Common and Distinctive Functions of the Hippo Effectors Taz and Yap In

Total Page:16

File Type:pdf, Size:1020Kb

Common and Distinctive Functions of the Hippo Effectors Taz and Yap In TISSUE-SPECIFIC STEM CELLS aRandall Division of Cell and Common and Distinctive Functions of the Hippo Molecular Biophysics, King’s College London, London, UK; Effectors Taz and Yap in Skeletal Muscle Stem Cell bSchool of Medicine, Medical Sciences & Nutrition, Function University of Aberdeen, Foresterhill, Aberdeen, a b b a Scotland, UK; cSystems CONGSHAN SUN, VANESSA DE MELLO, ABDALLA MOHAMED, HUASCAR P. O RTUSTE QUIROGA, c b d,e,f Biology Ireland, Conway AMAYA GARCIA-MUNOZ, ABDULLAH AL BLOSHI, ANNIE M. TREMBLAY, c g b c Institute, Dublin, Ireland; ALEXANDER VON KRIEGSHEIM, ELAINA COLLIE-DUGUID, NEIL VARGESSON, DAVID MATALLANAS, d b,h a Stem Cell Program, HENNING WACKERHAGE, PETER S. ZAMMIT Children’s Hospital, Boston, Massachusetts, USA; Key Words. Taz • Yap • Tead • Satellite cells • Muscle stem cells eDepartment of Stem Cell and Regenerative Biology, Harvard University, ABSTRACT Cambridge, Massachusetts, USA; fHarvard Stem Cell Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regen- Institute, Cambridge, eration, regulating gene expression especially via Tead transcription factors. To investigate their Massachusetts, USA; gCentre role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. for Genome Enabled Biology Small interfering RNA knockdown or retroviral-mediated expression of wild-type human or con- and Medicine, School of stitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a func- Medicine, Medical Sciences tion shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic and Nutrition, University of differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while mus- Aberdeen, Foresterhill, cle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt Aberdeen, Scotland, UK; effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre-ERT2/1: h Faculty of Sport and Health Yapfl8x/fl8x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, Sciences, Technical University microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some of Munich, Munich, Germany genes independently of YAP, including myogenic genes such as Pax7, Myf5,andMyod1 (ArrayEx- Correspondence: Peter S. press–E-MTAB-5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in Zammit Ph.D., King’s College myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in London, Randall Division of Cell myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ and Molecular Biophysics, nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt London SE1 1UL, UK. Telephone: and Wnt-cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 144-207-848-8217; Fax: 144- to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in pro- 207-848-6435; moting myoblast proliferation but Taz then switches to enhance myogenic differentiation. STEM e-mail: [email protected] CELLS 2017;35:1958–1972 Received June 14, 2016; accepted for publication January SIGNIFICANCE STATEMENT 7, 2017; first published online in STEM CELLS EXPRESS June 7, Hippo pathway effectors Yap and Taz play key roles in cell proliferation and tissue growth. We 2017. analyzed Taz in comparison with Yap in muscle stem cells. Taz promoted proliferation, a func- tion shared with Yap. However, Taz also enhanced differentiation into myotubes, unlike Yap. VC AlphaMed Press –/– 1066-5099/2017/$30.00/0 Muscle growth was affected in Taz (Wwtr1 ) knockout mice, while satellite cell-specific condi- tional knockout of Yap produced a regeneration deficit. Taz regulates some genes independently http://dx.doi.org/ of Yap, and Taz also interacts with proteins distinct from Yap, mainly involved in myogenesis/ 10.1002/stem.2652 cytoskeleton. In particular, Taz operates through Tead4 to enhance differentiation. In summary, This article was published online Taz and Yap have overlapping functions in promoting myoblast proliferation but later, Taz also on 28 June 2017. However, enhances myogenic differentiation. proof typesetting was subse- quently noticed to be incom- plete. This notice is included in the online and print versions to Many other signaling modules also regulate indicate that these have been INTRODUCTION Yap and Taz activity, such as mechanotransduc- finalized 5 July 2017. Transcriptional cofactors Yap (Yap1) and Taz tion [4], glucose-signaling [5], G-protein cou- pled receptors (GPCR) [6], Wnt [7–9], Smad This is an open access article (Wwtr1) mainly regulate gene expression by under the terms of the Creative binding Tead1–4 transcription factors. Together [10, 11], Notch [12], Pten-Akt-mechanistic Commons Attribution License, Yap, Taz, and Teads are the nexus of the Hippo target of rapamycin (mTOR) [13–16], and Lkb1- which permits use, distribution signal transduction network that includes the Ampk [17–20]. Yap and Taz are inhibited by and reproduction in any Hippo kinase cascade, comprising kinases Mst1 phosphorylation of multiple HXRSS motifs by medium, provided the original work is properly cited. (Stk4), Mst2 (Stk3), Lats1, and Lats2 [1–3]. Lats1/2, which promotes localization to the STEM CELLS 2017;35:1958–1972 www.StemCells.com VC 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2017 Sun, De Mello, Mohamed et al. 1959 cytosol, 14–3-3 binding, and degradation [3, 21]. Yap Ser127 mice were donated by Fernando Camargo. Breeding/experi- and Taz Ser89 are key phosphorylation sites, and the mutation mental procedures were approved by the Ethical Review Pro- of Ser127 or Ser89 to alanine in Yap S127A and Taz S89A cess Committee of King’s College London, and performed respectively prevents phosphorylation at these residues and under the Animals (Scientific Procedures) Act 1986. results in constitutive activity. Signaling modules involving Yap/Taz control skeletal mus- Cell Culture cle myogenesis and adaptation to exercise. Tead transcription Satellite cells/myofibers were isolated as described previously factors bind CATTCC/GGAATG (MCAT or GTIIC motifs) found [41]. Briefly, murine extensor digitorum longus (EDL) myofib- in/near promoters and enhancers of cardiac and skeletal mus- ers were isolated by 0.05% type I collagenase for 2 hours. cle genes [3, 22–24]. However, Tead1 binds muscle genes Myofibers were washed in GlutaMax Dulbecco’s modified repressed in rhabdomyosarcoma [25], consistent with obser- Eagle’s medium (DMEM) (ThermoFisher Scientific (http://cor- vation that Yap and Taz can also repress gene expression [26]. porate.thermofisher.com/en/home.html), Waltham, Massachu- Satellite cells are responsible for postnatal skeletal muscle setts, USA) and plated on matrigel-coated plates in growth growth, hypertrophy, and repair/regeneration [27], and we medium (GlutaMax DMEM, 30% fetal bovine serum [FBS], 1% have shown that Yap promotes proliferation of myoblasts [28, chick embryo extract [CEE], 10 ng/mL basic fibroblast growth 29] but inhibits myogenic differentiation. YAP1 S127A expres- factor, 1% penicillin-streptomycin (Sigma-Aldrich (http://www. sion in activated, but not quiescent, satellite cells causes sigmaaldrich.com/united-kingdom.html), St. Louis, Missouri, embryonal rhabdomyosarcoma-like tumours with short latency USA.) at 378C with 5% CO2. After 72 hours, myofibers were and 100% penetrance [25]. Expression of YAP1 S127A in mus- removed, and satellite cells passaged and preplated for 30 cle fibers causes myopathy [30], whereas other types of Yap minutes to remove fibroblasts, before being plated on delivery or Yap mutants can cause hypertrophy [31, 32], with matrigel-coated plates. Differentiation was induced in differ- outcome likely dependent on Yap levels. entiation medium (GlutaMax DMEM, 2% horse serum, 1% Taz harbors the same functionally important WW and penicillin–streptomycin). Nonadherent cultures: myofibers Tead-binding domains as Yap and often acts as a paralogue, were cultured in GlutaMax DMEM, 10% horse serum, 0.5% but not always [2, 3]. This is demonstrated by Yap or Taz CEE, 1% penicillin–streptomycin. knockout mice: while Yap knockout causes early embryonic lethality [33], 50% of Taz-knockout (Wwtr1–/–) mice are viable Muscle Injury but develop glomerulocystic kidney disease [34]. Earlier To recombine via the loxP sites flanking Yap exons 1 and 2, reports suggest that Yap and Taz also have divergent functions 200 mg of Tamoxifen/gram body weight (Sigma T5648) was in the skeletal muscle lineage: both Yap and Taz promote skel- injected intraperitoneally in sunflower oil/5% ethanol for 3 etal muscle fiber hypertrophy and regeneration [35, 36], but consecutive days, followed by maintenance on a tamoxifen- only Taz promotes fusion into multinucleated myotubes [29, containing diet (Tekland). Injury was induced in tibialis ante- 37, 38]. rior (TA) by 30 mL intramuscular injection of 20 mM cardio- The distinct functions of YAP and TAZ are poorly under- toxin (CTX)/saline. stood, so we investigated their regulation, function, target Retroviral Expression and Small Interfering RNA genes, and binding partners in murine myoblasts. Taz and Yap have overlapping functions in promoting satellite cell prolifer- Wild-type (WT) TAZ, TAZ S89A, YAP S127A, or WT YAP was ation. However, later in myogenesis,
Recommended publications
  • Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling.
    [Show full text]
  • Phospho-RAF1(S43) Antibody Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap3332a
    9765 Clairemont Mesa Blvd, Suite C San Diego, CA 92124 Tel: 858.875.1900 Fax: 858.622.0609 Phospho-RAF1(S43) Antibody Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3332a Specification Phospho-RAF1(S43) Antibody - Product Information Application DB,E Primary Accession P04049 Other Accession P11345, Q99N57, A7E3S4 Reactivity Human Predicted Bovine, Mouse, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Clone Names RB11127 Calculated MW 73052 Phospho-RAF1(S43) Antibody - Additional Information Gene ID 5894 Dot blot analysis of Phospho-RAF1-S43 Phospho-specific Pab (Cat.AP3332a) on Other Names nitrocellulose membrane. 50ng of RAF proto-oncogene serine/threonine-protein Phospho-peptide or Non Phospho-peptide per kinase, Proto-oncogene c-RAF, cRaf, Raf-1, dot were adsorbed. Antobodies working RAF1, RAF concentration was 0.5ug per ml. Target/Specificity This RAF1 Antibody is generated from rabbits Phospho-RAF1(S43) Antibody - immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid Background residues surrounding S43 of human RAF1. Raf-1 is a MAP kinase kinase kinase (MAP3K) Dilution which functions downstream of the Ras family of DB~~1:500 membrane associated GTPases to which it binds directly. Once activated Raf-1 can phosphorylate Format to activate the dual specificity protein kinases Purified polyclonal antibody supplied in PBS MEK1 and MEK2 which in turn phosphorylate to with 0.09% (W/V) sodium azide. This antibody activate the serine/threonine specific protein is purified through a protein A column, kinases ERK1 and ERK2. Activated ERKs are followed by peptide affinity purification. pleiotropic effectors of cell physiology and play an important role in the control of gene Storage expression involved in the cell division cycle, Maintain refrigerated at 2-8°C for up to 6 apoptosis, cell differentiation and cell migration.
    [Show full text]
  • Machine-Learning and Chemicogenomics Approach Defi Nes and Predicts Cross-Talk of Hippo and MAPK Pathways
    Published OnlineFirst November 18, 2020; DOI: 10.1158/2159-8290.CD-20-0706 RESEARCH ARTICLE Machine -Learning and Chemicogenomics Approach Defi nes and Predicts Cross-Talk of Hippo and MAPK Pathways Trang H. Pham 1 , Thijs J. Hagenbeek 1 , Ho-June Lee 1 , Jason Li 2 , Christopher M. Rose 3 , Eva Lin 1 , Mamie Yu 1 , Scott E. Martin1 , Robert Piskol 2 , Jennifer A. Lacap 4 , Deepak Sampath 4 , Victoria C. Pham 3 , Zora Modrusan 5 , Jennie R. Lill3 , Christiaan Klijn 2 , Shiva Malek 1 , Matthew T. Chang 2 , and Anwesha Dey 1 ABSTRACT Hippo pathway dysregulation occurs in multiple cancers through genetic and non- genetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defi ning tumors that are Hippo pathway–dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type–agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage- independent signature for the Hippo pathway in cancers.
    [Show full text]
  • C-RAF (Phospho-Tyr341) Antibody
    Product Datasheet C-RAF (Phospho-Tyr341) Antibody Catalog No: #11668 Package Size: #11668-1 50ul #11668-2 100ul Orders: [email protected] Support: [email protected] Description Product Name C-RAF (Phospho-Tyr341) Antibody Host Species Rabbit Clonality Polyclonal Purification Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho specific antibodies were removed by chromatogramphy using non-phosphopeptide. Applications WB IHC Species Reactivity Hu Specificity The antibody detects endogenous levels of Raf1 only when phosphorylated at tyrosine 341. Immunogen Type Peptide-KLH Immunogen Description Peptide sequence around phosphorylation site of tyrosine 341 (S-Y-Y(p)-W-E) derived from Human C-RAF . Target Name C-RAF Modification Phospho Other Names C-RAF; C-Raf; CRAF; RAF-1; Accession No. Swiss-Prot#: P04049; NCBI Gene#: 5894; NCBI Protein#: NP_002871.1. SDS-PAGE MW 74kd Concentration 1.0mg/ml Formulation Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Storage Store at -20°C/1 year Application Details Western blotting: 1:500~1:1000 Immunohistochemistry: 1:50~1:100 Images Western blot analysis of extracts from Jurkat cells treated with Paclitaxel using Raf1 (Phospho-Tyr341) Antibody #11668.The lane on the right is treated with the antigen-specific peptide. Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 Immunohistochemical analysis of paraffin-embedded human pancreas tissue using Raf1 (Phospho-Tyr341) antibody #11668 (left)or the same antibody preincubated with blocking peptide (right).
    [Show full text]
  • Egfrviii and Pten Deletion Mutations Influence Genotype-Dependent Kinome Activation
    EGFRvIII and Pten Deletion Mutations Influence Genotype-Dependent Kinome Activation in Immortalized Murine Astrocyte Models of Glioblastoma Madison Butler C. Ryan Miller Lab Abstract Glioblastoma (GBM) is the most common malignant primary brain tumor. Receptor tyrosine kinase (RTK) pathways are frequently mutated in GBM, including alterations in the RTK Epidermal Growth Factor Receptor (EGFR). Moreover, EGFR variant III (EGFRvIII) is the most common activating mutation in GBM. Given its frequency, specificity, and role in promoting gliomagenesis, EGFR dysfunction is a prime target for drug treatment. However, multiple resistance mechanisms, such as co-occurrence of EGFRvIII and deletion of the tumor suppressor PTEN, prevent effective treatment via activation of alternate kinase pathways. To observe the differential kinase activation involved in EGFRvIII- and PTEN loss- driven gliomagenesis and identify potential kinase targets for dual therapy, we examined immortalized murine astrocytes derived from non-germline genetically engineered mouse models expressing four core genotypes: wild-type EGFR + wild- type Pten (C), wild-type EGFR + Pten deletion (CP), EGFRvIII + wild-type Pten (CEv3), and EGFRvIII + Pten deletion (CEv3P). We used RNA sequencing and multiplexed inhibitor bead affinity chromatography and mass spectrometry (MIB-MS) to determine the baseline transcriptomes and kinomes of each genotype. We determined that cell lines exhibited genotype- dependent baseline RNA expression and kinase activity as a result of EGFRvIII and/or Pten deletion relative to C astrocytes and across genotypes. We observed several differentially- activated kinases that represent potential targets for dual treatment with EGFR TKI. We are currently examining changes in the kinome profile of each cell line after both acute and chronic treatment with tyrosine kinase inhibitors (TKI).
    [Show full text]
  • Anti-LATS1 / WARTS Antibody (ARG43046)
    Product datasheet [email protected] ARG43046 Package: 50 μg anti-LATS1 / WARTS antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes LATS1 / WARTS Tested Reactivity Hu Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name LATS1 / WARTS Antigen Species Human Immunogen Recombinant protein corresponding to Q637-A698 of Human LATS1 / WARTS. Conjugation Un-conjugated Alternate Names wts; Serine/threonine-protein kinase LATS1; WARTS; WARTS protein kinase; h-warts; EC 2.7.11.1; Large tumor suppressor homolog 1 Application Instructions Application table Application Dilution FACS 1:150 - 1:500 IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in Citrate buffer (pH 6.0) for 20 min. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 127 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 - 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed www.arigobio.com 1/3 before use. Note For laboratory research only, not for drug, diagnostic or other use.
    [Show full text]
  • STK3 Active (S6573)
    STK3 Active human, recombinant GST-tagged, expressed in Sf9 cells Catalog Number S6573 Lot Number 019K1598 Storage Temperature –70 °C Synonyms: KRS1; MST2 Figure 1. SDS-PAGE Gel of Lot Number 019K1598: Product Description >80% (densitometry) STK3, also known as MST2, encodes a protein of 491 amino acids which contains an N-terminal catalytic 170 1 130 domain characteristic of STKs. STK3 and STK4 share 100 STK3 94% amino acid identity in the catalytic domain and 72 78% identity overall. RAF1 has been shown to counteract apoptosis by suppressing the activation of 55 mammalian sterile 20-like kinase (MST2). STK3 is a 40 kinase that is activated by the proapoptotic agents, 33 straurosporine and FAS ligand.2 STK3 activation presumably allows cells to resist unfavorable environmental conditions. Figure 2. This recombinant product was expressed by Specific Activity of Lot Number 019K1598: baculovirus in Sf9 insect cells using an N-terminal 277 nmole/min/mg GST-tag. The gene accession number is BC 010640. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM 500,000 NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol. 400,000 300,000 Molecular mass: ~87 kDa ctivity (cpm) 200,000 A 100,000 Purity: ³70% (SDS-PAGE, see Figure 1) 0 0 40 80 120 160 Specific Activity: 235–319 nmole/min/mg (see Figure 2) Protein (ng) Precautions and Disclaimer This product is for R&D use only, not for drug, Procedure household, or other uses. Please consult the Material Preparation Instructions Safety Data Sheet for information regarding hazards Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM and safe handling practices.
    [Show full text]
  • STK3 Suppresses Ovarian Cancer Progression by Activating NF-Κb Signaling to Recruit CD8+ T-Cells
    Hindawi Journal of Immunology Research Volume 2020, Article ID 7263602, 17 pages https://doi.org/10.1155/2020/7263602 Research Article STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells Xiangyu Wang ,1,2 Fengmian Wang,1,2 Zhi-Gang Zhang ,3 Xiao-Mei Yang ,3 and Rong Zhang 1,2 1The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China 2Department of Obstetrics and Gynecology, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201499, China 3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201109, China Correspondence should be addressed to Xiao-Mei Yang; [email protected] and Rong Zhang; [email protected] Received 6 July 2020; Revised 11 August 2020; Accepted 26 August 2020; Published 29 September 2020 Academic Editor: Jian Song Copyright © 2020 Xiangyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3.
    [Show full text]
  • A YAP/TAZ-Induced Feedback Mechanism Regulates Hippo Pathway Homeostasis
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis Toshiro Moroishi,1 Hyun Woo Park,1 Baodong Qin,1,2 Qian Chen,3 Zhipeng Meng,1 Steven W. Plouffe,1 Koji Taniguchi,4,5 Fa-Xing Yu,6,7 Michael Karin,4,5 Duojia Pan,3 and Kun-Liang Guan1 1Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Laboratory Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China; 3Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 4Department of Pharmacology, 5Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 6Children’s Hospital, 7Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are major downstream effectors of the Hippo pathway that influences tissue homeostasis, organ size, and cancer development. Aberrant hyperactivation of YAP/TAZ causes tissue overgrowth and tumorigenesis, whereas their inactivation impairs tissue development and regeneration. Dynamic and precise control of YAP/TAZ activity is thus important to ensure proper physiological regulation and homeostasis of the cells. Here, we show that YAP/TAZ activation results in activation of their negative regulators, LATS1/2 (large tumor suppressor 1/2) kinases, to constitute a negative feedback loop of the Hippo pathway in both cultured cells and mouse tissues. YAP/TAZ in complex with the transcription factor TEAD (TEA domain family member) directly induce LATS2 expression.
    [Show full text]
  • Essential Oil from Pinus Koraiensis Pinecones Inhibits Gastric Cancer Cells Via the HIPPO/YAP Signaling Pathway
    molecules Article Essential Oil from Pinus Koraiensis Pinecones Inhibits Gastric Cancer Cells via the HIPPO/YAP Signaling Pathway Yandong Zhang 1, Chao Xin 1, Junqiang Qiu 2 and Zhenyu Wang 1,* 1 Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; [email protected] (Y.Z.); [email protected] (C.X.) 2 Department of Inorganic Chemistry and Analytical Chemistry, School of Pharmacy, Hainan Medical University, Haikou 570100, China; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 22 October 2019; Published: 25 October 2019 Abstract: Pinecone is a traditional folk herb, which has been used in China for many years. In this paper, the essential oil from Pinus koraiensis pinecones (PEO) was obtained by hydrodistillation and 41 compounds were identified by gas chromatography–mass spectrometry (GC-MS), mainly including α-Pinene (40.91%), Limonene (24.82%), and β-Pinene (7.04%). The purpose of this study was to investigate the anti-tumor activity of PEO on MGC-803 cells and its mechanism. Anti-tumor experiments in vitro showed PEO could significantly inhibit the proliferation and migration of MGC-803 cells, and it also could arrest the cell cycle in the G2/M phase, decrease the mitochondrial membrane potential, and induce apoptosis. Finally, the effects of PEO on genes expression on MGC-803 cells were analyzed by RNA sequencing, and results showed that after treatment with PEO, 100 genes were up-regulated, and 57 genes were down-regulated. According to the KEGG pathway and GSEA, FAT4, STK3, LATS2, YAP1, and AJUBA were down-regulated, which were related to HIPPO signaling pathway.
    [Show full text]
  • Active Recombinant STK3
    RESEARCH USE ONLY Active Recombinant STK3 CATALOG NO.: JM-7751-5 AMOUNT: 5 μg BACKGROUND: Creasy identified a cDNA encoding STK3, which they called MST2. Sequence analysis indicated that the deduced 491-amino acid STK3 protein contains an N-terminal catalytic domain characteristic of STKs (1). Taylor also isolated cDNAs encoding STK3 (p63) and STK4 (p61) respectively. STK3 and STK4 share 94% amino acid identity in the catalytic domain and 78% identity overall (2). The yeast 'sterile 20' (Ste20) kinase acts upstream of the mitogen-activated protein kinase (MAPK) cascade that is activated under a variety of stress conditions. O'Neill used proteomic analysis of RAF1 signaling complexes to show that RAF1 counteracts apoptosis by suppressing the activation of mammalian sterile 20-like kinase (MST2) (3). MST2 was identified as a kinase that is activated by the proapoptotic agents staurosporine and FAS ligand (2;4). STK3 activation presumably allows cells to resist unfavorable environmental conditions. DESCRIPTION: Recombinant full-length human STK3 containing N-terminal GST tag was expressed by baculovirus in Sf 9 insect cells. The gene accession number is BC010640. PURITY: 1 g of STK3 protein was subjected to SDS-PAGE and Coomassie blue staining. The scan of the gel showed >90% purity of the STK3 product, and the band was at ~87 kDa (Fig. 2). FORMULATION: Recombinant protein in storage buffer (50 mM Tris- HCl, pH 7.5, 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, 25% glycerol). 4 H Constitution Way · Woburn, MA 01801 · Phone: 1.800.200.5459 · Fax: 781-939-6963 www.mblintl.com RESEARCH USE ONLY STORAGE CONDITIONS: Store product frozen at or below -70ºC.
    [Show full text]
  • DNA-Damage Induced Cell Death in Yap1;Wwtr1 Mutant Epidermal Basal Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453490; this version posted July 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 DNA-damage induced cell death in yap1;wwtr1 mutant epidermal basal cells 2 Jason K. H. Lai1,*, Pearlyn J. Y. Toh1, Hamizah A. Cognart1, Geetika Chouhan2 & Timothy 3 E. Saunders1,3,4,5,* 4 1 Mechanobiology Institute, National University of Singapore, Singapore 117411 5 2 Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, 6 Mumbai, India 7 3 Department of Biological Sciences, National University of Singapore, Singapore 117558 8 4 Institute of Molecular and Cell Biology, A*Star, Singapore 9 5 Warwick Medical School, University of Warwick, United Kingdom 10 * Corresponding authors: J. K. H. L. ([email protected]), T. E. S. 11 ([email protected]) 12 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453490; this version posted July 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 13 ABSTRACT 14 In a previous study, it was reported that Yap1 and Wwtr1 in zebrafish regulates the 15 morphogenesis of the posterior body and epidermal fin fold (Kimelman, D., et al.
    [Show full text]