Conservation Area with an Emphasis on Endemic Species * D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WRA Species Report
Family: Anacardiaceae Taxon: Spondias purpurea 'Wild Type' Synonym: Spondias cirouella Tussac Common Name: Hog plum Purple mombin Red mombin Spanish plum Jocote Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 5 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic -
Molecular Systematics of the Cashew Family (Anacardiaceae) Susan Katherine Pell Louisiana State University and Agricultural and Mechanical College
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Molecular systematics of the cashew family (Anacardiaceae) Susan Katherine Pell Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Pell, Susan Katherine, "Molecular systematics of the cashew family (Anacardiaceae)" (2004). LSU Doctoral Dissertations. 1472. https://digitalcommons.lsu.edu/gradschool_dissertations/1472 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. MOLECULAR SYSTEMATICS OF THE CASHEW FAMILY (ANACARDIACEAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Susan Katherine Pell B.S., St. Andrews Presbyterian College, 1995 May 2004 © 2004 Susan Katherine Pell All rights reserved ii Dedicated to my mentors: Marcia Petersen, my mentor in education Dr. Frank Watson, my mentor in botany John D. Mitchell, my mentor in the Anacardiaceae Mary Alice and Ken Carpenter, my mentors in life iii Acknowledgements I would first and foremost like to thank my mentor and dear friend, John D. Mitchell for his unabashed enthusiasm and undying love for the Anacardiaceae. He has truly been my adviser in all Anacardiaceous aspects of this project and continues to provide me with inspiration to further my endeavor to understand the evolution of this beautiful and amazing plant family. -
Molecular Phylogeny and Chromosomal Evolution of Endemic Species of Sri Lankan Anacardiaceae
J.Natn.Sci.Foundation Sri Lanka 2020 48 (3): 289 - 303 DOI: http://dx.doi.org/10.4038/jnsfsr.v48i3.9368 RESEARCH ARTICLE Molecular phylogeny and chromosomal evolution of endemic species of Sri Lankan Anacardiaceae M Ariyarathne 1,2 , D Yakandawala 1,2* , M Barfuss 3, J Heckenhauer 4,5 and R Samuel 3 1 Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya. 2 Postgraduate Institute of Science, University of Peradeniya, Peradeniya. 3 Department of Botany and Biodiversity Research, University of Vienna, Austria. 4 LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG), Frankfurt, Germany. 5 Department of Terrestrial Zoology, Entomology III, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany. Received: 14 August 2019; Revised: 29 January 2020; Accepted: 29 May 2020 Abstract: Family Anacardiaceae comprises 70 genera and approximately 985 species distributed worldwide. INTRODUCTION Sri Lanka harbours 19 species in seven genera, among these 15 are endemics. This study focuses on regionally restricted Family Anacardiaceae R. Br., the cashew family, contains endemics and native Anacardiaceae species, which have not 70 genera harbouring 985 species of trees, shrubs and been investigated before at molecular and cytological level. subshrubs. The members are well known for causing Nuclear rDNA ITS and plastid matK regions were sequenced contact dermatitis reactions. They occupy a considerable for ten species, having nine endemics and one native, and fraction of the tropical fl ora dispersed in tropical, incorporated into the existing sequence data for phylogenetic subtropical and temperate regions holding Malaysian analyses. The topologies resulting from maximum parsimony, region as the center of diversity (Li, 2007; Pell et al ., maximum likelihood and Bayesian inference are congruent. -
Comparative and Evolutionary Genomics of Angiosperm Trees Plant Genetics and Genomics: Crops and Models
Plant Genetics and Genomics: Crops and Models 21 Andrew Groover Quentin Cronk Editors Comparative and Evolutionary Genomics of Angiosperm Trees Plant Genetics and Genomics: Crops and Models Volume 21 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 [email protected] Andrew Groover • Quentin Cronk Editors Comparative and Evolutionary Genomics of Angiosperm Trees [email protected] Editors Andrew Groover Quentin Cronk Pacific Southwest Research Station Department of Botany United States Forest Service University of British Columbia Davis, CA Vancouver, BC USA Canada ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49327-5 ISBN 978-3-319-49329-9 (eBook) DOI 10.1007/978-3-319-49329-9 Library of Congress Control Number: 2017955083 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants
Mycorrhiza (2006) 16: 299–363 DOI 10.1007/s00572-005-0033-6 REVIEW B. Wang . Y.-L. Qiu Phylogenetic distribution and evolution of mycorrhizas in land plants Received: 22 June 2005 / Accepted: 15 December 2005 / Published online: 6 May 2006 # Springer-Verlag 2006 Abstract A survey of 659 papers mostly published since plants (Pirozynski and Malloch 1975; Malloch et al. 1980; 1987 was conducted to compile a checklist of mycorrhizal Harley and Harley 1987; Trappe 1987; Selosse and Le Tacon occurrence among 3,617 species (263 families) of land 1998;Readetal.2000; Brundrett 2002). Since Nägeli first plants. A plant phylogeny was then used to map the my- described them in 1842 (see Koide and Mosse 2004), only a corrhizal information to examine evolutionary patterns. Sev- few major surveys have been conducted on their phyloge- eral findings from this survey enhance our understanding of netic distribution in various groups of land plants either by the roles of mycorrhizas in the origin and subsequent diver- retrieving information from literature or through direct ob- sification of land plants. First, 80 and 92% of surveyed land servation (Trappe 1987; Harley and Harley 1987;Newman plant species and families are mycorrhizal. Second, arbus- and Reddell 1987). Trappe (1987) gathered information on cular mycorrhiza (AM) is the predominant and ancestral type the presence and absence of mycorrhizas in 6,507 species of of mycorrhiza in land plants. Its occurrence in a vast majority angiosperms investigated in previous studies and mapped the of land plants and early-diverging lineages of liverworts phylogenetic distribution of mycorrhizas using the classifi- suggests that the origin of AM probably coincided with the cation system by Cronquist (1981). -
The International Timber Trade
THE INTERNATIONAL TIMBER TRADE: A Working List of Commercial Timber Tree Species By Jennifer Mark1, Adrian C. Newton1, Sara Oldfield2 and Malin Rivers2 1 Faculty of Science & Technology, Bournemouth University 2 Botanic Gardens Conservation International The International Timber Trade: A working list of commercial timber tree species By Jennifer Mark, Adrian C. Newton, Sara Oldfield and Malin Rivers November 2014 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, TW9 3BW, UK Cover Image: Sapele sawn timber being put together at IFO in the Republic of Congo. Photo credit: Danzer Group. 1 Table of Contents Introduction ............................................................................................................ 3 Summary ................................................................................................................. 4 Purpose ................................................................................................................ 4 Aims ..................................................................................................................... 4 Considerations for using the Working List .......................................................... 5 Section Guide ...................................................................................................... 6 Section 1: Methods and Rationale .......................................................................... 7 Rationale - Which tree species are internationally traded for timber? ............. -
The Evolution of Angiosperm Trees: from Palaeobotany to Genomics
The Evolution of Angiosperm Trees: From Palaeobotany to Genomics Quentin C.B. Cronk and Félix Forest Abstract Angiosperm trees now rival the largest conifers in height and many species reach over 80 m high. The large tree life form, with extensive secondary xylem, origi- nated with the progymnosperms and gymnosperms in the Devonian and Carboniferous. However evidence suggests that the ancestor of extant angiosperms was not a tree but either a herb or understory shrub. Angiosperm fossil woods are rare in the early Cretaceous but become common in the mid-Cretaceous. The “reinvention” of wood in the Cretaceous produced a novel xylary morphospace that has since been extensively explored by subsequent evolution. Today, large timber trees are absent in the early diverging lineages of the angiosperms, and conventional wood has been lost in the monocots. There are a few timber trees in the magnoliid clade. Most timber trees are in the rosid clade, particularly the fabids (e.g. Fabaceae) but also in the Malvids (e.g. Meliaceae). Timber trees are less common in the strongly herbaceous asterid clade but some important timbers are also found in this lineage such as teak, Tectona grandis (Lamiaceae). Genomic resources for angiosperm trees are developing rapidly and this, coupled with the huge variation in woody habit, make angiosperm trees a highly prom- ising comparative system for understanding wood evolution at the molecular level. Keywords Wood • Fossils • Evolution • Xylogenesis Introduction The tallest known angiosperm tree is “Centurion”, a large Eucalyptus regnans from Tasmania measuring 99.6 m in height, 12 m around at the base, with an above ground biomass of 215 tonnes and an annual increment approaching one tonne (Sillett et al. -
Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae Edited by K
THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki Volumes published in this series Volume I Pteridophytes and Gymnosperms Edited by K.U. Kramer and P.S. Green (1990) Date of publication: 28.9.1990 Volume II Flowering Plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families Edited by K. Kubitzki, J.G. Rohwer, and V. Bittrich (1993) Date of publication: 28.7.1993 Volume III Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae) Edited by K. Kubitzki (1998) Date of publication: 27.8.1998 Volume IV Flowering Plants. Monocotyledons: Alismatanae and Commelinanae (except Gramineae) Edited by K. Kubitzki (1998) Date of publication: 27.8.1998 Volume V Flowering Plants. Dicotyledons: Malvales, Capparales and Non-betalain Caryophyllales Edited by K. Kubitzki and C. Bayer (2003) Date of publication: 12.9.2002 Volume VI Flowering Plants. Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales Edited by K. Kubitzki (2004) Date of publication: 21.1.2004 Volume VII Flowering Plants. Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae) Edited by J.W. Kadereit (2004) Date of publication: 13.4.2004 Volume VIII Flowering Plants. Eudicots: Asterales Edited by J.W. Kadereit and C. Jeffrey (2007) Date of publication: 6.12.2006 Volume IX Flowering Plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae Edited by K. Kubitzki (2007) Date of publication: 6.12.2006 Volume X Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae Edited by K. Kubitzki (2011) The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Eudicots X Sapindales, Cucurbitales, Myrtaceae Volume Editor: K. -
(12) United States Patent (10) Patent No.: US 8,771,763 B2 Asiedu Et Al
US00877 1763B2 (12) United States Patent (10) Patent No.: US 8,771,763 B2 Asiedu et al. (45) Date of Patent: Jul. 8, 2014 (54) COMPOSITION FORTREATING AIDS AND 2004 as R 38 8. AsSiedlu et al.al ASSOCATED CONDITIONS 2010/0266715 A1 10, 2010 Asiedu et al. (71) Applicant: Ward-Rams. Inc., Bridgewater, NJ FOREIGN PATENT DOCUMENTS WO 98.25633 A2 6, 1998 (72) Inventors: William Asiedu, Accra (GH); Frederick WO 9951249 A1 10, 1999 Asiedu, Accra (GH); Manny Ennin, W E. A. 3.38. Accra (GH); Michael Nsiah Doudu, Accra (GH); Charles Antwi Boateng, OTHER PUBLICATIONS Accra (GH); Kwasi Appiah-Kubi, Accra (GH); Seth Opoku Ware, Accra (GH): "Alstonia. The Plant List.” http://www.theplantlist.org/brows/A? Debrah Boateng. Accra (GH): Kofi Apocynaceae/Alstonia, accessed May 9, 2013, 3 pages. Amplim, Accra (GH); William Owusu, “Anogeissus. The Plant List.” http://www.theplantlist.org/brows/A? Accra (GH); Akwete Lex Adjei, Combretaceae. Anogeissus, accessed May 9, 2013, 2 pages. Bridgewater, NJ (US) “Cleistopholis—The Plant List.” http://www.theplantlist.org/brows/ A? Annonaceae/Cleistopholis, accessed May 9, 2013, 2 pages. (73) Assignee: Wilfred-Ramix, Inc., Bridgewater, NJ “Combretum. The Plant List.” http://www.theplantlist.org/brows/ (US) A/Combretacaea/Combretum, accessed May 9 2013, 13 pages. “Dichapetalum—The Plant List.” http://www.theplantlist.org/ (*) Notice: Stil tO E. distic th t brows/A/Dichapetalaceae/Dichapetalum, accessed May 9, 2013, 7 patent 1s extended or adjusted under pageS. U.S.C. 154(b) by 0 days. "Gongronema. The Plant List.” http://www.theplantlist.org/brows/ A? Apocynaceae/Gongronema, accessed May 9, 2013, 2 pages. -
(12) United States Patent (10) Patent No.: US 7,749,544 B2 Asiedu Et Al
US0077.49544B2 (12) United States Patent (10) Patent No.: US 7,749,544 B2 Asiedu et al. (45) Date of Patent: Jul. 6, 2010 (54) COMPOSITION FORTREATING AIDS AND (56) References Cited ASSOCATED CONDITIONS OTHER PUBLICATIONS (76) Inventors: William Asiedu, H/N B 183/19 Bintu Area, PMB Ministries, Accra (GH): Calderon et al. (Phytotherapy Research (1997), vol. 11, pp. 606 s s s 608).* Rede hist No. 1ntu Ojewole (International Journal of Crude Drug Research (1984), vol. s s ; : 22, No. 3, pp. 121-143).* Manny Ennin, H/N B 183/19 Bintu Ginsberg and Spigelman (Nature Medicine (2007), vol. 13, No.3, pp. Area, PMB Ministries, Accra (GH): 290–294).* Michael Nsiah Doudu, H/N B 183/19 Engler and Prantl, Die Naturlichen. Pflanzenfamilien, 1897, p. 349. Bintu Area, PMB Ministries, Accra Breteler, F.J. “Novitates Gabonenses 47. Another new Dichapetalum (GH); Charles Antwi Boateng, H/N B (Dichapetalaceae) from Gabon' Adansonia, 2003; 25(2):223-227. 183/19 Bintu Area, PMB Ministries, Fedkam Boyometal. "Aromatic plants of tropical central Africa. Part Accra (GH); Kwasi Appiah-Kubi, H/N XLIII: volatile components from Uvariastrum pierreanum Engl. B 183/19 B int Area. PMB MinistriCS (Engl. & Diels) growing in Cameroon' Flavour and Fragrance Jour Accra (GH); Seth Opoku Ware, H/N B nal, 2003; 18:269-298. 183/19 Bintu Area, PMB Ministries, * cited by examiner Accra (GH); Debrah Boateng, H/N B 183/19 Bintu Area, PMB Ministries, Primary Examiner Susan C Hoffman Accra (GH); Kofi Ampim, 2 Kakramadu (74) Attorney, Agent, or Firm—Frommer Lawrence & Haug Ling, P.O. -
Analysis of Generic Relationships in Anacardiaceae
BLUMEA 51: 165–195 Published on 10 May 2006 http://dx.doi.org/10.3767/000651906X622427 ANALYSIS OF GENERIC RELATIONSHIPS IN ANACARDIACEAE B.S. WANNAN Environmental Protection Agency, P.O. Box 802, Atherton 4883, Queensland, Australia SUMMARY Cladistic analyses were undertaken of Anacardiaceae using non-sequence data (30 genera and 81 characters from morphology, anatomy, palynology and chemotaxonomy), sequence data (26 genera – rbcL) and a combined dataset of 16 genera. All analyses supported a group of genera which can be recognised at the subfamily level: Anacardioideae. Sequence data and combined datasets supported the recognition of a second subfamily: Spondiadioideae Kunth emend. Wannan. Both datasets also suggested that Buchanania lies outside both subfamily groups. Key words: Anacardiaceae, cladistics, phylogeny, rbcL sequence data. INTRODUCTION The Anacardiaceae is a well recognised world-wide family of mostly tropical trees which has historically been placed in the Sapindales or Rutales (Bentham & Hooker, 1862; Takhtajan, 1980; Dahlgren 1980, 1983, 1989; Cronquist, 1981; Angiosperm Phylo- geny Group, 1998; Judd et al., 1999). Cronquist (1981) placed it with the Julianiaceae and Burseraceae, the three being the only families in the Sapindales with biflavonyls and vertical intercellular secretory canals in the primary and secondary phloem. The close relationships of the Anacardiaceae and Burseraceae have been recently reiter- ated by analysis of rbcL and atpB sequence data (Gadek et al., 1996; Savolainen et al., 2000a). The Burseraceae are distinguished by having two epitropous ovules per locule, in contrast to the one apotropous ovule in the Anacardiaceae. The Burseraceae also fre- quently possess lobed cotyledons in contrast to entire cotyledons in the Anacardiaceae. -
Nutritional Ecology of Plants Grown in a Tropical Peat Swamp
TROPICS Vol. 16 (1) Issued January 31, 2007 Nutritional ecology of plants grown in a tropical peat swamp 1) 2) 3) 1) 1,4) Monrawee YANBUABAN , Tanit NUYIM , Takeshi MATSUBARA , Toshihiro WATANABE and Mitsuru OSAKI 1) Research Faculty of Agriculture, Hokkaido University, Sapporo, 060−8589, Japan 2) Princess Sirindhorn Peat Swamp Forest Research and Nature Study Center Narathiwat, 96120, Thailand 3) College of Cross-Cultural Communication and Business, Shukutoku University, Japan 4) Corresponding author ABSTRACT The relationships between plant and peatland (45, 264 ha), however 60% of the peatland soil in peat swamp forests in two different growth in Thailand is found in Narathiwat Province (Suzuki stages, primary and secondary, were examined and Niyomdham, 1992). Floristic composition of peat by analyzing nutritional characteristics (e.g. N, P, swamp forest is rich, consisting of 124 families and 470 K, Ca, Mg, Na, Fe, Mn, Zn, Cu, Mo, Al, B, and species of plants, of which 109 families and 437 species 15 Si concentrations) and natural abundances of N are flowering plants, and 15 families and 33 species of 15 13 13 (δ N) and C (δ C) of plant and soils. Fifty-two fern. Yoshioka et al. (2002) reported that most of the plant species from primary forests and thirty from To Daeng swamp area is a primary swamp forest. Peat secondary forests were randomly sampled. Plants swamp forests in Narathiwat Province are classified as in both forests belonged to the phylogenic groups four types: typical mixed swamp forest on thick peat Euasterids II, Euasterids I, Ericales, Eurosids II, layer, Macaranga-dominated swamp on thick peat layer, Eurosids I, Eudicots, and Magnoliids, which were Melaleuca-dominated forest on thin peat layer or sandy from a newly evolved order.