Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection

Total Page:16

File Type:pdf, Size:1020Kb

Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection universe Review Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection Jean-Pierre Luminet Review Observatoire de Paris (LUTH), Centre de Physique Théorique (CPT), Laboratoire d’Astrophysique de Closed Timelike Curves,Marseille (LAM), Singularities Aix-Marseille Universit andé, CNRS, Causality: LAM, 38 rue F. A Joliot-Curie, Survey 13013 Marseille, France; from Gödel to [email protected] Protection Abstract: I give a historical survey of the discussions about the existence of closed timelike curves in Jean-Pierre Luminet general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Gödel in his rotating universe model of 1949. I emphasize that journeying Observatoire de Paris (LUTH), Centre de Physique Théorique (CPT), Laboratoire d’Astrophysique de Marseille (LAM),into Aix-Marseille the past Université, is intimately CNRS, LAM, linked 38 rue to F. Joliot-Curie, spacetime 13013 models Marseille, devoid France; of timelike singularities. Since such [email protected] arise as an inevitable consequence of the equations of general relativity given physically Abstract:reasonable I give a historical assumptions, survey of time the discussions travel in theabout past the becomesexistence of possible closed timelike only curves when one or another of these in generalassumptions relativistic ismodels violated. of the Ituniverse, is the caseopening with the wormhole-typephysical possibility solutions.of time travel S. in Hawking the and other authors past, haveas first triedrecognized to “save” by K. Gödel the paradoxical in his rotating consequences universe model of 1949. time I travelemphasize in thethat pastjour- by advocating physical neyingmechanisms into the past is ofintimately chronological linked to spacet protection;ime models however, devoid of such timelike mechanisms singularities. remainSince presently unknown, such singularities arise as an inevitable consequence of the equations of general relativity given physicallyeven reasonable when quantum assumptions, fluctuations time travel nearin the horizonspast becomes are possible taken only into when account. one or I an- close the survey by a brief otherand of these pedestrian assumptions discussion is violated. ofIt is Causal the case Dynamicalwith wormhole-type Triangulations, solutions. S. anHawking approach and to quantum gravity in otherwhich authors causalityhave tried playsto “save” a seminalthe paradoxical role. consequences of time travel in the past by ad- vocating physical mechanisms of chronological protection; however, such mechanisms remain presently unknown, even when quantum fluctuations near horizons are taken into account. I close Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chrono- the survey by a brief and pedestrian discussion of Causal Dynamical Triangulations, an approach to quantumlogical gravity protection; in which causal causality dynamical plays a seminal triangulations role. Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chron- ological protection; causal dynamical triangulations Citation: Luminet, J.-P. Closed 1. Introduction TimelikeCitation: Curves, Luminet, Singularities J.-P. Closed and In 1949, the mathematician and logician Kurt Gödel, who had previously demon- Causality:Timelike ACurves, Survey Singularities from Gödel and to 1. Introduction Causality: A Survey from Gödel to strated the incompleteness theorems that broke ground in logic, mathematics, and philoso- Chronological Protection. Universe In 1949, the mathematician and logician Kurt Gödel, who had previously demon- Chronological Protection. Universe phy, became interested in the theory of general relativity of Albert Einstein, of which he 2021, 7, 12. https://doi.org/ strated the incompleteness theorems that broke ground in logic, mathematics, and phi- 2021, 7, x. became a close colleague at the Institute for Advanced Study at Princeton. He then discov- 10.3390/universe7010012https://doi.org/10.3390/xxxxx losophy, became interested in the theory of general relativity of Albert Einstein, of which he becameered ana close exact colleague solution at the of Institute the gravitational for Advanced field Study equations at Princeton. describing He then a rotating universe Received: 1 December 2020 discovered an exact solution of the gravitational field equations describing a rotating Received: 1 December 2020 model [1]. Accepted: 8 January 2021 universe model [1]. Accepted: 8 January 2021 Gödel’s universe is infinite, non-expanding, and filled with an idealized, homogenous Published: 12 January 2021 Gödel’s universe is infinite, non-expanding, and filled with an idealized, homoge- Published: 12 January 2021 nousperfect perfect fluid. fluid. It Itrotates rotates to stay to staybalanced balanced against againstgravitational gravitational collapse, the collapse, angular the angular velocity Publisher’s Note: MDPI stays velocityoutward outward juxtaposed juxtaposed to to the the gravitational gravitational pull inward. pull inward. Gödel explained Gödel explainedthat mat- that matter rotates neutral with regard to jurisdictional ½ 1 Publisher’s Note: MDPI stays neu- ter rotatesrelative relative to theto the compass compass of of inertia inertia with with the angular the angular velocity velocity 2(πGρ) , where 2(πG ρ) is2 , where is the mean claims in published maps and the mean density of matter, and G, Newton’s gravitational constant. However, unlike a tral with regard to jurisdictional clai- density of matter, and G, Newton’s gravitational constant. However, unlike a spinning institutional affiliations. spinning top, Gödel’s universe does not rotate about a privileged geometrical axis. The ms in published maps and institutio- localtop, inertial Gödel’s frames rotate universe with respect does to not a distant rotate frame about defined a privilegedby faraway galaxies geometrical so axis. The local nal affiliations. that inertialevery observer frames sees rotate himself with at the respect center of to rotation, a distant hardly frame an unusual defined situation. by faraway galaxies so that Copyright: © 2021 by the authors. Moreevery extraordinarily, observer in seesGödel’s himself rotating at universe, the center there of are rotation, space-time hardly trajectories an unusualthat situation. More Licensee MDPI, Basel, Switzerland. returnextraordinarily, to their starting point, in Gödel’s namely rotatingclosed timelike universe, curves there (CTCs). are Such space-time curves remain trajectories that return to confined locally to their future light cones, and an object traveling along a CTC never This article is an open access article their starting point, namely closed timelike curves (CTCs). Such curves remain confined Copyright:distributed© under 2021 the by terms the and author. Li- moves faster than the local speed of light, so that CTCs do not all violate the laws of censeeconditions MDPI, of the Basel, Creative Switzerland.Commons speciallocally relativity, to their while future representing light cones,possible andpaths an for object material traveling objects. This along is a avery CTC never moves faster Attribution (CC BY) license strange result because a traveler could journey into the future but arrive in the past, This article is an open access article than the local speed of light, so that CTCs do not all violate the laws of special relativity, (http://creativecommons.org/licenses accompanied by all the paradoxes that arise from a possible violation of the principle of distributed under the terms and con- while representing possible paths for material objects. This is a very strange result because /by/4.0/). causality. ditions of the Creative Commons At- a traveler could journey into the future but arrive in the past, accompanied by all the tribution (CC BY) license (https:// paradoxes that arise from a possible violation of the principle of causality. creativecommons.org/licenses/by/Universe 2021, 7, x. https://doi.org/10.3390/xxxxx At the time when Gödel published his article,www.mdpi.com/journal/universe time travel in the past was already a 4.0/). staple of science fiction, and some of its associated paradoxes had already been discussed Universe 2021, 7, 12. https://doi.org/10.3390/universe7010012 https://www.mdpi.com/journal/universe Universe 2021, 7, 12 2 of 11 in several issues of the 1917 edition of Electrical Experimenter (which would become later the infamous Amazing Stories magazine). The best known of the paradoxes is the grandfather paradox. As far as I know, it was first formulated in 1936 by Catherine Moore in a short story entitled “Tryst in Time,” in which a time traveler tries to kill his own grandfather [2]. The French writer René Barjavel used the same idea in the final scene of his famous novel The Reckless Traveler, published in 1944 (for an English translation, see [3]). Eager to change the course of history, the hero travels back in time to the Napoleonic era and inadvertently kills a man who is, in fact, one of his ancestors. Would he survive the encounter if he broke the causal chain leading to his own existence? The 1958 edition also includes a postscript entitled “To Be and Not to Be,” in which the novelist specifies the nature of the time travel paradox. It seems that Barjavel, an avid reader of popular science literature, was aware of Schrödinger’s thought experiment involving a cat at once half-dead
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • Introduction to Dynamical Triangulations
    Introduction to Dynamical Triangulations Andrzej G¨orlich Niels Bohr Institute, University of Copenhagen Naxos, September 12th, 2011 Andrzej G¨orlich Causal Dynamical Triangulation Outline 1 Path integral for quantum gravity 2 Causal Dynamical Triangulations 3 Numerical setup 4 Phase diagram 5 Background geometry 6 Quantum fluctuations Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum gravity General Relativity: gravity is encoded in space-time geometry. The role of a trajectory plays now the geometry of four-dimensional space-time. All space-time histories contribute to the transition amplitude.
    [Show full text]
  • Causality and Determinism: Tension, Or Outright Conflict?
    1 Causality and Determinism: Tension, or Outright Conflict? Carl Hoefer ICREA and Universidad Autònoma de Barcelona Draft October 2004 Abstract: In the philosophical tradition, the notions of determinism and causality are strongly linked: it is assumed that in a world of deterministic laws, causality may be said to reign supreme; and in any world where the causality is strong enough, determinism must hold. I will show that these alleged linkages are based on mistakes, and in fact get things almost completely wrong. In a deterministic world that is anything like ours, there is no room for genuine causation. Though there may be stable enough macro-level regularities to serve the purposes of human agents, the sense of “causality” that can be maintained is one that will at best satisfy Humeans and pragmatists, not causal fundamentalists. Introduction. There has been a strong tendency in the philosophical literature to conflate determinism and causality, or at the very least, to see the former as a particularly strong form of the latter. The tendency persists even today. When the editors of the Stanford Encyclopedia of Philosophy asked me to write the entry on determinism, I found that the title was to be “Causal determinism”.1 I therefore felt obliged to point out in the opening paragraph that determinism actually has little or nothing to do with causation; for the philosophical tradition has it all wrong. What I hope to show in this paper is that, in fact, in a complex world such as the one we inhabit, determinism and genuine causality are probably incompatible with each other.
    [Show full text]
  • Causality in Quantum Field Theory with Classical Sources
    Causality in Quantum Field Theory with Classical Sources Bo-Sture K. Skagerstam1;a), Karl-Erik Eriksson2;b), Per K. Rekdal3;c) a)Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway b) Department of Space, Earth and Environment, Chalmers University of Technology, SE-412 96 G¨oteborg, Sweden c)Molde University College, P.O. Box 2110, N-6402 Molde, Norway Abstract In an exact quantum-mechanical framework we show that space-time expectation values of the second-quantized electromagnetic fields in the Coulomb gauge, in the presence of a classical source, automatically lead to causal and properly retarded elec- tromagnetic field strengths. The classical ~-independent and gauge invariant Maxwell's equations then naturally emerge and are therefore also consistent with the classical spe- cial theory of relativity. The fundamental difference between interference phenomena due to the linear nature of the classical Maxwell theory as considered in, e.g., classical optics, and interference effects of quantum states is clarified. In addition to these is- sues, the framework outlined also provides for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or absorption processes as well as an approach to Vavilov-Cherenkovˇ radiation. The inherent and necessary quan- tum uncertainty, limiting a precise space-time knowledge of expectation values of the quantum fields considered, is, finally, recalled. arXiv:1801.09947v2 [quant-ph] 30 Mar 2019 1Corresponding author. Email address: [email protected] 2Email address: [email protected] 3Email address: [email protected] 1. Introduction The roles of causality and retardation in classical and quantum-mechanical versions of electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., Refs.[1]-[14]).
    [Show full text]
  • The Penrose and Hawking Singularity Theorems Revisited
    Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook The Penrose and Hawking Singularity Theorems revisited Roland Steinbauer Faculty of Mathematics, University of Vienna Prague, October 2016 The Penrose and Hawking Singularity Theorems revisited 1 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Overview Long-term project on Lorentzian geometry and general relativity with metrics of low regularity jointly with `theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, G¨untherH¨ormann,Mike Kunzinger, Clemens S¨amann,James Vickers `exact solutions branch' (Vienna & Prague): Jiˇr´ıPodolsk´y,Clemens S¨amann,Robert Svarcˇ The Penrose and Hawking Singularity Theorems revisited 2 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 3 / 27 Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook Table of Contents 1 The classical singularity theorems 2 Interlude: Low regularity in GR 3 The low regularity singularity theorems 4 Key issues of the proofs 5 Outlook The Penrose and Hawking Singularity Theorems revisited 4 / 27 Theorem (Pattern singularity theorem [Senovilla, 98]) In a spacetime the following are incompatible (i) Energy condition (iii) Initial or boundary condition (ii) Causality condition (iv) Causal geodesic completeness (iii) initial condition ; causal geodesics start focussing (i) energy condition ; focussing goes on ; focal point (ii) causality condition ; no focal points way out: one causal geodesic has to be incomplete, i.e., : (iv) Classical singularity thms.
    [Show full text]
  • Science Fiction and Astronomy
    Sci Fi Science Fiction and Astronomy Many science fiction books include subjects of astronomical interest. Here is a list of some that have been recommended to me or I’ve read. I expect that most are not in the University library but many are available in Kindle and other e-formats. At the top of my list is a URL to a much longer list by Andrew Fraknoi of the Astronomical Society of the Pacific. Each title in his list has a very brief summary indicating the kind of story it is. Andrew Fraknoi’s list (http://www.astrosociety.org/education/resources/scifi.html). Gregory Benford is a plasma physicist who has been rated by some as one of the finest observes and interpreters of science in modern fiction. Note: Timescape [Vista, ISBN 0575600500] In the Ocean of Night [Vista, ISBN 0575600357] Across the Sea of Suns [Vista, ISBN 0575600551] Great Sky River [Gallancy, ISBN 0575058315] Eater and over 2 dozen more available as e-books. Stephen Baxter Titan [Voyager, 1997, ISBN 0002254247] has been strongly recommended by New Scientist as a tense, near future, thriller you shouldn’t miss. David Brin has a PhD in astrophysics with which he brings real understanding of the Universe to his stories. The Crystal Spheres won an award. Fred Hoyle is probably the most famous astronomer to have written science fiction. The Back Cloud [Macmillan, ISBN 0333556011] is his classic, followed by A for Andromeda. Try also October the First is too late. Larry Niven’s stories include plenty of ideas inspired by modern astronomy.
    [Show full text]
  • Physics 200 Problem Set 7 Solution Quick Overview: Although Relativity Can Be a Little Bewildering, This Problem Set Uses Just A
    Physics 200 Problem Set 7 Solution Quick overview: Although relativity can be a little bewildering, this problem set uses just a few ideas over and over again, namely 1. Coordinates (x; t) in one frame are related to coordinates (x0; t0) in another frame by the Lorentz transformation formulas. 2. Similarly, space and time intervals (¢x; ¢t) in one frame are related to inter- vals (¢x0; ¢t0) in another frame by the same Lorentz transformation formu- las. Note that time dilation and length contraction are just special cases: it is time-dilation if ¢x = 0 and length contraction if ¢t = 0. 3. The spacetime interval (¢s)2 = (c¢t)2 ¡ (¢x)2 between two events is the same in every frame. 4. Energy and momentum are always conserved, and we can make e±cient use of this fact by writing them together in an energy-momentum vector P = (E=c; p) with the property P 2 = m2c2. In particular, if the mass is zero then P 2 = 0. 1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and assume they live in a single inertial frame, the Earth-Sun frame. Events A and B occur at t = 0 on the earth and at 2 minutes on the sun respectively. Find the time di®erence between the events according to an observer moving at u = 0:8c from Earth to Sun. Repeat if observer is moving in the opposite direction at u = 0:8c. Answer: According to the formula for a Lorentz transformation, ³ u ´ 1 ¢tobserver = γ ¢tEarth-Sun ¡ ¢xEarth-Sun ; γ = p : c2 1 ¡ (u=c)2 Plugging in the numbers gives (notice that the c implicit in \light-minute" cancels the extra factor of c, which is why it's nice to measure distances in terms of the speed of light) 2 min ¡ 0:8(8:3 min) ¢tobserver = p = ¡7:7 min; 1 ¡ 0:82 which means that according to the observer, event B happened before event A! If we reverse the sign of u then 2 min + 0:8(8:3 min) ¢tobserver 2 = p = 14 min: 1 ¡ 0:82 2.
    [Show full text]
  • BLACK HOLES: the OTHER SIDE of INFINITY General Information
    BLACK HOLES: THE OTHER SIDE OF INFINITY General Information Deep in the middle of our Milky Way galaxy lies an object made famous by science fiction—a supermassive black hole. Scientists have long speculated about the existence of black holes. German astronomer Karl Schwarzschild theorized that black holes form when massive stars collapse. The resulting gravity from this collapse would be so strong that the matter would become more and more dense. The gravity would eventually become so strong that nothing, not even radiation moving at the speed of light, could escape. Schwarzschild’s theories were predicted by Einstein and then borne out mathematically in 1939 by American astrophysicists Robert Oppenheimer and Hartland Snyder. WHAT EXACTLY IS A BLACK HOLE? First, it’s not really a hole! A black hole is an extremely massive concentration of matter, created when the largest stars collapse at the end of their lives. Astronomers theorize that a point with infinite density—called a singularity—lies at the center of black holes. SO WHY IS IT CALLED A HOLE? Albert Einstein’s 1915 General Theory of Relativity deals largely with the effects of gravity, and in essence predicts the existence of black holes and singularities. Einstein hypothesized that gravity is a direct result of mass distorting space. He argued that space behaves like an invisible fabric with an elastic quality. Celestial bodies interact with this “fabric” of space-time, appearing to create depressions termed “gravity wells” and drawing nearby objects into orbit around them. Based on this principle, the more massive a body is in space, the deeper the gravity well it will create.
    [Show full text]
  • Closed Timelike Curves, Singularities and Causality: a Survey from Gödel to Chronological Protection
    Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection Jean-Pierre Luminet Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille , France; Centre de Physique Théorique de Marseille (France) Observatoire de Paris, LUTH (France) [email protected] Abstract: I give a historical survey of the discussions about the existence of closed timelike curves in general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Gödel in his rotating universe model of 1949. I emphasize that journeying into the past is intimately linked to spacetime models devoid of timelike singularities. Since such singularities arise as an inevitable consequence of the equations of general relativity given physically reasonable assumptions, time travel in the past becomes possible only when one or another of these assumptions is violated. It is the case with wormhole-type solutions. S. Hawking and other authors have tried to save the paradoxical consequences of time travel in the past by advocating physical mechanisms of chronological protection; however, such mechanisms remain presently unknown, even when quantum fluctuations near horizons are taken into account. I close the survey by a brief and pedestrian discussion of Causal Dynamical Triangulations, an approach to quantum gravity in which causality plays a seminal role. Keywords: time travel; closed timelike curves; singularities; wormholes; Gödel’s universe; chronological protection; causal dynamical triangulations 1. Introduction In 1949, the mathematician and logician Kurt Gödel, who had previously demonstrated the incompleteness theorems that broke ground in logic, mathematics, and philosophy, became interested in the theory of general relativity of Albert Einstein, of which he became a close colleague at the Institute for Advanced Study at Princeton.
    [Show full text]
  • Light Rays, Singularities, and All That
    Light Rays, Singularities, and All That Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem. The article is based on lectures at the 2018 summer program Prospects in Theoretical Physics at the Institute for Advanced Study, and also at the 2020 New Zealand Mathematical Research Institute summer school in Nelson, New Zealand. Contents 1 Introduction 3 2 Causal Paths 4 3 Globally Hyperbolic Spacetimes 11 3.1 Definition . 11 3.2 Some Properties of Globally Hyperbolic Spacetimes . 15 3.3 More On Compactness . 18 3.4 Cauchy Horizons . 21 3.5 Causality Conditions . 23 3.6 Maximal Extensions . 24 4 Geodesics and Focal Points 25 4.1 The Riemannian Case . 25 4.2 Lorentz Signature Analog . 28 4.3 Raychaudhuri’s Equation . 31 4.4 Hawking’s Big Bang Singularity Theorem . 35 5 Null Geodesics and Penrose’s Theorem 37 5.1 Promptness . 37 5.2 Promptness And Focal Points . 40 5.3 More On The Boundary Of The Future . 46 1 5.4 The Null Raychaudhuri Equation . 47 5.5 Trapped Surfaces . 52 5.6 Penrose’s Theorem . 54 6 Black Holes 58 6.1 Cosmic Censorship . 58 6.2 The Black Hole Region . 60 6.3 The Horizon And Its Generators . 63 7 Some Additional Topics 66 7.1 Topological Censorship . 67 7.2 The Averaged Null Energy Condition .
    [Show full text]
  • Science Fiction Stories with Good Astronomy & Physics
    Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball.
    [Show full text]
  • Global Properties of Asymptotically De Sitter and Anti De Sitter Spacetimes
    Global properties of asymptotically de Sitter and Anti de Sitter spacetimes Didier A. Solis May, 17, 2006 arXiv:1803.01171v1 [gr-qc] 3 Mar 2018 Ad Majorem Dei Gloriam. To all those who seek to fulfill God's will in their lives. iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to: • My advisor Dr. Gregory Galloway, for his constant support and help. This dissertation would not had seen the light of day without his continued encour- agement and guidance. • Dr. N. Saveliev, Dr. M. Cai and Dr. O. Alvarez for their valuable comments and thorough revision of this work. • The Faculty and staff at the Math Department for all the knowledge and affec- tion they shared with me. • CONACYT (Consejo Nacional de Ciencia y Tecnolog´ıa)for the financial support granted to the author. • My family: Douglas, Rosalinda, Douglas Jr, Rosil´uand Josu´efor all their prayers and unconditional love. They are indeed the greatest blessing in my life. • All my friends, especially Guille, for always being there for me to share the struggles and joys of life. • To the CSA gang, for being a living example of faith lived in love and hope. • Last but by no means least, to God, without whom there is no math, laughter or music. iv Contents 1 Introduction 1 1.1 Lorentz vector spaces . 1 1.2 Spacetimes . 6 1.2.1 The Levi-Civita connection . 7 1.2.2 Covariant derivative . 11 1.2.3 Geodesics . 12 1.3 Causal theory . 15 1.3.1 Definitions . 15 1.3.2 Global causality conditions .
    [Show full text]