WO 2U12/U184U3 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2U12/U184U3 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date i 9 February 2012 (09.02.2012) WO 2U12/U184U3ft Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08G 77/50 (2006.01) C08L 83/14 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/001393 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 4 August 201 1 (04.08.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/371,079 5 August 2010 (05.08.2010) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): kind of regional protection available): ARIPO (BW, GH, BIOFILM IP, LLC [US/US]; 990 Ironwood Drive, Min- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, den, NV 89423 (US). ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventors; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (75) Inventors/ Applicants (for US only): WRAY, Daniel, X. LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, [US/US]; P.O. Box 2649, Minden, NV 89423 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, HALSDORFF, Michael, B. [US/US]; 530 Whitesage GW, ML, MR, NE, SN, TD, TG). Road, San Marcos, CA 92078 (US). DE ARMOND, Robert, L. [US/US]; 42790 Calle Montecillo, Temecula, Declarations under Rule 4.17 : CA 92590 (US). — as to the applicant's entitlement to claim the priority of (74) Agents: SEIDMAN, Stephanie, L. et al; McKenna Long the earlier application (Rule 4.17(Hi)) & Aldridge LLP, 4435 Eastgate Mall, Suite 400, San Published: Diego, CA 92121 (US). — with international search report (Art. 21(3)) o 0 0 (54) Title: CYCLOSILOXANE-SUBSTITUTED POLYSILOXANE COMPOUNDS, COMPOSITIONS CONTAINING THE COMPOUNDS AND METHODS OF USE THEREOF o (57) Abstract: Provided herein are cyclosiloxane-substituted polysiloxane compounds, compositions that include the polysiloxane compounds, and methods for preparation and use of the polysiloxane compounds. Provided are mechanical lubricant composi tions, hydraulic fluid compositions, anti-foam compositions, water repellant agent compositions, release agent compositions, per sonal care compositions, cosmetic compositions and household care compositions that include one or more of the cyclosiloxane- substituted polysiloxane compounds provided herein. CYCLOSILOXANE-SUBSTITUTED POLYSILOXANE COMPOUNDS, COMPOSITIONS CONTAINING THE COMPOUNDS AND METHODS OF USE THEREOF Related Applications Benefit of priority is claimed to U.S. Provisional Application No. 61/371,079 to Daniel X. Wray, Robert L. De Armond and Michael B. Halsdorff, entitled "CYCLOSILOXANE-SUBSTITUTED POLYSILOXANE COMPOUNDS, COMPOSITIONS CONTAINING THE COMPOUNDS AND METHODS OF USE THEREOF," filed August 5, 2010. This application also is related to corresponding U.S. Patent Application No. [Attorney Docket No. 33348.09796.US01 / 9796], filed the same day herewith, entitled "CYCLOSILOXANE-SUBSTITUTED POLYSILOXANE COMPOUNDS, COMPOSITIONS CONTAINING THE COMPOUNDS AND METHODS OF USE THEREOF," which also claims priority to U.S. Provisional Application Serial No. 61/371,079. Where permitted, the subject matter of each of the above-referenced applications is incorporated by reference in its entirety. Field Provided herein are cyclosiloxane-substituted silicone compounds, compositions that include cyclosiloxane-substituted silicone compounds, and methods for use thereof, including in personal care and cosmetic compositions, release agent compositions, anti- foam compositions, personal lubricant compositions, and in lubricant compositions for reduction of friction in mechanical applications, including as silicone lubricant compositions for lubricating hard metal surfaces or soft metal surfaces. Background Organosilicone compounds and their use are well known in the art. Among the uses of organosilicone compounds are as lubricants, anti-foam agents, release agents, and for applications including cosmetics and personal care compositions, household products, in personal lubricant compositions, and as lubricants in mechanical applications and as hydraulic fluids. U.S. Pat. No. 4,514,319 describes alkyl and polyether functional silicones for the reduction of the surface tension of hydrocarbon oils when they are used in connection with organosilicones. U.S. Pat. No. 5,645,842 describes cosmetic and pharmaceutical preparations. Silicone lubricants are well known for hard metal surfaces. Such silicone lubricants usually contain an organopolysiloxane polymer which may be dimethylpolysiloxane polymer, a methyl or chlorophenyl or tetrachlorophenyl substituted polysiloxane polymer. Also, there are silicone lubricants in which the base lubricating fluid is composed of a trifluoropropyl substituted organopolysiloxane polymer. U.S. Pat. 2,837,482 describes dimethyl-polysiloxanes with various chlorinated additives for lubricating hard metal surfaces. Although methyl- and di-methylpolysiloxanes can be used as lubricants, it often is necessary to also add a chlorinated additive. Conventional chloride additives also are added to methyl tetrachlorophenyl substituted polysiloxanes to form ferrous chloride hydrate compounds at the surface of the hard metal which is being lubricated so that the oxy chloride will shear off under stress and prevent undue wear against the hard metal surface (e.g., see U.S. Pat. No. 4,138,349). Accordingly, a need exists for a polysiloxane that does not require a chlorine additive in order to function as an effective lubricant for hard or soft metals. Silicone fluids also are known to be beneficial in release coatings (e.g., see U.S. Pat. Nos. 3,933,702, 4,256,870 and 4,413,086). Silicone based release coatings are useful in applications where relatively non-adhesive surfaces are required. Single sided liners, for example, backing papers for pressure sensitive adhesive labels, are usually adapted to temporarily retain the labels without affecting the adhesive properties of the labels. Double sided liners, for example, interleaving papers for double sided and transfer tapes, are used to ensure the protection and desired unwind characteristics of a double sided self-adhesive tape or adhesive film. Improvements in the performance of release coatings are continuously being sought with respect to, for example, ease of cure, i.e. the decrease in cure times at relatively low temperatures, release performance and anchorage of coatings to various substrates, including polypropylene, polyethylene and polyester as well as paper and metals. Accordingly, a need exists for a silicone based release coating with improved release performance. Silicone fluids also are used in hydraulic fluids (e.g., see U.S. Pat. Nos 3,759,827 and 5,130,041). Hydraulic systems, in which power is transferred from one place to another, are used extensively in industrial equipment, farm equipment, and transportation equipment. Examples of such equipment are lifters, jacks, elevators, mills, presses, and braking and power steering systems for vehicles. High pressures and temperatures, which are frequently present in hydraulic systems, place high demands on the thermal and oxidative stability of the fluid used as the hydraulic medium. In addition, the lubricity of the hydraulic fluid is especially important with hydraulic systems where a pump is used to pressurize or move the hydraulic fluid from one place to another. Polyorganosiloxanes have been recognized as having exceptional thermal and oxidative stability, compatibility with seal materials, and high viscosity indices, and properties make polyorganosiloxanes useful as hydraulic fluids. Many of the polyorganosiloxanes known in the art generally exhibit low surface tension, which tends to cause them to have marginal lubricity on metals. Many applications of hydraulic fluids require that the viscosity of the fluid change as little as possible over the intended operating temperature range. Many of the known polyorganosiloxanes exhibit viscosity variation as a function of temperature relative to organic oils. This property makes many of the polyorganosiloxanes unsuitable for use as hydraulic fluids. Accordingly, a need exists for a polysiloxanes that exhibit low viscosity variation as a function of temperature and good thermal and oxidative stability for use as a hydraulic fluid. Silicones are widely used as anti-foaming agents. Examples of silicone anti- foaming compositions are for instance to be found in U. S. Pat. Nos. 2,894,913; 3,423,340; 3,076,768 and 3,856,701. Dimethylpolysiloxane polymers are widely known in the silicone industry for use as anti-foam agents. The chemical, food, petroleum, textile and pharmaceutical industries in many cases during the processing of material experience the undesirable formation of foam in some parts of its processes. A foam is formed when the rate of decay of foam is slower than the creation of new foam bubbles. Accordingly, when you have such a condition in a chemical or mechanical process there results the creation of an ever increasing foam, which is so stabilized that it does not decay very rapidly. It is desirable to remove or reduce the foaming in many processes, since the unwanted foam may create a hazard, such as fires hazard, or the foam can take up a considerable amount of space, thus requiring more space in which to carry out the process. Further, the presence of foam may make the process itself difficult to operate efficiently. In such cases, it is desirable to use some means of reducing or completely removing the foam.
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • Design, Synthesis, Characterization and Biological Evaluation of Some Novel Cinnolo Piperazine Derivatives
    Innovare International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 6, Issue 5, 2014 Academic Sciences Original Article DESIGN, SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF SOME NOVEL CINNOLO PIPERAZINE DERIVATIVES SHRUTI VARSHNEY*, DR.VIKAS SAXENA Rakshpal Bahadur College of pharmacy Bareilly, Uttar Pradesh, India. Email: [email protected] Received: 12 Mar 2014 Revised and Accepted: 02 Apr 2014 ABSTRACT Objective: To design and synthesize a series of substituted 4-(p-amino piperazine) cinnoline-3- carboxamide derivatives and evaluate for anti- microbial activity. Method: A novel series of substituted 4-(p-amino piperazine) cinnoline-3- carboxamide (4a-g) derivatives were synthesized by reacting substituted 4-amino cinnoline 3-carboxamide (3a-g) with DMF and o-chloro piperazine. Substituted 4-amino cinnoline 3-carboxamide (3a-g) were synthesized by reaction of substituted phenyl hydrazono cyano acetamide (2a-g) with anhydrous AlCl 3 and chlorobenzene in nitrogenous environment. Substituted phenyl hydrazono (cyano) acetamide was synthesized by reaction of substituted aniline diazonium chloride (1a-g) with CH 3COONa and ethanol. Substituted aniline diazonium chloride were synthesized by substituted aniline with conc HCl. and sodium nitrite .The synthesized compounds were characterized by IR, NMR and Mass spectral data. The synthesized compounds were screened for their antibacterial and antifungal activity against 4 pathogenic bacteria and 2 pathogenic funguses. Results : The compound 4a , 4c and 4g shows potent antimicrobial activity in comparison to standard drugs while other compounds showed moderate activity. Further all the compounds are obtained in good purity. Conclusion : All the compounds synthesized were checked for their purity and spectral analysis shows their structural confirmation.
    [Show full text]
  • Synthesis and Biological Evaluation of Isatin Incorporated Quinoxalines As Anti-Tubercular Agents
    Int. J. Pharm. Sci. Rev. Res., 47(2), November - December 2017; Article No. 13, Pages: 67-70 ISSN 0976 – 044X Research Article Synthesis and Biological Evaluation of Isatin incorporated Quinoxalines as Anti-Tubercular Agents 1* 1 1 1 1 2 U. Usha Rani , P. Sivappa Naidu , G. Sukanya , P. Sri Datha , S. Pramod Kumar , Venkata Rao Vutla* 1 Department of Pharmaceutical Chemistry, Riper, Ananthapur, AP, India. 2 Department of Pharmaceutical Chemistry, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Guntur, AP, India. *Corresponding author’s E-mail: [email protected] Received: 07-11-2017; Revised: 28-11-2017; Accepted: 13-12-2017. ABSTRACT Heterocyclic compounds are very much used as therapeutic agents. Indole, an important class of nitrogen, containing heterocyclic with wide variety of biological activities. Isatin is a derivative of indole which is indole-2, 3 Dione. Isatin is reported for anti- tubercular activity. Quinoxaline is also reported for various biological activities. So, a scheme was designed and isatin incorporated quinoxaline were prepared to improve biological activity. In the present research isatin incorporated quinoxaline (1, 1A, 1B and 1C) were prepared, and were characterized by using TLC, IR, NMR and MASS spectral data. They were evaluated for anti-tubercular activity. Among those derivatives, compound 1 showed good activity. Keywords: Isatin, tubercular activity, Quinoxaline. INTRODUCTION Isatis tinctoria and Calanthe discolor. It has also been found as a component of the secretion from the parotid eterocyclic compounds play a major role in gland of Bufo frogs, and in humans as it is a metabolic medicinal chemistry and synthesis of drugs. derivative of adrenaline Isatin belongs to the class of Modification of the structure of heterocyclic H organic compounds known as Indolines.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.465,798 B2 Kaila Et Al
    USOO7465.798B2 (12) United States Patent (10) Patent No.: US 7.465,798 B2 Kaila et al. (45) Date of Patent: Dec. 16, 2008 (54) METHODS AND COMPOSITIONS FOR Lisowski et al., “Efficient synthesis of novel 3-(Het)arylanthranilic SELECTIN INHIBITION acids via a Suzuki cross-coupling reaction of 7-iodoisatin with (Het)arylboronic acids in water'.J. Org. Chem. (2000)65:4193-4194. (75) Inventors: Neelu Kaila, Lexington, MA (US); Molenaar et al., “P-selectin as a candidate target in atherosclerosis' Silvano L. Debernardo, Verona, NJ Biochem. Pharmacol. (2003) 66:859-866. (US); Kristin M. Jantz, Arlington, MA Pouyani et al., “PSGL-1 recognition of P-selectin is controlled by a (US); Raymond T. Camphausen, tyrosine sulfation consensus at the PSGL-1 amino terminus' Cell (1995) 83(2):333-343. Wayland, MA (US); Patricia W. Rewcastle et al., “Potential antitumor agents. 61. Structure-activity Bedard, Mansfield, MA (US); Adrian relationships for in vivo colon38 activity among disubstituted 9-oxo Huang, Lexington, MA (US) 9H-xanthene-4-acetic acids.” J. Med Chem. (1991) 34:217-222. Sako et al., “A Sulfated peptide segment at the amino terminus of (73) Assignee: Wyeth, Madison, NJ (US) PSGL-1 is critical for P-selectin binding Cell (1995)83(2):323-331. Scalia et al., “Effect of recombinant soluble P-selectinglycoprotein (*) Notice: Subject to any disclaimer, the term of this ligand-1 on leukocyte-endothelium interaction in vivo. Role in rat patent is extended or adjusted under 35 traumatic shock” Circ. Res. (1999) 84(1):93-102. U.S.C. 154(b) by 531 days.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • Haloselectivity of Heterocycles Will Gutekunst
    Baran Group Meeting Haloselectivity of Heterocycles Will Gutekunst Background SN(ANRORC) Addition of Nuclophile, Ring Opening, Ring Closure Polysubstituted heterocycles represent some of the most important compounds in the realm of pharmaceutical and material sciences. New and more efficient ways to selectively produce these Br Br molecules are of great importance and one approach is though the use of polyhalo heterocycles. Br NaNH2 N N Consider: Ar N 3 Ar2 NH3(l), 90% NH2 3 Halogenations H NH2 H N CO2Me Ar H 3 Suzuki Couplings 1 N CO2Me - Br H Ar 3 Ar2 1 Triple Halogenation NH2 NH CO Me N N 2 Ar1 H 1 Triple Suzuki Coupling N CO2Me N NH H NH2 Ar H 3 Ar2 1 Triple C-H activation? CO Me N 2 Ar1 H N CO2Me Cross Coupling H Virtually all types of cross coupling have been utilized in regioselective cross coupling reactions: Nucleophilic Substitution Kumada, Negishi, Sonogashira, Stille, Suzuki, Hiyama, etc. SNAr or SN(AE) In all of these examples, the oxidative addition of the metal to the heterocycle is the selectivity determining steps and is frequently considered to be irreversible. This addition highly resembles a nucleophilic substitution and it frequently follows similar regioselectivities in traditional S Ar reactions. Nu N The regioselectivity of cross coupling reaction in polyhalo heterocycles do not always follow the BDE's Nu of the corresponding C-X bonds. N X N X N Nu 2nd 2nd Meisenheimer Complex 1st Br Br 88.9 83.2 S (EA) Br 88.9 N 87.3 Br O O via: st OMe 1 Br NaNH , t-BuONa 2 N N pyrrolidine + Merlic and Houk have determined that the oxidative addition in palladium catalyzed cross coupling N N THF, 40ºC N reactions is determined by the distortion energy of the C-X bond (related to BDE) and the interaction of N the LUMO of the heterocycle to the HOMO of the Pd species.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0090559 A1 Berger Et Al
    US 20050090559A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0090559 A1 Berger et al. (43) Pub. Date: Apr. 28, 2005 (54) HETEROCYCLICALLY-SUBSTITUTED (30) Foreign Application Priority Data PENTANOL DERIVATIVES, PROCESS FOR THER PRODUCTION AND THEIR USE AS Jul. 1, 2003 (DE)..................................... 103 30 358.8 ANTI-NFLAMMATORY AGENTS Oct. 6, 2003 (DE)..................................... 103 46939.7 (76) Inventors: Markus Berger, Berlin (DE); Stefan Publication Classification Baeurle, Berlin (DE); Hartmut Rehwinkel, Berlin (DE); Norbert Schmees, Berlin (DE); Heike (51) Int. Cl." ..................... A61K 31/495; A61K 31/135; Schaecke, Berlin (DE); Manfred A61K 31/275 Lehmann, Berlin (DE); Konrad Krolikiewicz, Berlin (DE); Arndt (52) U.S. Cl. ........................... 514/651; 564/357; 514/523 Schottelius, Belvedere (CA); Duy Nguyen, Berlin (DE); Anne Mengel, Berlin (DE); Stefan Jaroch, Berlin (57) ABSTRACT (DE) Correspondence Address: The invention relates to pentanol derivatives of general MILLEN, WHITE, ZELANO & BRANIGAN, formula I P.C. 2200 CLARENDON BILVD. SUTE 1400 (I) ARLINGTON, VA 22201 (US) (21) Appl. No.: 10/882,103 (22) Filed: Jul. 1, 2004 Related U.S. Application Data that are Substituted by quinazoline, quinoxaline, cinnoline, indazole, phthalazine, naphthyridine, benzothiazole, dihy (60) Provisional application No. 60/483,907, filed on Jul. droindolone, dihydroisoindolone, benzimidazole or indole, a 2, 2003. Provisional application No. 60/510,085, filed process for their production and their use as anti-inflamma on Oct. 10, 2003. tory agents. US 2005/0090559 A1 Apr. 28, 2005 HETEROCYCLICALLY-SUBSTITUTED PENTANOL and/or carbon atoms are linked to directly adjacent DERIVATIVES, PROCESS FOR THEIR ring-carbon atoms, or NR'R'', whereby R' and R, PRODUCTION AND THEIR USE AS independently of one another, can be hydrogen, ANTI-INFLAMMATORY AGENTS C-C-alkyl or (CO)-C-C-alkyl, 0001.
    [Show full text]
  • World Journal of Pharmaceutical Research SJIF Impact Factor 8.084 Logeshkumar Et Al
    World Journal of Pharmaceutical Research SJIF Impact Factor 8.084 Logeshkumar et al. World Journal of Pharmaceutical Research Volume 9, Issue 3, 1289-1296. Research Article ISSN 2277– 7105 SYNTHESIS AND EVALUATION OF DERIVATIVES OF HETEROCYCLE CINNOLINE Dr. P.R. Logeshkumar*1, Dr. P. Vasanthkumar2, K. Tharangini3, K. Priyanka3, M. Sunanda3, J. Manjula3 S. Varun Kumar3, V. Hareeshkumar3, M. Chandrashekar3, M. Madhu Sudhana3 1Associate Professor, Department of Pharmaceutical Chemistry, Sri Krishna Chaithanya College of Pharmacy, Nimmanapalli Road, Madanapalle, Chittoor (Dt), Andhra Pradesh- 517325, India. 2Professor and Principal, Sri Krishna Chaithanya College of Pharmacy, Nimmanapalli Road, Madanapalle, Chittoor (Dt), Andhra Pradesh-517325, India. 3B. Pharmacy, Sri Krishna Chaithanya College of Pharmacy, Nimmanapalli Road, Madanapalle, Chittoor (Dt), Andhra Pradesh-517325, India. ABSTRACT Article Received on 7 Jan. 2020, Cinnoline is also known as 1,2 diazanaphthalene or benzo-1,2 – Revised on 28 Jan. 2020, diazene. Cinnoline itself is toxic. cinnoline nucleus is very important Accepted on 18 Feb. 2020 DOI: 10.20959/wjpr20203-16932 bicyclic heterocycle that is used as the structural sub unit of many compounds. Cinnoline derivatives exhibit broad spectrum of pharmacological activities such as antibacterial, antifungal, *Corresponding Author antimalarial, anti inflammatory, analgesic, anxiolytic and antitumour Dr. P. R. Logesh Kumar Department of activites. It is soluble in water, ethanol, methanol, DMSO, and DMF. It Pharmaceutical Chemistry, is a pale yellow solid of geranium like odour. The starting compound Sri Krishna Chaithanya of cinnoline is Aniline and Sodium nitrite. Some of the cinnoline College of Pharmacy, derivatives are 4-phenyl cinnoline, Ethyl cinnoline, Methyl cinnoline, Nimmanapalli Road, Cinoxacin. Madanapalle, Chittoor (Dt), Andhra Pradesh -517325, KEYWORDS: 1,2-diazanaphthalene, Heterocycle, Anti-fungal, Anti- India.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • Characteristic List (PDF)
    State of Alaska, Environmental Conservation Water Info Mgt 907-465-5153 Substance/Characteristic Name EPA Substance Registry ID (-)-cis-Permethrin 963314 (-)-trans-Permethrin 963322 (3-Bromopropyl)benzene 65862 2-Chloro-1-phenylethanol 961524 .alpha.,.alpha.-Dimethylphenethylamine 32128 .alpha.-Chlordene 694141 .alpha.-Endosulfan 75333 .alpha.-Hexachlorocyclohexane 42184 .alpha.-Methylstyrene 18317 .alpha.-Nitrotoluene 961201 .alpha.-Terpineol 18127 .beta.-Chlordene 694158 .beta.-Endosulfan 263996 .beta.-Hexachlorocyclohexane 42192 .delta.-Hexachlorocyclohexane 42200 .gamma.-Butyrolactone 16873 .gamma.-Chlordene 694174 Acetovanillone 48074 1,1,1,2-Tetrachloroethane 65102 1,1,1-Trichloro-2-propanone 650242 1,1,1-Trichloroethane 4796 CFC-113a 43570 1,1,2,2-Tetrabromoethane 7716 1,1,2,2-Tetrachloroethane 7773 1,1,2-Trichloroethane 7518 1,1'-Binaphthalene 58701 1,1-Dichloroethane 5520 1,1-Dichloroethylene 5538 1,1-Dichloropropane 7500 1,1-Dichloropropanone 650184 1,1-Dichloropropene 54676 1,1-Dimethylcyclopropane 961516 1,1'-Oxybis[3-chloropropane] 64733 1,2,3,4,5,6-Hexachlorocyclohexane 59220 1,2,3,4,6,7,8,9-Octachlorodibenzofuran 278218 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin 113837 1,2,3,4,6,7,8-Heptachlorodibenzofuran 358382 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin 270140 1,2,3,4,7,8,9-Heptachlorodibenzofuran 304782 1,2,3,4,7,8-Hexachlorodibenzofuran 525212 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 711986 1,2,3,4-Tetrachlorobenzene 65441 1,2,3,4-Tetrahydronaphthalene 30783 1,2,3,4-Tetramethylbenzene 47365 1,2,3,5-Tetrachlorobenzene 65458
    [Show full text]
  • Synthesis, Characterisation and Biological Evaluation Of
    ry: C ist urr m en e t Prabhakar et al., Organic Chem Curr Res 2016, 5:4 h R C e c s i e n DOI: 10.4172/2161-0401.1000174 a a r Organic Chemistry c g r h O ISSN: 2161-0401 Current Research ResearchResearch Article Article Open Accesss Synthesis, Characterisation and Biological Evaluation of Quinazoline Derivatives as Novel Anti-Microbial Agents Prabhakar V1*, Sudhakar BK2, Ravindranath LK2, Latha J3 and Venkateswarlu B4 1Faculty of Engineering Chemistry, SVR Engineering College, Jawaharlal Nehru Technological University - Ananthapuramu (JNTU-A), Nandyal, Kurnool District, Andhra Pradesh, India 2Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India 3Department of Environmental Science, Sri Krishnadevaraya University College of Engineering and Technology, Ananthapuramu, Andhra Pradesh, India 4Jawaharlal Nehru Technological University (JNTU-A), Kavali, Nellore District, Andhra Pradesh, India Abstract A novel series of Quinazolines were synthesised by cyclisation reaction of Anthranilic acid with urea to get 2,4 di hydroxy quinazoline (2) intermediate, which were further treated with POCl3 to get 2,4 di chloro quinazoline (3), which was treated with Thio-morpholine (4) for 3 hrs to get compounds (5), which are reacted with aqueous ammonia to get compound(6), which was further reacts with different boronic acids 7(a-j) by using Chan-Lam coupling reaction conditions to get Target Novel Quinazoline derivatives (8a-8j). The structures of new compounds were confirmed by IR and 1H NMR and 13C NMR spectral data. Anti-bacterial and anti-fungal activities were evaluated and compared with the standard drugs, compounds 8i, 8d, 8h, 8g exhibited promising anti-microbial and anti-fungal activity compared to standard drugs.
    [Show full text]
  • Table of Contents
    World Journal of Pharmaceutical Research Pankaj et al. World Journal of Pharmaceutical SJIF ImpactResearch Factor 6.805 Volume 5, Issue 8, 737-743. Research Article ISSN 2277– 7105 SYNTHESIS AND EVALUATION OF ANTHELMINTIC ACTIVITY OF SOME SUBSTITUTED CINNOLOTHIOPHENE DERIVATIVES Pankaj Shankhdhar*1 and Vikas Saxena1 1Rakshpal Bahadur College of Pharmacy, Near ITBP campus, Bareilly, (U.P.) PIN-243001. ABSTRACT Article Received on 24 May 2016, Cinnoline are the six membered heterocyclic compound found to elicit Revised on 14 June 2016, Accepted on 04 July 2016 many pharmacological actions like anti-hypertensive, antithrombotic, DOI: 10.20959/wjpr20168-6706 antihistamine, antileukemic, CNS activity, anti tumor, antibacterial and antisecretory activity. Similarly thiophene moiety is well known for *Corresponding Author their therapeutic values. Study was aimed to synthesize some cinnoline Pankaj Shankhdhar derivatives from substituted anilines and these substituted cinnolines Rakshpal Bahadur College are further condensed with thiophene moiety and further evaluated of Pharmacy, Near ITBP these substituted cinnolothiophene derivatives for biological activity. campus, Bareilly, (U.P.) PIN-243001. KEY WORDS: Cinnoline, Aniline, Anthelmintic activity. INTRODUCTION The approach to the practice of medicinal chemistry has developed extensively involving synthesis of new organic compounds based on modification of naturally available compounds of biological interest. Cinnolines are the six-membered heterocyclic compounds having two hetero atoms in the ring. They are also called as 1,2- benzodiazines or benzopyridazine or 1,2- diazanaphthalene or phenodiazine[1]. V. Von. Richter (1883) prepared cinnoline derivatives by the diazotization of o-aminoaryl propiolic acids(1) or o-amino aryl acetylenes followed by hydration and cyclization. Thiophene is a heterocyclic compound with the formula C4H4S.
    [Show full text]