Lagrange Interpolation Polynomial Pdf
Lagrange interpolation polynomial pdf Continue Lagrange Interpolation Polynomials If we want to describe all the ups and downs in the data set, and hit every point, we use what is called polynomial interpolation. This method is associated with Lagrange. Suppose the dataset consists of N data points: (x1, y1), (x2, y2), (x3, y3), ..., (xN, yN) Polynomial Interpolation will have a degree N - 1 . It is given: P (x) j1 (x) y1 y2 (x) y2 y3 (x) y3 ... It's easier than it looks. The main thing to note is that the ji numerator (x) contains the entire sequence of factors (x - x1), (x - x2), (x - x3), ... (x - xN), except for one factor (x - xi). Similarly, the denominator contains the entire sequence of factors (xi - x1), (xi - x2), (xi - x3), ... (xi - xN), except for one factor (xi - xi). Now note: ji (xi) No 1 (number and denominator), but ji (xj) 0 (number 0, as it contains the factor (xj - xj) ) for any j is not i. This means P (xi) and yi, which is exactly what we want! If this seems like smoke and mirrors, consider a simple example. Here's the data for g again: x g(x) 0 -250 10 0 20 50 30 -100 In this case there is a N 4 data point, so we will create a polynomial degree N - 1 and 3 . We have x1 y 0, x2 x 10, x3 x 20, x4 y 30, and y1 - 250, y2 y 0, y3 y 50, y4 and 100. So: Multiplying each of them appropriate yi (i q 1, 2, 3, 4) and adding together conditions of similar power, then gives: cubic conditions are canceled, and we come to a simple square description of the data.
[Show full text]