(7,N) Reaction in the Giant Resonance Region
Total Page:16
File Type:pdf, Size:1020Kb
SE0300210 LUNFD6-NFFR-- 1020 High-Resolution Measurement of the 4 He (7,n) Reaction in the Giant Resonance Region Bj6rn Nilsson Department of Physics Lund University 2003 Sr High-Resolution Measurement of the 'He(-y, n) Reaction in the Giant Resonance Region Bj6rn Nilsson Lund 2003 SI 27 LUND UNIVERSITY Akademisk avhandling som f6r avldggande av filosofie doktorsexamen vid Lunds Universitets matematisk-naturvetenskapliga fakultet offentli- gen kommer att f6rsvaras i f6reldsningssal B ph Fysiska Institutionen fredagen den 11 april 2003 klockan 13.15. Fakultetsopponent dr Profes- sor Gerald Feldman, The George Washington University, D C, USA. Division of Nuclear Physics Department of Physics S61vegata 14 S-223 62 Lund Sweden Copyright 2003 by Bj6rn Nilsson ISBN 91-628-5615-4 Printed in Sweden by Media-Tryck, Lund 2003 Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Physics Date of Issue 2003-03-19 Division of Nuclear Physics Box 118 Sponsoring organization SE-221 00 Lund, Sweden Author(s) Bjorn Nilsson Title and subtitle I-figh-Resolution. Measurement of the 4He(gn) Reaction in the Giant Resonance Region Abstract A comprehensive near-threshold 411e(gn) absolute cross section memurement has been performed at the high-resolution tagged-photon facility MAX-lab located in Lund. Sweden. The 23 < Eg < 42 MeV tagged photons (covering the Giant Dipole Resonance energy region) were directed towards a liquid 4He target, and knocked-out neutrons were detected in a pair of 60 cm x 60 cm vetoed NE213A liquid scintillator arrays. The intense and varying charge-neutral experimental backgrounds were carefully quantified and removed from the data using a precision fitting procedure. Eight average laboratory angles (30, 45, 60, 75, 90, 105, 120, and 135 deg) were investigated for eight photon energy bins (25, 27, 29, 31, 35, 36, 39, and 41 MeV), resulting in 64 differential cross sections. These angular distributions were integrated to produce total cross sections as a function of photon energy. The resulting cross sections peak at 1.9 mb at a photon energy of 27 MeV, and fall off to a near-constant value of 1.1 mb by 36 MeV. Further, they are in excellent agreement cm with those measured by Sims et al. using tagged photons in the Quasi-Deuteron energy region. Overall, the results favor modem theoretical models which are based upon a charge-symmetric nucleon- CA0 nucleon force, in marked contrast to the recommendations made by Calarco et al. in 1983 based on the 0 SPAM 411e(gn) data available at the time. Key words: photonuclear reactions, tagged photons, liquid helium, neutron detectors, liquid scintillators, giant resonances, differential cross sections, angular distributions, total cross sections Classification system and/or Index termes (if any): Supplementary bibliographical information: Language English ISSN and key tide: ISBN 91-629-5615-4 Recipient's notes Number of pages Price 238 Security classification Distribution by (name and address) 1,the undersigned being the copyright owner or the abstract of the above-mentioned dissertation hereby grant to all reference sources permission to publish and disseminate the abstract of the above-nientioned dissertation. Signature 0 __ '4), 7_ - Date 2003-03-19 Mguppl5sningsrnitning av 'He(,y, u)-reaktionen I jitteresonansomrAdet (populirvetenskaplig sammanfattning PA venska) Kfirnan kan ses som en samling nukleoner vilk hls umman av den starka kraften. Nukleonerna fir protoner (p) med laddning + 1 och neutroner (n) med laddaing 0. Kraften kan beskrivas som ett utbyte av mesoner sAsom pioner () vifim r6rekommer i tre laddningstiNtind 7r+, 7r- och 7rl (laddning + 1, -I och 0). Inuti kfirnan Nir sig nukleonerna och utbyt4%mesonerna vilket ger upphov till str6mmar. Fbtoner (vilka fir Uuspartiklar) med mycket kort vieingd och dirmed h6g energi, vixelverkar mod str6mmar och laddningar i kfirnan. Beroende pA fo- tonens vWfingd sker vfixelverkan mod antingen hela kfirnan (fotonenergi E 25 MeV), Muster i kfirnan (E., ft 50-100 MeV) eller enstaka nukleoner (&, sw 150 MeV). Sarmolikheten ffir att f6toner skaU vfixelverka mod kfirnan varierar med en- ergin och for Ifitta kfirnor har tvfirsnittet ett maximum kring 25 MeV. DA fotonen absorberw tiUfo-rs kfirnan energi vilken kan frig6ras genorn att emittera nukleoner eller Muster. Den lipta energitillf6rseln Mr att emittera t ex en neutron, tr8skeln f6r reaktionen, varierar frAn kfirna UR kfirna. I denna whandling har k&nan 'He anviints som strilmfil och reaktionen 'He(-y, n) studerats i energiomridet 23 MeV (nixa tr6skeln) UH 42 MeV. ldre mfitningar av detta tvirsnitt har resulterat i Airden kring 26 MeV sorn varierar meflan ca I och 2 mb I 6religgande studie, som fir den f6rsta att anviinda monoenergetiska f6toner (fotoner med Wind energi) i detta energiomride, efft&ns tvArsnittet vid 27 MeV till 19 mb. Detta virde stimmer AU med motsvarande tvArsnitt f6r att emitters en proton isWlet Mr en neutron. Detta fdrh&Uande ffirvAntas om kraften mellan ukleonerna ir laddningooberoende. Resultatet av fo-religgande experiment, som har utfo-rts vid MAX-laboratoriet i Lund, stAmmer A med moderna teoretiska berikningar Mr litta kixnor. F6rutom totala tviranittet har tvfirsnittet som funktion av emissionsvinkel (differentieUt tv&snitt) bestfimts vilket ger ytterligare upplysniagar om reaktionen. Contents Preface ix Acknowledgments xi List of Tables xiii List of Figures xvii List of Abbreviations xxi 1 Introduction 1 1.1 Historical overview ........................... 1 1.2 Photonuclear physics .......................... 1 1.2.1 The Giant Resonance region ................. 2 1.2.2 The Quasi-Deuteron, Isobar, and Shadow regions . 3 1.3 Photonuclear reaction models . 3 1.3.1 The Viscous Hydro-Dynamical Model . 4 1.3.2 The Fluid-Dynamical Model . 4 1.3.3 The Random Phase Approximation (RPA) Model . 4 1.4 Giant multipole resonances . 5 1.5 Giant multipole transitions . 6 1.6 Charge Symmetry of the nuclear force . 7 1.7 The Calarco Group review in 1983 . 8 1.7.1 The experimental situation . 8 1.7.2 The theoretical situation . 11 1.8 The situation after 1983 . 11 1.8.1 The experimental situation . 12 1.8.2 The theoretical situation . 13 1.9 Motivation for this experiment . 13 2 Experimental Setup 15 2.1 Overview . 15 2.1.1 Accelerator system . 16 2.2 Experimental hall . 17 2.2.1 The tagging spectrometer . 18 2.2.2 The tagged photon beam . 19 2.2.3 The collim ator . 19 2.2.4 The photon-beam monitor . 21 v vi CONTENTS 2.2.5 The cryogenic liquid helium target . 22 2.2.6 The neutron detectors . 24 2.3 Measurement technique . 27 2.3.1 Coincidence measurement . 27 2.3.2 TOF measurement . 28 2.3.3 To and T, measurement . 29 2.3.4 Tagging-efficiency measurement . 32 2.4 Electronics . 33 2.4.1 Pulse-Shape Discrimination (PSD) . 33 2.4.2 Electronics setup for the 4He (-y, n) measurement . 35 2.4.3 Data-acquisition system . 37 3 Data Analysis 39 3.1 Overview . 39 3.2 Focal-Plane Energy Calibration . 42 3.3 Focal-Plane Multiplicity . 43 3.4 Focal-Plane TDC Time Calibration . 44 3.5 TO-Alignment . 47 3.5.1 Aligning the focal-plane detectors (FPDs) . 47 3.5.2 Aligning the neutron detectors . 48 3.5.3 The complete aligning . 49 3.6 Neutron-Detection Efficiency . 51 3.6.1 The calibration sources . 51 3.6.2 Aligning the source spectra . 52 3.6.3 The gain calibration . 54 3.6.3.1 The Knox Method and the Flynn Method . 55 3.6.3.2 The gain . 58 3.6.4 The Stanton code . 63 3.6.5 The Stanton code for the 4He(-y, n) measurement . 63 3.6.5.1 Relating MeVe to MeV . 64 3.6.5.2 Threshold effects . 64 3.6.6 Stanton-weighted detection efficiency (6n)," . 67 3.7 The 'He(,y, n) Yield . 68 3.7.1 The TOF spectra . 68 3.7.1.1 Full-target scatterplot spectra . 68 3.7.1.2 Full-target TOF spectra . 70 3.7.1.3 Empty-target TOF spectra . 73 3.7.2 The background-reduced TOF spectra . 73 3.7.2.1 Background fit . 74 3.7.3 Yield spectra . 79 3.7.4 Stanton-weighted detection efficiency (E.)a . 83 3.8 Live Time . 85 3.8.1 Live-time efficiency 61i . 85 3.8.2 Alternative methods . 88 3.8.2.1 The Bock method . 88 3.8.2.2 The Sims method . 88 3.9 Duty Factor df . 89 CONTENTS vii 3.10 Stolen Coincidences . 93 3.11 Atomic-Photon Attenuation . 95 3.11.1 Effective target thickness xff . 95 3.11.2 Effective target thickness xff for the 4He target . 96 3.11.2.1 The liquid helium in the target cell . 96 3.11.2.2 The aluminum and Kapton foils . 97 3.12 Neutron Attenuation An . 99 3.12.1 Transmission-efficiency factor eff . 99 3.12.2 Gaussian-weighted transmission efficiency (Tff )a . 104 3.12.3 The 252Cf-measured transmission efficiency (,rff ).. 106 3.13 Solid Angle . 107 3.13.1 Geometrical-efficiency factor 60 . 107 3.13.2 Fractional solid angle AQ . 109 3.13.3 Configured fractional solid angle AQ . 110 3.14 Number of Tagged Photons . 112 3.14.1 Number of recoil electrons N . 112 3.14.1.1 Behavior of the FPDs along the focal plane . 113 3.14.1.2 Behavior of the FPDs with time . 114 3.14.2 Tagging efficiency Etagg . 115 3.14.2.1 Stability in the tagging efficiency along the focal plane 118 3.14.2.2 Stability in the tagging efficiency with time . 119 3.15 The Liquid Helium Density . 122 3.15.1 The density-related target thickness rH . 122 3.15.2 Density correction for boiling liquid helium .