Simulating the Performance 0F Communication Links with Satellite Transponders

Total Page:16

File Type:pdf, Size:1020Kb

Simulating the Performance 0F Communication Links with Satellite Transponders Simulating the Performance 0f Communication Links with Satellite Transponders Bruce Elbert Application Technology Strategy, Inc. [email protected] Maurice Schiff Elanix, Inc. [email protected] Introduction Some time ago, the Defense Department adopted a procurement policy “fly before you buy”. In the modern world of telecommunications the equivalent concept might be termed “simulate before you build”. The economics associated with the link performance are quite severe. Even a small degradation will affect the system data rate or coverage, both of which are related to capital and operating expenses. It is crucial to have all of the system design parameters optimized before a heavy commitment to implementation. Furthermore, when things go wrong in the actual article during construction or initial operation, a simulation model can be used to track down the offending element. The simulation will also be useful for pre-testing any corrective action before attempting it either in space or on the ground. In this article we use SystemView by Elanix to explore the end-to-end simulation of communications links involving satellite transponders. We will describe the various impairments to the system and computer models used to simulate their effects. Satellite Transponder Communications Link A transponder is a broadband RF channel used to amplify one or more carriers on the downlink side of a geostationary communications satellite. It is part of the microwave repeater and antenna system that is housed onboard the operating satellite. Examples of these satellites include AMC 4 and Telstar 5, located at 101 and 97 degrees west longitude, respectively. These satellites and most of their cohorts in the geostationary orbit have bent-pipe repeaters using C and Ku bands; a bent pipe repeater is simply one that receives all signals in the uplink beam, block translates them to the downlink band, and separates them into individual transponders of a fixed bandwidth. Figure 1 shows the basic concept. Each transponder is amplified by either a traveling wave tube amplifier (TWTA) or a solid state power amplifier (SSPA). Satellites of this type are very popular for transmitting TV channels to broadcast stations, cable TV systems, and directly to the home. Other applications include very small aperture terminal (VSAT) data communications networks, international high bit rate pipes, and rural telephony. Integration of these information types is becoming popular as satellite transponders can deliver data rates in the range of 50 to 150 Mbps. Achieving these high data rates requires careful consideration of the design and performance of the repeater. The most significant impairments to digital transmission come about in the filtering, which constrains bandwidth and introduces delay distortion, and the power amplification, which produces AM/AM and AM/PM conversion. These effects will be discussed in detail later in this article. For maximum power output with the highest efficiency (e.g., to minimize solar panel DC supply), this amplifier should be operated at its saturation point. However, many services are sensitive and susceptible to AM/AM and AM/PM conversion, for which backoff is necessary. With such an operating point, intermodulation distortion can be held to an acceptable level, however, backoff also reduces downlink power. The transponder itself is simply a repeater. It takes in the signal from the uplink at a frequency f1, amplifies it and sends it back on a second frequency f2. Figure 2 shows a typical frequency plan with 24-channel transponder. The uplink frequency is at 6 GHz, and the downlink frequency is at 4 GHz. The 24 channels are separated by 40 MHz and have a 36 MHz useful bandwidth. The guard band of 4 MHz assures that the transponders do not interact with each other. System Impairments The transponder is a central element in the end-to-end communications link, illustrated in Figure 1. This drawing provides a simplified system block diagram that shows the impairments that affect the system performance. Thus, the transmitting earth station on the uplink side will cause its share of distortion as will the receiving earth station on the downlink side. Some of this distortion is uncorrelated, which means that its contribution can be added more or less algebraically. However, for this to be correct, one must know the individual contributions. Other types of distortion, notably group delay, AM/AM and AM/PM, interact with one another and independence is no longer assured. Simple link budgeting techniques are available for evaluating links with additive noise, however, a communications simulation tool like SystemView by Elanix is necessary for analyzing related impairments and their interaction. Another benefit of this approach is that both theoretical and measured data can be included in the simulation models. Filter gain and phase distortion: These are common elements in a communication link. Most filters are designed in the frequency domain in terms of their type (Elliptic function, Chebechev, Bessel, etc.) and order. This information is linked to the filter poles and hence the frequency response. In a time domain simulator such as SystemView by Elanix the time impulse response is derived from the frequency response, and the filtering action is a convolutional operation. In a frequency domain type implementation, the data is processed in blocks, which leads to signal discontinuities at the block transitions. Thermal Noise Thermal noise is the most common impairment in a wireless communication system. There are three general sources, 1) The noise that enters the antenna with the signal, aptly called antenna noise, 2) the noise generated due to ohmic absorption in the various passive hardware components, and 3) noise produced in amplifiers through thermal action within semiconductors. The noise is simulated as a Gaussian random variable with noise power spectral density No = kT = 1.381E-23T w/Hz. The system temperature T is computed by adding the contributions of the three system noise sources. This is easily simulated with SystemView by Elanix because each noise source is generated from a different key (seed) to insure that they are not correlated. Antennas and low noise amplifiers are typically rated in Kelvin (degrees above absolute zero), which allows the simple translation to noise power spectral density. If the bandwidth of the RF carrier is known, then the total noise power is simply the product NoB. TWT AM/AM and AM/PM conversion The TWTA is a common element in earth station s and communication satellites. For an input sine wave of frequency f and amplitude r, the TWTA is characterized by the relationship y(t)=A[r(t)]sin(2πft+φ[r(t)]) The empirical relations 2 A(r)=arr r/[1+b r ] 22 ϕ(r)=aϕϕ r /[1+b r ] describe A(r) and φ(r). The first term is called AM/AM conversion, and the second is AM/PM conversion. The four contestants [arr , b ,aϕ ,bϕ ] can be determined from the actual TWTA tube measurements via a least square fit. Another and simpler approach is to enter the measured TWTA data into a text file and use simple table look up for the required values. The term A(r)/r is the nominal gain. A plot of A(r) shows the output power increasing with the input, and then leveling off and actually decreasing as the input power continues to increase into the overdrive region. This is the saturation phenomena mentioned above. As discussed later for DVB-S, the TWTA must be operated a little bit below saturation to control sideband regeneration. Figure 3 shows the typical TWTA AM/AM curve indicating the definition of the important parameter, back off (BO). The operating point should be optimized, as described later, for the specific transmission system. Pre-Amplifier and mixer non linearties Amplifier types other than the TWTA as well as the mixers used to translate the signal frequencies have nonlinear aspects as well. Generally the transfer function of such devices isdescribed in terms of a polynomial 2 yt()=+ a bxt () + cxt () + .... where the coefficients are chosen to satisfy common figures of merit such as the two tone third order intercept point , IP3. The coefficient, a, is the linear gain term. The problem arises when there are two or more input signals in the input x(t) of the form, xt( )=+ A sin(2π ft12 ) B sin(2π ft ) This is common in shared transponder operation where several carriers occupy the usable bandwidth. Substituting into the above and using standard trigonometric identities show that the output y (t) can have frequency intermodulation (IM) products with frequency values ±±mf12 nf , where m and n are integers. Generally the power in the IM product decreases with increasing m and n. The worst case generally occurs in the so-called third IM product when m = 2 and n = 1 and vice versa. Using figure 2, consider two wideband signals in the uplink to the satellite, one at f1 = 6105 MHz (channel 9 uplink), and one at f2 = 6065 MHz (channel 7 uplink). The typical satellite employs a wideband frequency-translating receiver that provides about half of the 100 dB total repeater gain. Each pair of carriers creates two third order IM products: f3 = 2*6105 – 6065 MHz = 6145 MHz (uplink channel 11), and f3 = 2*6065 – 6105 MHz = 6025 MHz (uplink channel 5). Figure 4 shows the signal spectra just described. Careful modeling of these third order and higher IM products is therefore essential. Another requirement is accurate accounting of all such products that can be produced within the transponder bandwidths. Even weak, high order IM products in the wrong place can be disastrous. We want to insure that the satellite does not jam itself. This mechanism can affect multiple signals within one channel as commonly employed by single channel per carrier (SCPC) systems.
Recommended publications
  • Digital Multi–Programme TV/HDTV by Satellite
    Digital multi–programme TV/HDTV by satellite M. Cominetti (RAI) A. Morello (RAI) M. Visintin (RAI) The progress of digital technology 1. Introduction since the WARC’77 is considered and the perspectives of future The significant progress of digital techniques in applications via satellite channels production, transmission and emission of radio are identified. Among these, digital and television programmes is rapidly changing the established concepts of broadcasting. multi–programme television systems, with different quality levels (EDTV, SDTV) and possible The latest developments in VLSI (very–large scale evolution to HDTV, are evaluated in integration) technology have significantly contrib- uted to the rapid emergence of digital image/video terms of picture quality and service compression techniques in broadcast and informa- availability on the satellite channels tion–oriented applications; optical fibre technolo- of the BSS bands (12 GHz and gy allows broadband end–to–end connectivity at 22 GHz) and of the FSS band (11 very high bit–rates including digital video capabil- GHz) in Europe. A usable channel ities; even the narrow–band terrestrial broadcast capacity of 45 Mbit/s is assumed, as channels in the VHF/UHF bands (6–7 MHz and 8 well as the adoption of advanced MHz) are under investigation, in the USA [1] and channel coding techniques with in Europe [2], for the future introduction of digital QPSK and 8PSK modulations. For television services. high and medium–power satellites, in operation or planned, the The interest for digital television in broadcasting receiving antenna diameters and multimedia communications is a clear exam- required for correct reception are ple of the current evolution from the analogue to reported.
    [Show full text]
  • Miniature Radio Frequency Transponder Technology Suitability As Threatened Species Tags
    Miniature radio frequency transponder technology suitability as threatened species tags SCIENCE FOR CONSERVATION: 71 Murray E. Douglas Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand 1 Science for Conservation presents the results of investigations by DoC staff, and by contracted science providers outside the Department of Conservation. Publications in this series are internally and externally peer reviewed January 1998, Department of Conservation ISSN 1173–2946 ISBN 0–478–01987–4 This publication originated from work done by Murray E. Douglas, Science & Research Division, Department of Conservation, Wellington. It was approved for publication by the Director, Science and Research Division, Department of Conservation, Wellington. Cataloguing-in-Publication data Douglas, Murray E. Miniature radio frequency transponder technology suitability as threatened species tags / Murray E. Douglas. Wellington, N.Z. : Dept. of Conservation, 1998. 1 v. ; 30 cm. (Science for conservation, 1173–2946 ; 71.) Includes bibliographical references. ISBN 0478019874 1. Radio telemetry. 2. Animal radio tracking. 3. Transponders. I. Title. II. Series: Science for conservation (Wellington, N.Z.) ; 71. 621.3848 20 zbn98–008524 2 CONTENTS Abstract 5 1. Introduction 5 1.1 Aim 5 1.2 Definitions 6 1.3 Background 7 2. Methods 8 2.1 Search methods 8 3. Findings 9 3.1 Active transponders and pagers 9 3.1.1 Technology experts 9 3.1.2 International products and companies 9 3.1.3 Locator Systems Ltd, New Zealand 9 Transponder size 10 Activation
    [Show full text]
  • Part 13 Restricted Radiotelephone (Including Commercial Radio Operator)
    Part 13 Restricted Radiotelephone (Including Commercial Radio Operator) RESTRICTED RADIOTELEPHONE OPERATOR PERMIT WHO NEEDS AN RP? At least one person holding an RP is required aboard stations in the maritime and aviation services when: making international flights, voyages, or communications; 2) using frequencies under 30 MHz; 3) using a satellite ship earth station, or 4) operating a vessel subject to the Bridge to Bridge Act (including domestic operation). WHO DOESN’T NEED AN RP? For mobile stations: 1) On board a voluntarily equipped ship using only VHF frequencies on domestic voyages OR using a radar, EPIRB, survival craft, or on-board station; 2) on board an aircraft using only VHF frequencies on domestic voyages OR using radar, radio altimeter, transponder, or other automated radionavigation transmitter; or 3) at a domestically operated marine utility station. For fixed stations: 1) at shore radar, shore radiolocation, maritime support, or shore radionavigation stations; 2) at a coast station or aeronautical ground station using only VHF frequencies; or 3) at an aeronautical enroute station which automatically transmits digital communications to aircraft. You no longer need an RP to operate a Broadcast station (e.g., AM, FM, TV). This requirement was eliminated on 12/1/95 (Report and Order, MM Docket No. 94-130 released 10/23/95). Restricted Radiotelephone Operator NOTE: Aliens who are not legally eligible for employment in the United States should also use FCC 605. New (Lifetime Permit & Limited Use) (Per Permit) Duplicate/Replacement
    [Show full text]
  • RF Power Products October 2002 ABOUT ADVANCED POWER TECHNOLOGY RF
    RF Power Products October 2002 ABOUT ADVANCED POWER TECHNOLOGY RF In 2002 Advanced Power Technology acquired two leading suppliers of silicon based radio frequency (RF) power transistors - GHz Technology, Inc. and Microsemi RF Products, Inc. a wholly owned subsidiary of Microsemi Corporation. Advanced Power Technology RF (APT-RF) was then formed when these two companies were merged and combined with RF products already existing within APT. This new organization offers products featuring Bipolar, VDMOS, and LDMOS technologies. All of the products are based on silicon and span the frequency range from 1MHz to 3.5GHz using voltage supplies from as low as a few volts to as high as 250V. Headquarters for APT-RF is located in Santa Clara, California with additional facilities in Montgomeryville, Pennsylvania and our corporate headquarters (Advanced Power Technology, Inc.) in Bend, Oregon. In addition, products are assembled and wafers produced in facilities operated by our production partners located in Mexico, Malaysia, Taiwan, and Austria. The Company produces products in facilities that are ISO9001 registered, space qualified, and Mil Standard approved. Our automated assembly line is among the most modern in the world assuring consistent quality and repeatable performance. Advanced Power Technology RF aggressively invests in new technology and product development. Our product roadmaps in Avionics, L-Band Radar, S-Band Radar, and pulsed LDMOS applications are intended to provide products that set the performance standard in each of these market niches. OUR MISSION AND GOALS The mission of APT-RF is to be the world leader in non-cellular/PCS high power silicon RF & microwave power transistors.
    [Show full text]
  • Satellite Data Communications Link Requirements for a Proposed Flight Simulation System
    Theses - Daytona Beach Dissertations and Theses 4-1994 Satellite Data Communications Link Requirements for a Proposed Flight Simulation System Gerald M. Kowalski Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/db-theses Part of the Aviation Commons Scholarly Commons Citation Kowalski, Gerald M., "Satellite Data Communications Link Requirements for a Proposed Flight Simulation System" (1994). Theses - Daytona Beach. 266. https://commons.erau.edu/db-theses/266 This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact [email protected]. Gerald M. Kowalski A Thesis Submitted to the Office of Graduate Programs in Partial Fulfillment of the Requirements for the Degree of Master of Aeronautical Science Embry-Riddle Aeronautical University Daytona Beach, Florida April 1994 UMI Number: EP31963 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform EP31963 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Unit - 7 & 8 DBS, Satellite Mobile and Specialized Services
    www.getmyuni.com 10EC662 Unit - 7 & 8 DBS, Satellite mobile and specialized services Introduction, orbital spacing, power ratio, frequency and polarization, transponder capacity, bit rates for digital TV, satellite mobile services, USAT, RadarSat, GPS, orb communication and iridium. Text Book: 1. Satellite Communications, Dennis Roddy, 4th Edition, McGraw-Hill International edition, 2006. References books: 1. Satellite Communications, Timothy Pratt, Charles Bostian and Jeremy Allnutt, 2nd Edition, John Wiley & Sons, 2003. 2. Satellite Communication Systems Engineering, W. L. Pitchand, H. L. Suyderhoud, R. A. Nelson, 2nd Ed., Pearson Education., 2007. Page 44 www.getmyuni.com 10EC662 7.1 Introduction Satellites provide broadcast transmissions in the fullest sense of the word, since antenna footprints can be made to cover large areas of the earth. The idea of using satellites to provide direct transmissions into the home has been around for many years, and the services provided are known generally as direct broadcast satellite (DBS) services. Broadcast services include audio, television, and Internet services. 7.2 Orbital Spacing’s Orbital spacing is 9° for the high-power satellites, so adjacent satellite interference is considered nonexistent. It should be noted that although the DBS services are spaced by 9°, clusters of satellites occupy the nominal orbital positions. For example, the following satellites are located at 119°W longitude. 7.3 Power Rating Satellites primarily intended for DBS have a higher [EIRP] than for the other categories, being in the range 51 to 60 dBW. At a Regional Administrative Radio Council (RARC) meeting in 1983, the value established for DBS was 57 dBW (Mead, 2000).
    [Show full text]
  • The Near Spacecraft Rf Telecommunications System
    THE NEAR SPACECRAFT RF TELECOMMUNICATIONS SYSTEM The NEAR Spacecraft RF Telecommunications System Robert S. Bokulic, M. Katherine E. Flaherty, J. Robert Jensen, and Thomas R. McKnight A n X-band telecommunications system developed for the Near Earth Asteroid Rendezvous (NEAR) spacecraft represents an unmatched combination of performance, innovation, and cost-effectiveness for a deep space mission. It centers about two redundant X-band transponder systems that provide the command, telemetry, and tracking functions. Despite a tight development schedule, a significant amount of new technology has been used in the system. Included in the design are the most recent developments in transponder hardware, an X-band solid-state power amplifier (a deep space “first”), and efficient microstrip patch antennas. During spacecraft emergencies, a microstrip fanbeam antenna is used as part of a unique Earth acquisition algorithm. Postlaunch measurements have verified that in-flight performance closely matches predicted performance. (Keywords: Deep space transponders, Fanbeam antenna, NEAR, Patch antenna, Solid- state power amplifier, Telecommunications, X-band.) INTRODUCTION The telecommunications system design for a typical the asteroid 433 Eros in January 1999 and eventually deep space probe is driven by mission design. Not only go into orbit around it. does the distance between the spacecraft and Earth The spacecraft is designed for simplicity by config- vary, but the geometrical relationships among the uring the high-gain antenna (HGA) and solar panels spacecraft, Earth, Sun, and destination object(s) also so that they are nongimbaled and pointed along the vary, making the antenna pattern requirements highly same axis. This arrangement is made possible because dependent on mission design.
    [Show full text]
  • Before the Federal Communications Commission Washington, D.C. 20554
    Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of Petition for Reconsideration of ) a decision ofthe Wireline Competition ) Bureau by the Virginia State Department ) DA 02-1123 ofEducation ) ) Federal-State joint Board on ) Universal Service ) CC Docket No. 96-45 ) Changes to the Board ofDirectors ofthe ) National Exchange Carrier Association ) CC Docket No. 97-21 Petition for R(',consideration Table of Contents Background Facts 1 Discussion 3 What is a Common Carrier? 4 Fourth Reconsideration Order 6 Autotote SEC Filings 7 Eligible Services List 8 Appeals to the SLD 9 PIA Contact Procedure 12 Summary The Virginia Department ofEducation Petitions the Wireline Competition Bureau to reconsider its Order (DA 02-1123) denying our Request for Review ofa decision by the Schools and Libraries Division, We discuss the information available on how to detennine common carrier status at the time ofour Request for Review filing and how that guidance has changed since that filing. We provide new documentation from Autotote confirming that they offer telecommunications services on a common carrier basis. Finally, we ask that this new documentation be allowed into the record under provisions ofCFR 47 Section 1.106 (I). Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of: Petition for Reconsideration of ) a decision ofthe Wireline Competition ) Bureau by the Virginia State Department ) DA 02-1123 ofEducation ) ) Federal-State joint Board on ) Universal Service ) CC Docket No. 96-45 ) Changes to the Board ofDirectors ofthe ) National Exchange Carrier Association ) CC Docket No. 97-21 Petition for Reconsideration of Wireline Competition Bureau decision on Virginia Department of Education's Request for Review of Universal Service Administrator Decision In accordance with CFR Title 47 Part 1, Section 1.106, the Virginia Department ofEducation (DOE) respectfully petitions the Wireline Competition Bureau (WeB) to reconsider its decision denying DOE's Request for Review.
    [Show full text]
  • Transceivers Emergency Beacons Transponders
    Transceivers Transceiver is a word made up of "transmitter" and "receiver." There are two types of transceivers, generally either fixed or portable. The portable variety are usually less powerful but has the benefit of portability, while the more powerful fixed type are permanently in place. A GPS transceiver is often used to either confirm or back up an existing satellite signal. So, in addition to the five or more satellites that your GPS unit may be picking up on, you may also be able to find a transceiver attached to a physical location on earth. Transponders The word Transponder is a combination of "Transmitter" and "Responder," and as the name suggests a transponder is a device that reads and sends a signal. A transponder on a GPS system not only reads a position on earth from the satellites, but also transmits that signal back. Practically, a transponder could be used to track the location of an object or person, provided that person has the transponder either attached or carried on him/her. There are three types of beacons used to transmit distress signals, EPIRBs (for maritime use), ELTs Emergency Beacons [Emergency Locator Transmitter](for aviation use), and PLBs (used for land-based applications). Both transceivers and transponders can be designed to have emergency beacon capability, have a strobe light, and some are a VHF Radio. Emergency Position Indicating Radio Beacon (EPIRB) These units are for use in maritime applications. Category I EPIRBs are activated either manually or automatically. The automatic activation is triggered when the EPIRB is released from its mounted outside the cabin special bracket equipped with hydrostatic release at a water depth of 3-10 feet and is designed to “float free”.
    [Show full text]
  • Telephone Installations for Small Passenger Boats
    § 80.880 47 CFR Ch. I (10–1–16 Edition) (d) An on/off switch must be provided INMARSAT ship earth station meeting for the entire installation with a visual the equipment authorization rules of indication that the installation is parts 2 and 80 of this chapter. switched on. [68 FR 46973, Aug. 7, 2003] (e) The equipment must indicate the channel number, as given in the Radio § 80.881 Equipment requirements for Regulations, to which it is tuned. It ship stations. must allow the determination of the Vessels subject to subpart R of this channel number under all conditions of part must be equipped as follows: external lighting. Channel 16 must be (a) A category 1, 406.0–406.1 MHz distinctively marked. EPIRB meeting the requirements of (f) The receiver must have a manual § 80.1061; volume control and a squelch control. (b) A NAVTEX receiver meeting the (g) If the external controls are on a requirements of § 80.1101(c)(1); separate control unit and more than (c) A Search and Rescue Transponder one such control unit is provided, the meeting the requirements of one on the bridge must have priority § 80.1101(c)(6); and over the others. When there is more (d) A two-way VHF radiotelephone than one control unit, indication must meeting the requirements of be given to the other(s) that the trans- § 80.1101(c)(7). mitter is in operation. [68 FR 46973, Aug. 7, 2003] § 80.880 Vessel radio equipment. (a) Vessels operated solely within § 80.882 2182 kHz watch.
    [Show full text]
  • Satellite Communications in the New Space
    IEEE COMMUNICATIONS SURVEYS & TUTORIALS (DRAFT) 1 Satellite Communications in the New Space Era: A Survey and Future Challenges Oltjon Kodheli, Eva Lagunas, Nicola Maturo, Shree Krishna Sharma, Bhavani Shankar, Jesus Fabian Mendoza Montoya, Juan Carlos Merlano Duncan, Danilo Spano, Symeon Chatzinotas, Steven Kisseleff, Jorge Querol, Lei Lei, Thang X. Vu, George Goussetis Abstract—Satellite communications (SatComs) have recently This initiative named New Space has spawned a large number entered a period of renewed interest motivated by technological of innovative broadband and earth observation missions all of advances and nurtured through private investment and ventures. which require advances in SatCom systems. The present survey aims at capturing the state of the art in SatComs, while highlighting the most promising open research The purpose of this survey is to describe in a structured topics. Firstly, the main innovation drivers are motivated, such way these technological advances and to highlight the main as new constellation types, on-board processing capabilities, non- research challenges and open issues. In this direction, Section terrestrial networks and space-based data collection/processing. II provides details on the aforementioned developments and Secondly, the most promising applications are described i.e. 5G associated requirements that have spurred SatCom innovation. integration, space communications, Earth observation, aeronauti- cal and maritime tracking and communication. Subsequently, an Subsequently, Section III presents the main applications and in-depth literature review is provided across five axes: i) system use cases which are currently the focus of SatCom research. aspects, ii) air interface, iii) medium access, iv) networking, v) The next four sections describe and classify the latest SatCom testbeds & prototyping.
    [Show full text]
  • Deep Space One Telecommunication Development M.I
    • • SSC98-IV-l • Deep Space One Telecommunication Development M.I. Herman, S. Valas, W. Hatch, C.C. Chen, S. H. Zingales, R. P. Scaramastra, L.R. Amaro, • and M. D. Rayman Jet Propulsion Laboratory • California Institute of Technology 4800 Oak Grove Drive • Pasadena, CA 91109 m1s 161-213 818-354-8541 • [email protected] • Abstract. Deep Space One (DS1) is the first of the New Millennium Program deep space technology validation missions, to be launched October 1998. This paper focuses on the • Telecommunication Subsystem architecture, technology developments, as well as the test results. Technical factors that influenced the subsystem architecture were the ability to command the • spacecraft and downlink telemetry data in cruise and emergency situations, and the need to provide radiometric data. Additional challenges included the requirement to demonstrate new • telecommunication technology, enable the validation of other system technologies (for example solar electric propulsion, autonomous navigation, and beacon monitor operation), and at the same time utilize a single string system design. From a programmatic perspective we had to accomplish • these goals within a budget and workforce load that was at least a factor 2 less than the Mars • Pathfinder Project. The Small Deep Space Transponder (SDST), a new technology developed by Motorola, is the • heart of the Telecommunication Subsystem and is a result of a JPL multimission sponsored competitive award. The SDST provides the functionality normally associated with 4-5 individual • subassemblies at less than half the mass (2.95 kg). Another new technology to be validated on DS1 is a 2.5W Ka-band solid state amplifier developed by Lockheed Martin (under their own funding).
    [Show full text]