Numerical Methods (Wiki) GU Course Work
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Numerical Solution of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Kendall Atkinson, Weimin Han, David Stewart University of Iowa Iowa City, Iowa A JOHN WILEY & SONS, INC., PUBLICATION Copyright c 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. -
Simpson's Rule
Simpson's rule In numerical analysis, Simpson's rule is a method for numerical integration, the numerical approximation of definite integrals. Specifically, it is the following approximation for equally spaced subdivisions (where is even): (General Form) , where and . Simpson's rule also corresponds to the three-point Newton-Cotes quadrature rule. Simpson's rule can be derived by In English, the method is credited to the mathematician Thomas Simpson (1710–1761) of Leicestershire, England. However, approximating the integrand f (x) (in Johannes Kepler used similar formulas over 100 years prior, and for this reason the method is sometimes called Kepler's blue) by the quadratic interpolant P rule , or Keplersche Fassregel (Kepler's barrel rule) in German. (x) (in red) . Contents Quadratic interpolation Averaging the midpoint and the trapezoidal rules Undetermined coefficients Error Composite Simpson's rule An animation showing how Simpson's 3/8 rule Simpson's rule approximation Composite Simpson's 3/8 rule improves with more strips. Alternative extended Simpson's rule Simpson's rules in the case of narrow peaks Composite Simpson's rule for irregularly spaced data See also Notes References External links Quadratic interpolation One derivation replaces the integrand by the quadratic polynomial (i.e. parabola) which takes the same values as at the end points a and b and the midpoint m = ( a + b) / 2. One can use Lagrange polynomial interpolation to find an expression for this polynomial, Using integration by substitution one can show that [1] Introducing the step size this is also commonly written as Because of the factor Simpson's rule is also referred to as Simpson's 1/3 rule (see below for generalization). -
An Enhanced Parareal Algorithm Based on the Deferred Correction Methods for a Stiff System✩
Journal of Computational and Applied Mathematics 255 (2014) 297–305 Contents lists available at SciVerse ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam An enhanced parareal algorithm based on the deferred correction methods for a stiff systemI Sunyoung Bu a,∗, June-Yub Lee a,b a Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea b Department of Mathematics, Ewha Womans University, Seoul 120-750, Republic of Korea article info a b s t r a c t Article history: In this study, we consider a variant of the hybrid parareal algorithm based on deferred Received 31 March 2012 correction techniques in order to increase the convergence order even for the stiff system. Received in revised form 4 April 2013 A hybrid parareal scheme introduced by Minion (2011) [20] improves the efficiency of the original parareal by utilizing a Spectral Deferred Correction (SDC) strategy for a fine Keywords: propagator within the parareal iterations. In this paper, we use Krylov Deferred Correction Hybrid parareal algorithm (KDC) for a fine propagator to solve the stiff system and Differential Algebraic Equations Spectral deferred correction (DAEs) stably. Also we employ a deferred correction technique based on the backward Euler Krylov deferred correction Stiff system method for a coarse propagator in order to make the global order of accuracy reasonably Differential algebraic equation high while limiting the cost of sequential steps as small as possible. Numerical experiments on the efficiency of our method are promising. ' 2013 Elsevier B.V. All rights reserved. 1. Introduction Deferred correction methods can be used to obtain high order numerical solutions for a system of time dependent differential equations in the form of 0 f .y.t/; y .t/; t/ D 0; (1) y.0/ D y0: Deferred correction methods have mainly been used for boundary value problems. -
Chapter 16: Differential Equations
✐ ✐ ✐ ✐ Chapter 16 Differential Equations A vast number of mathematical models in various areas of science and engineering involve differ- ential equations. This chapter provides a starting point for a journey into the branch of scientific computing that is concerned with the simulation of differential problems. We shall concentrate mostly on developing methods and concepts for solving initial value problems for ordinary differential equations: this is the simplest class (although, as you will see, it can be far from being simple), yet a very important one. It is the only class of differential problems for which, in our opinion, up-to-date numerical methods can be learned in an orderly and reasonably complete fashion within a first course text. Section 16.1 prepares the setting for the numerical treatment that follows in Sections 16.2–16.6 and beyond. It also contains a synopsis of what follows in this chapter. Numerical methods for solving boundary value problems for ordinary differential equations receive a quick review in Section 16.7. More fundamental difficulties arise here, so this section is marked as advanced. Most mathematical models that give rise to differential equations in practice involve partial differential equations, where there is more than one independent variable. The numerical treatment of partial differential equations is a vast and complex subject that relies directly on many of the methods introduced in various parts of this text. An orderly development belongs in a more advanced text, though, and our own description in Section 16.8 is downright anecdotal, relying in part on examples introduced earlier. 16.1 Initial value ordinary differential equations Consider the problem of finding a function y(t) that satisfies the ordinary differential equation (ODE) dy = f (t, y), a ≤ t ≤ b. -
Elementary Numerical Methods and Computing with Python
Elementary Numerical Methods and computing with Python Steven Pav1 Mark McClure2 April 14, 2016 1Portions Copyright c 2004-2006 Steven E. Pav. Permission is granted to copy, dis- tribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 2Copyright c 2016 Mark McClure. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Ver- sion 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ”GNU Free Documentation License”. 2 Contents Preface 7 1 Introduction 9 1.1 Examples ............................... 9 1.2 Iteration ................................ 11 1.3 Topics ................................. 12 2 Some mathematical preliminaries 15 2.1 Series ................................. 15 2.1.1 Geometric series ....................... 15 2.1.2 The integral test ....................... 17 2.1.3 Alternating Series ...................... 20 2.1.4 Taylor’s Theorem ....................... 21 Exercises .................................. 25 3 Computer arithmetic 27 3.1 Strange arithmetic .......................... 27 3.2 Error .................................. 28 3.3 Computer numbers .......................... 29 3.3.1 Types of numbers ...................... 29 3.3.2 Floating point numbers ................... 30 3.3.3 Distribution of computer numbers ............. 31 3.3.4 Exploring numbers with Python .............. 32 3.4 Loss of Significance .......................... 33 Exercises .................................. 36 4 Finding Roots 37 4.1 Bisection ............................... 38 4.1.1 Modifications ........................ -
Approximation of Finite Population Totals Using Lagrange Polynomial
Open Journal of Statistics, 2017, 7, 689-701 http://www.scirp.org/journal/ojs ISSN Online: 2161-7198 ISSN Print: 2161-718X Approximation of Finite Population Totals Using Lagrange Polynomial Lamin Kabareh1*, Thomas Mageto2, Benjamin Muema2 1Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya 2Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya How to cite this paper: Kabareh, L., Mage- Abstract to, T. and Muema, B. (2017) Approximation of Finite Population Totals Using Lagrange Approximation of finite population totals in the presence of auxiliary infor- Polynomial. Open Journal of Statistics, 7, 689- mation is considered. A polynomial based on Lagrange polynomial is pro- 701. posed. Like the local polynomial regression, Horvitz Thompson and ratio es- https://doi.org/10.4236/ojs.2017.74048 timators, this approximation technique is based on annual population total in Received: July 9, 2017 order to fit in the best approximating polynomial within a given period of Accepted: August 15, 2017 time (years) in this study. This proposed technique has shown to be unbiased Published: August 18, 2017 under a linear polynomial. The use of real data indicated that the polynomial Copyright © 2017 by authors and is efficient and can approximate properly even when the data is unevenly Scientific Research Publishing Inc. spaced. This work is licensed under the Creative Commons Attribution International Keywords License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Lagrange Polynomial, Approximation, Finite Population Total, Open Access Auxiliary Information, Local Polynomial Regression, Horvitz Thompson and Ratio Estimator 1. Introduction This study is using an approximation technique to approximate the finite popu- lation total called the Lagrange polynomial that doesn’t require any selection of bandwidth as in the case of local polynomial regression estimator. -
Polynomial Interpolation 1
CREACOMP e−Schulung von Kreativität und Problemlösungskompetenz Prof. Dr. Bruno BUCHBERGER Prof. Dr. Erich Peter KLEMENT Prof. Dr. Günter PILZ und Mitarbeiter der Institute ALGEBRA, FLLL und RISC 0 CREACOMP Endbericht Inhalt CREACOMP ................................................................................................................1 Zusammenfassung ...........................................................................................1 Benutzung der CREACOMP Software .......................................................2 Kurzbeschreibung der Lerneinheiten ..........................................................3 Theorema ..................................................................................................3 Elementary Set Theory .............................................................................3 Relations ...................................................................................................4 Equivalence Relations ..............................................................................4 Factoring Integers .....................................................................................5 Polynomial Interpolation 1 .........................................................................5 Polynomial Interpolation 2 .........................................................................6 Real Sequences 1 .....................................................................................6 Real Sequences 2 .....................................................................................7 -
Language Program for Lagrange's Interpolation
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS) Web Site: www.ijettcs.org Email: [email protected] Volume 5, Issue 6, November - December 2016 ISSN 2278-6856 ICT Tool: - ‘C’ Language Program for Lagrange’s Interpolation Pradip P. Kolhe1 , Dr Prakash R. Kolhe2 , Sanjay C. Gawande3 1Assistant Professor (Computer Sci.), ARIS Cell, Dr. PDKV, Akola (MS), India 2Associate Professor (Computer Sci.) (CAS), Dr. BSKKV, Dapoli (MS), India 3Assistant Professor (Mathematics), College of Agriculture, Dr. PDKV, Akola Abstract Although named after Joseph Louis Lagrange, who In mathematics to estimate an unknown data by analysing the published it in 1795, it was first discovered in 1779 by given referenced data Lagrange’s Interpolation technique is Edward Waring and it is also an easy consequence of a used. For the given data, (say ‘y’ at various ‘x’ in tabulated formula published in 1783 by Leonhard Euler. Lagrange form), the ‘y’ value corresponding to ‘x’ values can be found interpolation is susceptible to Runge's phenomenon, and by interpolation. the fact that changing the interpolation points requires Interpolation is the process of estimation of an unknown data recalculating the entire interpolant can make Newton by analysing the given reference data. In case of equally polynomials easier to use. Lagrange polynomials are used spaced ‘x’ values, a number of interpolation methods are in the Newton–Cotes method of numerical integration and available such as the Newton’s forward and backward in Shamir's secret sharing scheme in cryptography. interpolation, Gauss’s forward and backward interpolation, Bessel’s formula, Laplace-Everett’s formula etc. -
The Chebyshev Points of the First Kind
Applied Numerical Mathematics 102 (2016) 17–30 Contents lists available at ScienceDirect Applied Numerical Mathematics www.elsevier.com/locate/apnum The Chebyshev points of the first kind Kuan Xu Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK a r t i c l e i n f o a b s t r a c t Article history: In the last thirty years, the Chebyshev points of the first kind have not been given as much Received 12 April 2015 attention for numerical applications as the second-kind ones. This survey summarizes Received in revised form 31 August 2015 theorems and algorithms for first-kind Chebyshev points with references to the existing Accepted 23 December 2015 literature. Benefits from using the first-kind Chebyshev points in various contexts are Available online 11 January 2016 discussed. © Keywords: 2016 IMACS. Published by Elsevier B.V. All rights reserved. Chebyshev points Chebyshev nodes Approximation theory Spectral methods 1. Introduction The Chebyshev polynomials of the first kind, Tn(x) = cos(n arccos x), were introduced by Pafnuty Chebyshev in a paper on hinge mechanisms in 1853 [11]. The zeros and the extrema of these polynomials were investigated in 1859 in a paper by Chebyshev on best approximation [12]. The zeros of Chebyshev polynomials are called Chebyshev points of the first kind, Chebyshev nodes, or, more formally, Chebyshev–Gauss points; they are given by (2k + 1)π xk = cos θk,θk = , k = 0,...,n − 1. (1) 2n The extrema, given by kπ yk = cos φk,φk = , k = 0, 1,...,n − 1, (2) n − 1 are called the Chebyshev points of the second kind, or Chebyshev extreme points, or Chebyshev–Lobatto points. -
Lagrange Interpolation Polynomial Pdf
Lagrange interpolation polynomial pdf Continue Lagrange Interpolation Polynomials If we want to describe all the ups and downs in the data set, and hit every point, we use what is called polynomial interpolation. This method is associated with Lagrange. Suppose the dataset consists of N data points: (x1, y1), (x2, y2), (x3, y3), ..., (xN, yN) Polynomial Interpolation will have a degree N - 1 . It is given: P (x) j1 (x) y1 y2 (x) y2 y3 (x) y3 ... It's easier than it looks. The main thing to note is that the ji numerator (x) contains the entire sequence of factors (x - x1), (x - x2), (x - x3), ... (x - xN), except for one factor (x - xi). Similarly, the denominator contains the entire sequence of factors (xi - x1), (xi - x2), (xi - x3), ... (xi - xN), except for one factor (xi - xi). Now note: ji (xi) No 1 (number and denominator), but ji (xj) 0 (number 0, as it contains the factor (xj - xj) ) for any j is not i. This means P (xi) and yi, which is exactly what we want! If this seems like smoke and mirrors, consider a simple example. Here's the data for g again: x g(x) 0 -250 10 0 20 50 30 -100 In this case there is a N 4 data point, so we will create a polynomial degree N - 1 and 3 . We have x1 y 0, x2 x 10, x3 x 20, x4 y 30, and y1 - 250, y2 y 0, y3 y 50, y4 and 100. So: Multiplying each of them appropriate yi (i q 1, 2, 3, 4) and adding together conditions of similar power, then gives: cubic conditions are canceled, and we come to a simple square description of the data. -
Recent Advances in Computational and Applied Mathematics
Recent Advances in Computational and Applied Mathematics Theodore E. Simos Editor Recent Advances in Computational and Applied Mathematics Editor Theodore E. Simos Department of Mathematics College of Sciences King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia and Laboratory of Computational Sciences Department of Computer Science and Technology University of Peloponnese 22100 Tripolis Greece [email protected] ISBN 978-90-481-9980-8 e-ISBN 978-90-481-9981-5 DOI 10.1007/978-90-481-9981-5 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010938640 Mathematics Subject Classification (2000): 65, 65D20, 65Rxx, 65Lxx, 30, 30G35, 31B05, 31B35, 31, 33C05, 33C10, 33C15, 35A08, 35G15, 35Q40, 35R01, 41A60, 49Jxx, 49Nxx, 76-xx, 76A05, 81Q05, 81Qxx, 93Exx © Springer Science+Business Media B.V. 2011 Chapter 10 was created within the capacity of an US governmental employment and therefore is in the public domain. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: WMXDesign Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This volume includes an exciting collection of papers on computational and applied mathematics presenting the recent advances in several areas of this field. All the papers have been peer reviewed by at least three reviewers. -
Simulation Methods in Physics 1
...script in development... Simulation Methods in Physics 1 Prof. Dr. Christian Holm Institute for Computational Physics University of Stuttgart WS 2012/2013 Contents 1 Introduction 3 1.1 Computer Science . 3 1.1.1 Historical developments . 3 1.1.2 TOP 500 Supercomputer list . 4 1.1.3 Moore's law (1970) . 5 1.2 Computer Simulations in Physics . 6 1.2.1 The New Trinity of Physics . 6 1.2.2 Optimization of simulation performance . 8 1.2.3 Optimization of simulation algorithms . 8 1.2.4 Computational approaches for different length scales . 9 2 Molecular Dynamics integrators 11 2.1 Principles of Molecular Dynamics . 11 2.1.1 Ergodicity . 11 2.2 Integration of equations of motion . 12 2.2.1 Algorithms . 12 2.2.2 Estimation of time step . 13 2.2.3 Verlet Algorithm . 13 2.2.4 Velocity Verlet Algorithm . 14 2.2.5 Leapfrog method . 15 2.2.6 Runge-Kutta method . 16 2.2.7 Predictor-Corrector methods . 17 2.2.8 Ljapunov-Characteristics . 17 3 Statistical mechanics - Quick & Dirty 20 3.1 Microstates . 20 3.1.1 Distribution functions . 20 3.1.2 Average values and thermodynamic limit . 22 3.2 Definition of Entropy and Temperature . 23 3.3 Boltzmann distribution . 24 3.3.1 Total energy and free energy . 25 3.4 Quantum mechanics and classcal partition functions . 26 3.5 Ensemble averages . 26 2 1 Introduction 1.1 Computer Science 1.1.1 Historical developments • The first calculating tool for performing arithmetic processes, the Abacus is used ∼ 1000 b.C.