech.2008.03.030 Bioresour usingand parameters. chemicalbiological ingestatesof biogasificationdigestapotential and Adani,D’Imporzano,Pognani, G., M., A., Schievano, doi:10.1016/j.biortech.2009.08.085945–952. 101(3), municipalof production solid biologicallytreated Confalonieri,G.,Ada D’Imporzano, R., B., Scaglia, 86(8), Biotechnol, doi:10.1002/j 1088–1098. Technol fromaninternational biodegradabilityi data using solid Evaluaoforganic potential(BMP) substrates: V.,Wilde,Uellendahl, H.,de I., Wierinckm,M., 20 R., P.,Menin, Koubova, P Mendez, J., Kaparaju, G., Demirer,G.,Fernandez-Polanco, Fernandez, B., C., F., Fernandez-Cegri,M. A.dela Raposo, Rubia,V., doi:10.1016/j.wasman.2002735–2742.28(12), Manage. stability anaerobic MSW biolo and a throughindices Ponsá, S., Gea, T., Sánchez, A., 2010. DifferentGea,Sánchez,T., S., Ponsá, in A., 2010. Comment citer cedocument:

tes of a full-scalea of plant tes n. Qual. 39, 706-712. doi: 39, n.Qual. 706-712. waste. Bioresour. Technol.Bioresour. waste. Chem nterlaboratoryJ study. A., 2008. Comparison aerobic2008. A., of atrille, E., Vedrenne, F., … Vedrenne, atrille,E., F., ganicWasteManage, matter. tion of anaerobiction of 11. Biochemical methane11. ni, F., 2010. Estimating ni,F., biogas2010. , Borja, R.,Borja, , Béline, Cavinato, F., extractions with 3D withextractions 3D M., Frigon, J.-C., Ganesh,Frigon, R., J.-C., M., . Technol. 99(17), 8112–8117. Technol. 8112–8117. . 99(17), Scherer,P.,eene, Torrijos, A., gical treatment process. Wastegical treatment process.

ctb.2622 dices to express to dices F., 2008. Predicting anaerobic PredictingF., 2008. anaerobic

7.12.002

23 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, 24. 23. 22. 21. CH Fig. 1. CaptionsFigure 26. 25. Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057

4 Teglia, C., Tremier, A., J.-L., Tremier,CharaMartel, C., 2010. Teglia, doi:10.1016/j.chemosphe577–583. Chemosphere 81(5), digestion anaerobic comparativestudy a through wit fertilizin AssessingF., 2010. Adani, and amendment Scaglia,SchievanD’Imporzano, F., G., Tambone, B., treatment of anaerobic digestate. Bioresour. Technoanaerobic digestate. treatmentBioresour. of P.,A.,Guardia,Dabert, Y., ImproviDe 2016. Zeng, 29, 1218-1226. . WasteManage. biodegradablemuthe ofdiversion the evaluation of F.,Godley,Tyrrel,T.,Smith, S. S. Wagland, A.R., co-composted.sludge agentand Bio bulkingof be to influencethetemperature kinetics thebiode on and characterisingfor method respirometrictheorganic A.,deA.,Paul, E.Guardia,Massiani, Tremier, C., WasteBiomass 2(2), Valor. Products. doi:1113–126. Assessmentthe2,Suitability Part ofQualityf and A., J.-L., Tremier,CharaMartel, C., 2011. Teglia, 2(1), Valor. Waste doi:10.1007/s1264 43–58. Biomass ReviewExistingAssess 1, ofto Part Indicators Sol yieldandBDana (c), and BDaero of (d) digestates CorrelationsCHbetween andBOD Comment citer cedocument:

4 yield (a), AT yield(a), cterization of SolidcterizationDigestates:of SolidcterizationDigestates:of or Composting Six or of Digested , Martel, J.L., A , 2005. Martel, R. 2009. Test methods to aidmethodsto in 2009. R. Test id Digestates Agriculturalid Use. gradation kinetics, for a mixturefor gradation kinetics, composition biodegradation and nicipalfrom (BMW) waste l. l. 201, 293-303. (white diamonds: solid fractions(whitesolid diamonds: ngpost- a compostingas h digested sludge and compost.and sludge hdigested g properties of digestatesof g properties from resour. 96: Technol.resour. 169–180. 4 0.1007/s12649-010-9059-x V.,A.,Orzi, Salati, S., o, and CH 9-010-9051-5 re.2010.08.034 re.2010.08.034 4 yield (b), DRI(b),yield

24

and 24 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, Fig. 3. respectively. extractableof fluorescencezones fractionsS (1-7) NEOMPEOM se1 and re1-7, SEOM, respectively.sp1-7, SE,PERE,NESP, fractions and in black circles). fractions(solid digestatesdigestateof (b) in whi fluorescencetocomplexityeachof extracta related extractedOM %CODtot trianglefracti BDaero, of for characterization:variablescorrelation on circle Fig. 2. theareCH given for sol digestate;ofdried or blackcomposted circles: andREOM,PEOM SEOMextractableeach SPOM, fraction andcorrespse1-7 re1-7, respectively. pe1-7 sp1-7, NEP SPOM,and correspondSE, REOM,PE RE, to SEOM, fluorescence to related eachfraction accessibleof OMfractions extractedoftriangles %CODtot andfor characterization:variablescorrelation on circle Fig. 4. three withtwo or (b). peaks thenumber OURofaccording digestateswi peaks: to Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Principle Components Analysis on respirometricPrinciple ComponentsAnalysison kin Kineticsfirs respirometric activitythe of during biodegradabilitiePrincipal ComponentsAnalysison Comment citer cedocument: 4 yield andyieldthesetheBDana is from mean calculated

te circles and composted or dried solid or solid circlescomposted te dried and (a) (square symbol for BDana(square symbolfor and (a) (a) (square symbols for MBi and (squareand MBisymbols MHi,(a) for id for fractions). meanduplicatesThe ) and distribution of digestates (b). SP, of distribution and digestates(b). ) POM, REOM, SEOM and PEOM,SEOM and REOM, POM, ond to fluorescenceto ond of (1-7) zones correspond to SPOM, REOM,to SPOM, correspond ofble fraction)distribution and NEOM and circles NEOMand complexity for th only one peak (a) anddigestates (a) thpeak only one ons and NEOM and circle NEOM and for ons t 600h for for digestatesclassified 600h t -7 and toand -7 correspond pe1-7 s and organic matter organic sand etics and organic and matter etics , respectively., EOM and NEOM NEOM EOM and values. values.

25 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher,

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Comment citer cedocument:

26 Version postprint post-treated digestates via the chemical accessibility and complexity oforganic matter. Bioresource A.-M., Wéry, N.(Auteur de correspondance) (2017). Characterisation of thebiodegradability of Maynaud, G., Druilhe, C., Daumoin, M., Jimenez, J.,Patureau, D.,Torrijos, M., Pourcher, 2 Sldfato P 200 e 9-5 4 Screwp Cen Sc 40 38 90-95* 53-55 Wet 14-20 60 Wet Wet Wet 20000 12000 35000 - FPW,WWTP sludge, manure FPW,, fat, WWTP fraction Solid FPW FPW,slurry fraction Solid T4S Manure fraction Solid fraction Solid T3S fraction Solid T2S T1S A1S fraction Solid compost fraction Solid compost M1C fraction Solid compost O2C O1C fraction Solid compost fraction Solid compost SL2C fraction Solid compost A4C compostedand Dried A3C A2D LS oi rcin WT lde 00 e 1 5 Cen solid composted and dried D: digestate, of fraction a 55 15 Wet - 4000 WWTPsludge WWTPsludge fraction Solid fraction Solid SL2S SL1S Digestate 1. Table A: agricultural waste, SL: urban sludge, T: territo T: sludge, urban SL: waste, agricultural A: a Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 aue Maindigester feedstock Nature Digestate designationorigin. and solid fraction solid Comment citercedocument :

S,boat,genwse 000 r 2 3 Screwp Thermalcentrifugation 3755or 38 37 Screwpr Centrifugati 21 20-30 21 Dry 41 Wet 40 Dry 30-32 60 48000 100000 Wet MSW,biowaste, green waste - Wet FPW OFMSW,green waste, fat, OFMSW,FPW 5000 6000 WWTPsludge Manure,slurry,green waste Manure,green waste sludge,fat Slurry,biowaste, WWTS sludge

fraction of digestate, C: composted solid fraction solid composted C: digestate, of fraction rial waste, O: organic fraction of municipal solid solid municipal of fraction organic O: waste, rial b

50 Wt 1 35 Screwpress and 53-57 21 Centrifugation Wet 38 Screwpress 25000 44* 37 Wet 47-52* Wet 12000 30000 waste(T/year) Tondigestedof c e 2-0 7 Thermalcentrifugation 37 20-30 Wet TypeofAD of digestate, of waste (OFMSW), M: (MSW), S: s S: (MSW), waste solid municipal M: (OFMSW), waste

Digestionprocess (days) TotalRT 58* 7 Screwpress 37 75-85* c

b WWTP: wastewater treatment plant, FPW: food food FPW: plant, treatment wastewater WWTP: (°C) Temperature

e Screwpress band filter centrifugation filterandpress filterandpress ofdigestate Phaseseparation rewpress trifugation trifugation ress and ressand ress ess on olid 27 Version postprint post-treated digestates via the chemical accessibility and complexity oforganic matter. Bioresource A.-M., Wéry, N.(Auteur de correspondance) (2017). Characterisation of thebiodegradability of Maynaud, G., Druilhe, C., Daumoin, M., Jimenez, J.,Patureau, D.,Torrijos, M., Pourcher, reactorsand (one 37°C oneat 55°C) operatingat in processing waste,

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 c -: unknown, -: Comment citercedocument : d RT: retention time including the time of post-diges of time the timeincluding retention RT:

parallel. tion when applied (*), (*), applied when tion e sample results from the digestate mix originated froriginatedmix digestate fromthe results sample

om two two om 28 Version postprint post-treated digestates via the chemical accessibility and complexity oforganic matter. Bioresource A.-M., Wéry, N.(Auteur de correspondance) (2017). Characterisation of thebiodegradability of Maynaud, G., Druilhe, C., Daumoin, M., Jimenez, J.,Patureau, D.,Torrijos, M., Pourcher,

1 5. . 4. . 14 8 80±04 176. 0.0 254 152. 28.0± 0.4 39.8 93. ± 1541 17.8 38± 0.6 fractiondigestate,of D: anddried composted solid ± 42.1 1.1 ± 55.8 22.70.3 ± 0.2 ± 1367 133 ± 39.3 1.7 ± 53.3 1.2 a 177. ± 1245 15 14.6± 0.2 ± 46.6 1.0 M1C ± 60.1 1.1 122. <0.5 237.0± 1440 61 O2C ± 50.4 7.3 17.5± 0.6 ±± 59.1 1425 1380.8 ± 47.0 2.4 O1C 446. ± 40.9 1.7 19.1± 0.3 ± 1530 35 41.1± 0.9 ± 51.7 0.4 SL2C ± 43.9 0.4 ± 1366 10 ± 61.3 0.1 ± 1627 44 A4C 48.0± 7.3 ± 74.6 0.8 ± 61.0 0.5 492. A3C ± 22.8 0 ± 1508 13 368. ± 82.6 0.6 ± 26.4 A2D 0.3 55.1± 3.4 546. T4S 66.5± 1.3 ± 1615 14 332 ± 80.1 2.2 T3S ± 24.9 0.1 550. ± 93.8 2.4 ± 1554 12 ± 74.3 0.1 ± 23.9 0.1 ± 1439 13 73.2± 2.0 ± 86.5 0.4 T2S ± 25.6 0.4 83.7± 3.8 ± 1311 44 ± 51.7 0.5 T1S ± 22.4 0.1 ± 1696 6 ± 70.4 0.1 A1S ± 22.3 0.2 SL2S SL1S Digestate meaninThethe deviationstandard duplicate. and a 2. Table A: agricultural waste, SL: urban sludge, T: territo T: sludge, urban SL: waste, agricultural A: a Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 S() VS(%TS) (%) TS Physico-chemical and biological properties of dige of properties biologicalPhysico-chemical and Comment citercedocument :

(gO CODtot 2 2 kg

-1 VS) VS) fraction of digestate, composted C: solidfraction rial waste, O: organic fraction of municipal solid solid municipal of fraction organic O: waste, rial (NLCH CH 4 yield re given for these given re analyses. for 4 kg

-1 VS)

states. Analysis of TS, VS, CODtot were performed i wereperformed CODtot VS, TS, of Analysis states. (gO BOD 29 . 50 . 2. 4. 19.3 46.0 24.9 4.8 5.0 6.5 2.9 0 1 60 53 . 46 04 84 31.0 48.4 10.4 4.6 5.6 25.3 16.0 .1 4 . 1. 16 . 41 40 59.2 34.0 4.1 1.1 1.6 18.6 3.7 .4 2 1. 3. 53 . 1. 4. 23.4 49.5 18.6 3.2 5.3 32.4 14.1 0 52 14 . 22 . 2. 59.2 29.7 44.4 6.8 42.9 2.2 7.5 2.1 15.3 1.5 42.6 47.5 3.7 37.6 11.4 30.3 15.8 46.5 3.8 40.3 12.3 1.9 5.2 3.1 8.0 56.7 2.1 34.3 5.2 1 2.2 56.4 11.6 4.2 24.8 3.0 45.2 9.0 7 11.1 32.9 2.1 3.3 11.2 29.6 2.7 3.6 4.0 4.1 4.1 8 30.5 9.1 6.6 7 23.7 38.0 2 9.7 12.2 18.6 6 1 9 kg -1 VS) VS) (%CODtot) BDana . 1. 19 . 70 79 70.8 17.9 7.0 2.4 1.9 14.6 7.2 of digestate. (%CODtot) BDaero . 15 . 2. 1. 54.9 19.6 20.2 3.8 1.5 2.8 waste (OFMSW), M: municipal solid waste (MSW), S: s S: (MSW), waste solid municipal M: (OFMSW), waste SPOM Chemicalsequentialextraction CODtot)(%

EM SEOM REOM

n triplicate and CH and triplicaten

PEOM

NEOM 4 yield olid 29

Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, ** Significant correla PEOM). and SEOM REOM, (SPOM, OM %CODtot and conditions (BDaero) aerobic and (BDana) 3. Table

BDana BDaero SPOM REOM SEOM PEOM PEOM SEOM REOM SPOM BDaero BDana EM 1.0 1.0 1.0 PEOM REOM BDaero SEOM SPOM BDana Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 p-values

Pearson’s <0.01 and * and <0.01 1.0

Comment citer cedocument: r orlto aayi bten idgaaiiy unde biodegradability between analysis correlation p-values 0.9***

<0.05) are in<0.05)are bold.

0.6* 1.0 0.8**

. -. 0.2 -0.4 0.0 0.6* 0.3

of each extracted fraction of of fraction extracted each of tions (*** tions(*** 0.6* 1.0 0.2 - 0.3

p-values r anaerobic anaerobic r 0.2 0.4 0.5 0.2

<0.001,

30 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, b. a. Fig. 1. d. c.

-1 -1 Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 -1 DRI24 (mg O2 h kg VS) AT4 (gO2 kg VS) 100 150 200 250 2000 2500 3000 3500 1000 1500 50 500 0 0 04 08 100 80 60 40 20 0 04 08 100 80 60 40 20 0 Comment citer cedocument: CH CH 4 4 yield (NL (NL yield CH yield CH(NL yield y20.51.8x+ = R² = 0.7 =R² y286.8+22.9x=

4 R²0.6= 4 kg kg -1 -1 VS) VS) A1S A1S

31 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher,

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Comment citer cedocument:

32 Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, (b) (b) (a) Fig. 2. Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Comment citer cedocument:

33

Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, (b) (a) Fig. 3.

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 -1 -1 -1 -1 OUR (mmolO2 h kg VS) OUR (mmolO2 h kg VS) 100 120 140 160 180 200 100 120 140 160 180 200

20 40 60 80 20 40 60 80 0 0 0 0 0 0 0 600 500 400 300 200 100 0 0 0 0 0 0 600 500 400 300 200 100 0 SL2S Comment citer cedocument: T4S A2D

SL1S A3C A1S A4C Time (h)Time (h)Time T1S SL2C T2S T3S O1C O2C M1C

34

Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, (a) Fig. 4. (b) Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057

Comment citer cedocument:

35

Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, Graphical abstract Graphicalabstract

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 Comment citer cedocument:

36

Version postprint post-treated digestates via thechemical accessibility and complexity of organic matter. Bioresource A.-M., Wéry, N.(Auteur decorrespondance) (2017). Characterisation ofthebiodegradability of Maynaud, G.,Druilhe, C.,Daumoin,M., Jimenez,J., Patureau,D., Torrijos,M.,Pourcher, Highlights

Technology, 213, 65–74. DOI : 10.1016/j.biortech.2017.01.057 • • • •

Kinetics of respirometric activity Kineticsof multi-pe present Post-treatmentshavesignificant a biodeg on effect with Biodegradabilitytheismostly anti-correlated anaerobicAerobic and biodegradabilities arelinear Comment citer cedocument:

aks for certainaks for digestates complexity of organic matter complexityorganic matter of radability and complexityradability and ly correlated lycorrelated

37