The Hippo Pathway in Colorectal Cancer

Total Page:16

File Type:pdf, Size:1020Kb

The Hippo Pathway in Colorectal Cancer FOLIA HISTOCHEMICA REVIEW ET CYTOBIOLOGICA Vol. 53, No. 2, 2015 pp. 105–119 The Hippo pathway in colorectal cancer Piotr M. Wierzbicki, Agnieszka Rybarczyk Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland Abstract Colorectal cancer (CRC) is one the most frequently diagnosed neoplastic diseases worldwide. Currently, aside from traditional chemotherapy, advanced CRCs are treated with modern drugs targeting cellular components such as epithelial growth factor receptor (EGFR). Since up to 70% of metastasized CRCs are drug resistant, the description of recent progress in cellular homeostasis regulation may shed new light on the development of new molecular targets in cancer treatment. The Hippo pathway has recently become subject of intense investigations since it plays a crucial role in cell proliferation, differentiation, apoptosis and tumourigenesis. Components of the Hippo pathway are deregulated in various human malignancies, and expression levels of its major signal transducers were proposed as prognostic factors in colorectal cancer. In this review we focused on recent data regarding Hippo pathway, its up-stream signals and down-stream effectors. Hippo negatively regulates its ma- jor effectors, YAP1 and TAZ kinases, which act as transcriptional co-activators inducing expression of genes involved not only in tissue repair and proliferation but are also oncoproteins involved in tumour development and progression. The deregulation of Hippo pathway components was found in many malignancies. The interactions between Hippo and Wnt/b-catenin signalling, crucial in the maintenance of cell homeostasis, have been described in relation to the control of intestinal stem cell proliferation and CRC development. The recently discovered positive feedback loop between activated YAP1 and increased EGFR/KRAS signalling found in oesophageal, ovarian and hepatocellular cancer has been related to the CRC progression and resistance to EGFR inhibitors during CRC therapy. (Folia Histochemica et Cytobiologica 2015, Vol. 53, No. 2, 105–119) Key words: CRC; Hippo pathway; YAP1/TAZ; Wnt signalling; EGFR/KRAS; intestinal stem cells Abbreviations: AJ — adherent junction, AMOT — tumor suppressor kinase 1/2, Lgr5 — leucine-rich angiomotin, APC — adenomatous polyposis coli, repeat-containing GPCR5, LPR — Lipoprotein AREG — amphiregulin, Axl — Axl receptor tyrosine receptor-related protein, MOB1 — MOB kinase kinase, BMI1 — BMI1 polycomb ring finger proto-on- activator 1, MST1/2 — serine/threonine kinase 4/3, cogene, β-TrCP — beta-transducin repeat containing NF2 — neurofibromin 2, Oct-4 — octamer-binding E3 ubiquitin protein ligase, CK1 — casein kinase 1, transcription factor 4, RASSF — Ras association CRC — colorectal cancer, CTGF — connective tissue (RalGDS/AF-6) family member, SAV1 — Salvador growth factor, DSS — dextran sodium sulphate, DVL family WW domain containing protein 1, STRIPAK — Dishevelled protein, ECM — extracellular matrix, — striatin interacting phosphate and kinase complex, EGFR — epithelial growth factor receptor, EMT — TAZ — tafazzin, TCF4 — transcription factor 4, epithelial-to-mesenchymal transition, FAT — FAT TEAD — TEA domain family member, TJ — tight atypical cadherin, FZD — Frizzled protein, GPCR junction, b-TrCP — b-transducin repeat-containing — G protein coupled receptor, GSK3 — glycogen protein, VEGF — vascular endothelial growth factor, synthase 3, ISC — intestinal stem cell, KO — knock WB — Western blot technique, YAP1 — Yes-asso- out, KRAS — Kirsten rat sarcoma, LATS1/2 — large ciated protein 1 Colorectal cancer Correspondence address: P.M. Wierzbicki, Ph.D. Department of Histology, Faculty of Medicine Medical University of Gdansk Colorectal cancer (CRC) is the third most commonly Debinki St. 1, 80–211 Gdansk diagnosed cancer in males and the second in females, tel.:+48 58 349 15 01, +48 58 349 14 37, fax: +48 58 349 14 19 with an estimated 1.4 million cases and 693,900 deaths e-mail: [email protected] occurring in 2012 [1]. Five-year relative survival ranges ©Polish Society for Histochemistry and Cytochemistry Folia Histochem Cytobiol. 2015 www.fhc.viamedica.pl 10.5603/FHC.a2015.0015 106 Piotr M. Wierzbicki, Agnieszka Rybarczyk Figure 1. The mammalian Hippo pathway. Drosophila orthologue genes are shown below the names of the mammalian proteins. When the Hippo pathway is not active (e.g. during cell injury and repair or in cancer), the active effector pro- teins, YAP1 and TAZ, interact with TEAD1-4 transcription factors and promote transcription of genes involved in cell proliferation. During normal cell homeostasis, when the Hippo pathway is active, YAP1 or TAZ are inhibited due to their phosphorylation by core components of the Hippo pathway (SAV1, MST 1/2, LATS1/2 — shown in the central rectan- gle). In a phosphorylated form cytoplasmic YAP1/TAZ may interact with (i) the 14-3-3 protein, (ii) components of cell junctional complexes like AMOT or b-catenin, or (iii) may be degraded in proteasomes. YAP1/TAZ can be also regulated by other mechanisms such as cell polarity, GPCR signalling or ECM stiffness as described in the body text. Acronyms are explained on the first page from more than 90% in patients with stage I disease tics and so called biological drugs [6]. In this review to about 10% in patients with stage IV disease [2]. we also aimed to bring closer the possible associations Treatment of CRC is one of the most expensive when between the Hippo pathway and drug resistance of diagnosed at later stages when prognosis is generally CRC cells. poor [3]. Although the knowledge of the background and the development of CRC has recently increased, The Hippo pathway there is a high need for more studies to found out well working prognostic, survival and diagnostic markers. The Hippo pathway is an important regulator of cell Serum markers for routine CRC diagnostic such as CEA proliferation, growth and apoptosis [7, 8]. Moreover, (carcinoembryonic antigen) and CA 19-9 showed good it controls tissue homeostasis, organ size and stem cell prognostic values and have been used as CRC tumour functions. Its deregulation is frequently observed in predictors [4]. The aim of this paper was to provide many human cancers, suggesting that alterations of rationale to consider the expression of Hippo pathway Hippo signalling are connected with tumour initia- genes as possible new prognostic genes in CRC. tion and/or progression [9–11]. Hyperactivation of The modern chemotherapy has adapted molecu- the Hippo pathway downstream effectors — YAP1 lar findings in many cancers to focus on activation/ (Yes-associated protein 1) and TAZ (transcriptional /inactivation of cancer-related intracellular pathways co-activator with PDZ binding motif) may contribute to eliminate or decrease expansion of tumour cells. to the development of cancer, however, their activa- Such drugs which target vascular endothelial growth tion may also play a positive role in stimulating tissue factor-A (VEGF, Bevacizumab) or epidermal growth repair and regeneration following injury [12, 13]. factor receptor (EGFR, Cetuximab and Panitumumab) The general scheme of the Hippo pathway and inter- have been introduced for the treatment of CRC [5]. actions of mammalian Hippo components with up- However, it was noted that 50–70% of advanced CRC stream signals and effectors are presented in Figure 1 cases were resistant to both classical chemotherapeu- and listed in Table 1. ©Polish Society for Histochemistry and Cytochemistry Folia Histochem Cytobiol. 2015 www.fhc.viamedica.pl 10.5603/FHC.a2015.0015 Hippo pathway in colorectal cancer 107 Table 1. Names and main functions of the most important Hippo pathway genes and proteins Mammalian gene Drosophila gene, protein Protein name, aliases Protein function NF2 Mer, Merlin Neurofibromin 2, Merlin, ACN, Signal transduction between cell-membrane SCH, BANF and cytoskeletal proteins WWC1 Kibra, ortholog WW and C2 domain containing 1, Phosphoprotein involved in cell polarity, KIBRA, HBEBP3, HBEBP36 mitosis and cell migration [105] FRMD6 Ex, Expanded FERM domain containing 6, EX1, Protein linking cytoskeleton with plasma Willin membrane [106] STK4 Hpo, Hippo Serine/threonine kinase 4, Cytoplasmic kinase involved in stress- MST1, KRS2 -induced mitogen-activated protein kinase cascade STK3 Serine/threonine kinase 3, Kinase activated by proapoptotic molecules MST2, KRS1 for the promotion of chromatin condensation during apoptosis, cardiomyocyte prolifera- tion [107], regulation of osteoblast/osteoclast differentiation [108] RASSF1 Ras association (RalGDS/AF-6) Signal transducer, microtubule stabilization, domain family member 1, cell cycle arrest [109] RASSF1A, NORE2A SAV1 Sav, Salvador Salvador family WW domain Regulation of protein degradation, RNA containing protein 1, SAV, WW45 splicing and DNA transcription LATS1 Wts, Warts Large tumour suppressor kinase 1, Serine/threonine kinase involved in mitosis: WARTS interacts with CDC2/cyclin A LATS2 Large tumour suppressor kinase 2, Kinase which interacts with centrosomal pro- KPM teins aurora-a and ajuba during mitosis [110] MOB1A Mats MOB kinase activator 1A, MOB1, Protein involved in mitotic exit network [111], MATS, microtubule stability control [112] YAP1 Yki Yes-associated protein 1, YAP, YKI Downstream effector of Hippo pathway involved in development, repair and homeo- stasis TAZ Tafazzin, EFE, Taz1 Non-specific phospholipid-lysophospholipid transacylase involved in cardiolipin turnover [113] Discovery and function of the Hippo pathway by
Recommended publications
  • Fgf17b and FGF18 Have Different Midbrain Regulatory Properties from Fgf8b Or Activated FGF Receptors Aimin Liu1,2, James Y
    Research article 6175 FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors Aimin Liu1,2, James Y. H. Li2, Carrie Bromleigh2, Zhimin Lao2, Lee A. Niswander1 and Alexandra L. Joyner2,* 1Howard Hughes Medical Institute, Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA 2Howard Hughes Medical Institute and Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, and Physiology and Neuroscience, NYU School of Medicine, New York, NY 10016, USA *Author for correspondence (e-mail: [email protected]) Accepted 28 August 2003 Development 130, 6175-6185 Published by The Company of Biologists 2003 doi:10.1242/dev.00845 Summary Early patterning of the vertebrate midbrain and region in the midbrain, correlating with cerebellum cerebellum is regulated by a mid/hindbrain organizer that development. By contrast, FGF17b and FGF18 mimic produces three fibroblast growth factors (FGF8, FGF17 FGF8a by causing expansion of the midbrain and and FGF18). The mechanism by which each FGF upregulating midbrain gene expression. This result is contributes to patterning the midbrain, and induces a consistent with Fgf17 and Fgf18 being expressed in the cerebellum in rhombomere 1 (r1) is not clear. We and midbrain and not just in r1 as Fgf8 is. Third, analysis of others have found that FGF8b can transform the midbrain gene expression in mouse brain explants with beads soaked into a cerebellum fate, whereas FGF8a can promote in FGF8b or FGF17b showed that the distinct activities of midbrain development. In this study we used a chick FGF17b and FGF8b are not due to differences in the electroporation assay and in vitro mouse brain explant amount of FGF17b protein produced in vivo.
    [Show full text]
  • Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling.
    [Show full text]
  • Phospho-RAF1(S43) Antibody Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap3332a
    9765 Clairemont Mesa Blvd, Suite C San Diego, CA 92124 Tel: 858.875.1900 Fax: 858.622.0609 Phospho-RAF1(S43) Antibody Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3332a Specification Phospho-RAF1(S43) Antibody - Product Information Application DB,E Primary Accession P04049 Other Accession P11345, Q99N57, A7E3S4 Reactivity Human Predicted Bovine, Mouse, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Clone Names RB11127 Calculated MW 73052 Phospho-RAF1(S43) Antibody - Additional Information Gene ID 5894 Dot blot analysis of Phospho-RAF1-S43 Phospho-specific Pab (Cat.AP3332a) on Other Names nitrocellulose membrane. 50ng of RAF proto-oncogene serine/threonine-protein Phospho-peptide or Non Phospho-peptide per kinase, Proto-oncogene c-RAF, cRaf, Raf-1, dot were adsorbed. Antobodies working RAF1, RAF concentration was 0.5ug per ml. Target/Specificity This RAF1 Antibody is generated from rabbits Phospho-RAF1(S43) Antibody - immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid Background residues surrounding S43 of human RAF1. Raf-1 is a MAP kinase kinase kinase (MAP3K) Dilution which functions downstream of the Ras family of DB~~1:500 membrane associated GTPases to which it binds directly. Once activated Raf-1 can phosphorylate Format to activate the dual specificity protein kinases Purified polyclonal antibody supplied in PBS MEK1 and MEK2 which in turn phosphorylate to with 0.09% (W/V) sodium azide. This antibody activate the serine/threonine specific protein is purified through a protein A column, kinases ERK1 and ERK2. Activated ERKs are followed by peptide affinity purification. pleiotropic effectors of cell physiology and play an important role in the control of gene Storage expression involved in the cell division cycle, Maintain refrigerated at 2-8°C for up to 6 apoptosis, cell differentiation and cell migration.
    [Show full text]
  • Machine-Learning and Chemicogenomics Approach Defi Nes and Predicts Cross-Talk of Hippo and MAPK Pathways
    Published OnlineFirst November 18, 2020; DOI: 10.1158/2159-8290.CD-20-0706 RESEARCH ARTICLE Machine -Learning and Chemicogenomics Approach Defi nes and Predicts Cross-Talk of Hippo and MAPK Pathways Trang H. Pham 1 , Thijs J. Hagenbeek 1 , Ho-June Lee 1 , Jason Li 2 , Christopher M. Rose 3 , Eva Lin 1 , Mamie Yu 1 , Scott E. Martin1 , Robert Piskol 2 , Jennifer A. Lacap 4 , Deepak Sampath 4 , Victoria C. Pham 3 , Zora Modrusan 5 , Jennie R. Lill3 , Christiaan Klijn 2 , Shiva Malek 1 , Matthew T. Chang 2 , and Anwesha Dey 1 ABSTRACT Hippo pathway dysregulation occurs in multiple cancers through genetic and non- genetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defi ning tumors that are Hippo pathway–dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type–agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage- independent signature for the Hippo pathway in cancers.
    [Show full text]
  • Fgf8 Is Mutated in Zebrafish Acerebellar
    Development 125, 2381-2395 (1998) 2381 Printed in Great Britain © The Company of Biologists Limited 1998 DEV1265 Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis Frank Reifers1, Heike Böhli1, Emily C. Walsh2, Phillip H. Crossley2, Didier Y. R. Stainier2 and Michael Brand1,* 1Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany 2Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-0554, USA *Author for correspondence (e-mail: [email protected]) Accepted 2 April; published on WWW 3 June 1998 SUMMARY We describe the isolation of zebrafish Fgf8 and its gastrulation, and that Fgf8 functions later during expression during gastrulation, somitogenesis, fin bud and somitogenesis to polarize the midbrain. Fgf8 is also early brain development. By demonstrating genetic linkage expressed in a dorsoventral gradient during gastrulation and by analysing the structure of the Fgf8 gene, we show and ectopically expressed Fgf8 can dorsalize embryos. that acerebellar is a zebrafish Fgf8 mutation that may Nevertheless, acerebellar mutants show only mild inactivate Fgf8 function. Homozygous acerebellar embryos dorsoventral patterning defects. Also, in spite of the lack a cerebellum and the midbrain-hindbrain boundary prominent role suggested for Fgf8 in limb development, the organizer. Fgf8 function is required to maintain, but not pectoral fins are largely unaffected in the mutants. Fgf8 is initiate, expression of Pax2.1 and other marker genes in this therefore required in development of several important area. We show that Fgf8 and Pax2.1 are activated in signaling centers in the zebrafish embryo, but may be adjacent domains that only later become overlapping, and redundant or dispensable for others.
    [Show full text]
  • C-RAF (Phospho-Tyr341) Antibody
    Product Datasheet C-RAF (Phospho-Tyr341) Antibody Catalog No: #11668 Package Size: #11668-1 50ul #11668-2 100ul Orders: [email protected] Support: [email protected] Description Product Name C-RAF (Phospho-Tyr341) Antibody Host Species Rabbit Clonality Polyclonal Purification Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho specific antibodies were removed by chromatogramphy using non-phosphopeptide. Applications WB IHC Species Reactivity Hu Specificity The antibody detects endogenous levels of Raf1 only when phosphorylated at tyrosine 341. Immunogen Type Peptide-KLH Immunogen Description Peptide sequence around phosphorylation site of tyrosine 341 (S-Y-Y(p)-W-E) derived from Human C-RAF . Target Name C-RAF Modification Phospho Other Names C-RAF; C-Raf; CRAF; RAF-1; Accession No. Swiss-Prot#: P04049; NCBI Gene#: 5894; NCBI Protein#: NP_002871.1. SDS-PAGE MW 74kd Concentration 1.0mg/ml Formulation Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Storage Store at -20°C/1 year Application Details Western blotting: 1:500~1:1000 Immunohistochemistry: 1:50~1:100 Images Western blot analysis of extracts from Jurkat cells treated with Paclitaxel using Raf1 (Phospho-Tyr341) Antibody #11668.The lane on the right is treated with the antigen-specific peptide. Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 Immunohistochemical analysis of paraffin-embedded human pancreas tissue using Raf1 (Phospho-Tyr341) antibody #11668 (left)or the same antibody preincubated with blocking peptide (right).
    [Show full text]
  • Dysfunctional Mechanotransduction Through the YAP/TAZ/Hippo Pathway As a Feature of Chronic Disease
    cells Review Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease 1, 2, 2,3, 4 Mathias Cobbaut y, Simge Karagil y, Lucrezia Bruno y, Maria Del Carmen Diaz de la Loza , Francesca E Mackenzie 3, Michael Stolinski 2 and Ahmed Elbediwy 2,* 1 Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] 2 Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (S.K.); [email protected] (L.B.); [email protected] (M.S.) 3 Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] 4 Epithelial Biology Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] These authors contribute equally to this work. y Received: 30 November 2019; Accepted: 4 January 2020; Published: 8 January 2020 Abstract: In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
    [Show full text]
  • Egfrviii and Pten Deletion Mutations Influence Genotype-Dependent Kinome Activation
    EGFRvIII and Pten Deletion Mutations Influence Genotype-Dependent Kinome Activation in Immortalized Murine Astrocyte Models of Glioblastoma Madison Butler C. Ryan Miller Lab Abstract Glioblastoma (GBM) is the most common malignant primary brain tumor. Receptor tyrosine kinase (RTK) pathways are frequently mutated in GBM, including alterations in the RTK Epidermal Growth Factor Receptor (EGFR). Moreover, EGFR variant III (EGFRvIII) is the most common activating mutation in GBM. Given its frequency, specificity, and role in promoting gliomagenesis, EGFR dysfunction is a prime target for drug treatment. However, multiple resistance mechanisms, such as co-occurrence of EGFRvIII and deletion of the tumor suppressor PTEN, prevent effective treatment via activation of alternate kinase pathways. To observe the differential kinase activation involved in EGFRvIII- and PTEN loss- driven gliomagenesis and identify potential kinase targets for dual therapy, we examined immortalized murine astrocytes derived from non-germline genetically engineered mouse models expressing four core genotypes: wild-type EGFR + wild- type Pten (C), wild-type EGFR + Pten deletion (CP), EGFRvIII + wild-type Pten (CEv3), and EGFRvIII + Pten deletion (CEv3P). We used RNA sequencing and multiplexed inhibitor bead affinity chromatography and mass spectrometry (MIB-MS) to determine the baseline transcriptomes and kinomes of each genotype. We determined that cell lines exhibited genotype- dependent baseline RNA expression and kinase activity as a result of EGFRvIII and/or Pten deletion relative to C astrocytes and across genotypes. We observed several differentially- activated kinases that represent potential targets for dual treatment with EGFR TKI. We are currently examining changes in the kinome profile of each cell line after both acute and chronic treatment with tyrosine kinase inhibitors (TKI).
    [Show full text]
  • Genetic Variations Associated with Resistance to Doxorubicin and Paclitaxel in Breast Cancer
    GENETIC VARIATIONS ASSOCIATED WITH RESISTANCE TO DOXORUBICIN AND PACLITAXEL IN BREAST CANCER by Irada Ibrahim-zada A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Irada Ibrahim-zada 2010 ii Genetic variations associated with resistance to doxorubicin and paclitaxel in breast cancer Irada Ibrahim-zada Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto 2010 Abstract Anthracycline- and taxane-based regimens have been the mainstay in treating breast cancer patients using chemotherapy. Yet, the genetic make-up of patients and their tumors may have a strong impact on tumor sensitivity to these agents and to treatment outcome. This study represents a new paradigm assimilating bioinformatic tools with in vitro model systems to discover novel genetic variations that may be associated with chemotherapy response in breast cancer. This innovative paradigm integrates drug response data for the NCI60 cell line panel with genome-wide Affymetrix SNP data in order to identify genetic variations associated with drug resistance. This genome wide association study has led to the discovery of 59 candidate loci that may play critical roles in breast tumor sensitivity to doxorubicin and paclitaxel. 16 of them were mapped within well-characterized genes (three related to doxorubicin and 13 to paclitaxel). Further in silico characterization and in vitro functional analysis validated their differential expression in resistant cancer cell lines treated with the drug of interest (over-expression of RORA and DSG1, and under-expression of FRMD6, SGCD, SNTG1, LPHN2 and DCT). iii Interestingly, three and six genes associated with doxorubicin and paclitaxel resistance, respectively, are involved in the apoptotic process in cells.
    [Show full text]
  • Different Fgfs Have Distinct Roles in Regulating Neurogenesis After Spinal Cord Injury in Zebrafish Yona Goldshmit1,2, Jean Kitty K
    Goldshmit et al. Neural Development (2018) 13:24 https://doi.org/10.1186/s13064-018-0122-9 RESEARCHARTICLE Open Access Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish Yona Goldshmit1,2, Jean Kitty K. Y. Tang1, Ashley L. Siegel1, Phong D. Nguyen1, Jan Kaslin1, Peter D. Currie1 and Patricia R. Jusuf1,3* Abstract Background: Despite conserved developmental processes and organization of the vertebrate central nervous system, only some vertebrates including zebrafish can efficiently regenerate neural damage including after spinal cord injury. The mammalian spinal cord shows very limited regeneration and neurogenesis, resulting in permanent life-long functional impairment. Therefore, there is an urgent need to identify the cellular and molecular mechanisms that can drive efficient vertebrate neurogenesis following injury. A key pathway implicated in zebrafish neurogenesis is fibroblast growth factor signaling. Methods: In the present study we investigated the roles of distinctfibroblastgrowthfactormembersandtheir receptors in facilitating different aspects of neural development and regeneration at different timepoints following spinal cord injury. After spinal cord injury in adults and during larval development, loss and/or gain of Fgf signaling was combined with immunohistochemistry, in situ hybridization and transgenes marking motor neuron populations in in vivo zebrafish and in vitro mammalian PC12 cell culture models. Results: Fgf3 drives neurogenesis of Islet1 expressing motor neuron subtypes and mediate axonogenesis in cMet expressing motor neuron subtypes. We also demonstrate that the role of Fgf members are not necessarily simple recapitulating development. During development Fgf2, Fgf3 and Fgf8 mediate neurogenesis of Islet1 expressing neurons and neuronal sprouting of both, Islet1 and cMet expressing motor neurons.
    [Show full text]
  • Common and Distinctive Functions of the Hippo Effectors Taz and Yap In
    TISSUE-SPECIFIC STEM CELLS aRandall Division of Cell and Common and Distinctive Functions of the Hippo Molecular Biophysics, King’s College London, London, UK; Effectors Taz and Yap in Skeletal Muscle Stem Cell bSchool of Medicine, Medical Sciences & Nutrition, Function University of Aberdeen, Foresterhill, Aberdeen, a b b a Scotland, UK; cSystems CONGSHAN SUN, VANESSA DE MELLO, ABDALLA MOHAMED, HUASCAR P. O RTUSTE QUIROGA, c b d,e,f Biology Ireland, Conway AMAYA GARCIA-MUNOZ, ABDULLAH AL BLOSHI, ANNIE M. TREMBLAY, c g b c Institute, Dublin, Ireland; ALEXANDER VON KRIEGSHEIM, ELAINA COLLIE-DUGUID, NEIL VARGESSON, DAVID MATALLANAS, d b,h a Stem Cell Program, HENNING WACKERHAGE, PETER S. ZAMMIT Children’s Hospital, Boston, Massachusetts, USA; Key Words. Taz • Yap • Tead • Satellite cells • Muscle stem cells eDepartment of Stem Cell and Regenerative Biology, Harvard University, ABSTRACT Cambridge, Massachusetts, USA; fHarvard Stem Cell Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regen- Institute, Cambridge, eration, regulating gene expression especially via Tead transcription factors. To investigate their Massachusetts, USA; gCentre role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. for Genome Enabled Biology Small interfering RNA knockdown or retroviral-mediated expression of wild-type human or con- and Medicine, School of stitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a func- Medicine, Medical Sciences tion shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic and Nutrition, University of differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while mus- Aberdeen, Foresterhill, cle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt Aberdeen, Scotland, UK; effects on regeneration.
    [Show full text]
  • Targeting the Hippo Pathway in Prostate Cancer: What's New?
    cancers Review Targeting the Hippo Pathway in Prostate Cancer: What’s New? Kelly Coffey Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; [email protected] Simple Summary: Prostate cancer is the most commonly diagnosed cancer in men in the UK, accounting for the deaths of over 11,000 men per year. A major problem in this disease are tumours which no longer respond to available treatments. Understanding how this occurs will reveal new ways to treat these patients. In this review, the latest findings regarding a particular group of cellular factors which make up a signalling network called the Hippo pathway will be described. Accumulating evidence suggests that this network contributes to prostate cancer progression and resistance to current treatments. Identifying how this pathway can be targeted with drugs is a promising area of research to improve the treatment of prostate cancer. Abstract: Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ.
    [Show full text]