Table S1. List of reported LIPA mutations.

Location old p.Nomen* old c.Nomen* p.Nomen** c.Nomen ** residual activity disease exon 3 I19fsX24 159delTTATCTCT p.Ile41Leufs*5 c.120_127del CS absent WD1 [1] exon 3 Y22X 169C>T p.Tyr43* c.129C>G CS absent WD2 [2] exon 3 R44X 233C>T p.Arg65* c.193C>T CS absent CESD1,WD1 [3,4] intron 3 E3SJM, ∆17‐56 269+1G>A p.? c.229+1G>A WD2 [5] [P56fsX61; 270‐33dub; p.[Pro78Alafs*5; c.[230‐33_231dup; exon 4 CESD1 [6] P57fsX67] 273del14bp Pro78Leufs*11] 233_246del] exon 4 Q64R 294A>G p.Gln85Arg c.254A>G YES[7],YES[8] CESD1 [7] exon 4 G66V 300G>T p.Gly87Val c.260G>T YES[7],YES[8] CESD1,WD2 [9,10] exon 4 F85fsX89 357insT p.Phe106fs*4 c.318insT CS absent WD2 [11] exon 4 W95X 387G>A p.Trp116* c.347G>A CS absent WD1 [3] exon 4 N98S 396A>G p.Asn119Ser c.356A>G CESD1 [12] exon 4 R100G 401A>G p.Arg121Gly c.361A>G CESD? [13] exon 4 H108P 426A>C p.His129Pro c.386A>C YES[14],YES[8] CESD1 [14,15] exon 4 H108R 426A>G p.His129Arg c.386A>G YES[14],YES[8] CESD1 [14] exon 4 V111fsX116 437delTC p.Val134Phefs*4 c.397_398del CS absent WD1,CESD1 [1,3] exon 4 S112X 438delC p.Ser133* c.398del CS absent WD2 [10] exon 4 F117fsX124 454insA p.Phe139Ilefs*7 c.414dup CS absent WD2 [16] exon 4 W119X 459G>A p.Trp140* c.419G>A CS absent CESD1,WD2 [5] exon 5 N140fsX158 522delA p.Asn161Ilefs*19 c.482del CS absent WD1 [17] exon 6 A177fsX190 634insT p.Ala199Cysfs*13 c.594dup WD1 [3,18] YES,TG exon 6 L179P 638T>C p.Leu200Pro c.599T>C CESD1,WD1 [18,20] only[19],NO[8] exon 6 P181L 645C>T p.Pro202Leu c.605C>T YES[7],YES[8] CESD1 [9] exon 6 F187L 662T>C p.Phe208Leu c.622T>C CESD1 [21] exon 6 P191fsX195 675delC p.Pro212Leufs*5 c.635del CESD1 [22] exon 6 R197X 692C>T p.Arg218* c.652C>T CESD1 [6] intron 6 E7SJM, ∆205‐253 716‐2A>G p.? c.676‐2A>G CESD1 [9] exon 7 F207fsX219 724delT p.Phe228Leufs*13 c.684del CESD1,WD1 [3,4] exon 7 G245X 836G>T p.Gly266* c.796G>T NO[5] WD2 [5,21] exon 8 T267I 903C>T p.Thr288Ile c.863C>T YES[7],YES[8] CESD2 [7] exon 8 S268C 906C>G p.Ser289Cys c.866C>G YES[8] CESD1 [3] exon 8 L273S 921T>C p.Leu294Ser c.881T>C YES[7],YES[8] CESD1 [9] exon 8 H274Y 923C>T p.His295Tyr c.883C>T YES[7],YES[23],YES[8] CESD1 [5,23,24] exon 8 Q277X 932C>T p.Gln298* c.892C>T WD1 [25] [3,4,5,6,7,9,14,1 exon 8 E8SJM‐1, ∆254‐277 934G>A p.Gln298Gln c.894G>A YES[7],YES[26] CESD1,2 5,20,21,22,24,27, 28,29,30,31] exon 8 E8SJM+1, ∆254‐277 934+1G>A p.? c.894+1G>A NO[21]NO[7] WD2 [21] exon 10 S302fsX345 1007delAG p.Ser323Leufs*44 c.967_968del NO[19] CESD1,2 [28] exon 10 Y303X 1012T>A p.Tyr324* c.972T>A NO[7] WD2 [7] exon 10 T306fsX309 1020delC p.Thr327Asnfs*4 c.980del CESD1 [3] exon 10 G321R 1064G>A p.Gly342Arg c.1024G>A CESD1 [3,5] exon 10 G321W 1064G>T p.Gly342Trp c.1024G>T NO[1],NO[8] WD1,2 [1] exon 10 G322fsX336 1064delG p.Gly343Valfs*15 c.1028del CESD1 [4] YES,TG exon 10 L336P 1110T>C p.Leu357Pro c.1070T>C CESD1 [30] only[19],NO[8]

*The cDNA number “old nomenclature” is according to human LAL cDNA clone published by Anderson and Sando [32]. **The cDNA number “new nomenclature” is as proposed by den Dunnen and Antonarakis [33], based on the cDNA with nucleotide c.1 being A of the ATG initiation codon p.1, using the reference sequences NM_001127605.1. CS absent: The catalytic site Ser174 appears to be necessary for the hydrolysis of both CE and TG [34].

REFERENCES AND RECOMMENDED READING

1. Lohse P, Maas S, Sewell AC, et al. Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease. J.Lipid Res. 1999, 40:221‐228.

2. Fujiyama J, Sakuraba H, Kuriyama M, et al. A new mutation (LIPA Tyr22X) of lysosomal acid gene in a Japanese patient with Wolman disease. Hum.Mutat. 1996, 8:377‐380.

3. Anderson RA, Bryson GM, Parks JS. Lysosomal acid lipase mutations that determine phenotype in Wolman and ester storage disease. Mol.Genet.Metab 1999, 68:333‐345.

4. Lohse P, Maas S, Lohse P, et al. Compound heterozygosity for a Wolman mutation is frequent among patients with cholesteryl ester storage disease. J.Lipid Res. 2000, 41:23‐31.

5. Fasano T, Pisciotta L, Bocchi L, et al. Lysosomal lipase deficiency: molecular characterization of eleven patients with Wolman or cholesteryl ester storage disease. Mol.Genet.Metab 2012, 105:450‐456.

6. Pisciotta L, Fresa R, Bellocchio A, et al. Cholesteryl Ester Storage Disease (CESD) due to novel mutations in the LIPA gene. Mol.Genet.Metab 2009, 97:143‐148.

7. Pagani F, Pariyarath R, Garcia R, et al. New lysosomal acid lipase gene mutants explain the phenotype of Wolman disease and cholesteryl ester storage disease. J.Lipid Res. 1998, 39:1382‐1388.

8. Saito S, Ohno K, Suzuki T, et al. Structural bases of Wolman disease and cholesteryl ester storage disease. Mol.Genet.Metab 2012, 105:244‐248.

9. Pagani F, Garcia R, Pariyarath R, et al. Expression of lysosomal acid lipase mutants detected in three patients with cholesteryl ester storage disease. Hum.Mol.Genet. 1996, 5:1611‐1617.

10. Zschenker O, Jung N, Rethmeier J, et al. Characterization of lysosomal acid lipase mutations in the signal peptide and mature polypeptide region causing Wolman disease. J.Lipid Res. 2001, 42:1033‐1040. 11. Huang YL, Sheng HY, Zhao XY, et al. [Wolman disease with novel mutation of LIPA gene in a Chinese infant]. Zhonghua Er.Ke.Za Zhi. 2012, 50:601‐605.

12. Hooper AJ, Tran HA, Formby MR, et al. A novel missense LIPA gene mutation, N98S, in a patient with cholesteryl ester storage disease. Clin.Chim.Acta 2008, 398:152‐154.

13. Grabowski GA, Charnas L, Du H. Lysosomal Acid Lipase Deficiencies: The Wolman Disease/Cholesteryl Ester Storage Disease Spectrum. In: The Online Metabolic & Molecular Bases of Inherited Disease. Edited by Valle, Beaudet, Vogelstein, Kinzler, Antonarakis, Ballabio (Editors). Colombus, OH: McGraw‐Hill; 2012. part 16, chapter 142. pp. 1‐9.

14. Ries S, Buchler C, Schindler G, et al. Different missense mutations in histidine‐108 of lysosomal acid lipase cause cholesteryl ester storage disease in unrelated compound heterozygous and hemizygous individuals. Hum.Mutat. 1998, 12:44‐51.

15. Gasche C, Aslanidis C, Kain R, et al. A novel variant of lysosomal acid lipase in cholesteryl ester storage disease associated with mild phenotype and improvement on lovastatin. J.Hepatol. 1997, 27:744‐750.

16. Mayatepek E, Seedorf U, Wiebusch H, et al. Fatal genetic defect causing Wolman disease. J.Inherit.Metab Dis. 1999, 22:93‐94.

17. Lee TM, Welsh M, Benhamed S, et al. Intragenic deletion as a novel type of mutation in Wolman disease. Mol.Genet.Metab 2011, 104:703‐705.

18. Anderson RA, Byrum RS, Coates PM, et al. Mutations at the lysosomal acid cholesteryl ester gene locus in Wolman disease. Proc.Natl.Acad.Sci.U.S.A 1994, 91:2718‐2722.

19. Sheriff S, Du H, Grabowski GA. Characterization of lysosomal acid lipase by site‐directed mutagenesis and heterologous expression. J.Biol.Chem. 1995, 270:27766‐27772.

20. Maslen CL, Babcock D, Illingworth DR. Occurrence of a mutation associated with Wolman disease in a family with cholesteryl ester storage disease. J.Inherit.Metab Dis. 1995, 18:620‐623.

21. Aslanidis C, Ries S, Fehringer P, et al. Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity. Genomics 1996, 33:85‐93.

22. Elleder M, Chlumska A, Hyanek J, et al. Subclinical course of cholesteryl ester storage disease in an adult with hypercholesterolemia, accelerated atherosclerosis, and liver cancer. J.Hepatol. 2000, 32:528‐534. 23. Pagani F, Zagato L, Merati G, et al. A histidine to tyrosine replacement in lysosomal acid lipase causes cholesteryl ester storage disease. Hum.Mol.Genet. 1994, 3:1605‐1609.

24. Redonnet‐Vernhet I, Chatelut M, Basile JP, et al. Cholesteryl ester storage disease: relationship between molecular defects and in situ activity of lysosomal acid lipase. Biochem.Mol.Med. 1997, 62:42‐49.

25. Ries S, Aslanidis C, Fehringer P, et al. A new mutation in the gene for lysosomal acid lipase leads to Wolman disease in an African kindred. J.Lipid Res. 1996, 37:1761‐1765.

26. Du H, Sheriff S, Bezerra J, et al. Molecular and enzymatic analyses of lysosomal acid lipase in cholesteryl ester storage disease. Mol.Genet.Metab 1998, 64:126‐134.

27. Klima H, Ullrich K, Aslanidis C, et al. A splice junction mutation causes deletion of a 72‐base exon from the mRNA for lysosomal acid lipase in a patient with cholesteryl ester storage disease. J.Clin.Invest 1993, 92:2713‐2718.

28. Ameis D, Brockmann G, Knoblich R, et al. A 5' splice‐region mutation and a dinucleotide deletion in the lysosomal acid lipase gene in two patients with cholesteryl ester storage disease. J.Lipid Res. 1995, 36:241‐250.

29. Muntoni S, Wiebusch H, Funke H, et al. Homozygosity for a splice junction mutation in exon 8 of the gene encoding lysosomal acid lipase in a Spanish kindred with cholesterol ester storage disease (CESD). Hum.Genet. 1995, 95:491‐494.

30. Seedorf U, Wiebusch H, Muntoni S, et al. A novel variant of lysosomal acid lipase (Leu336‐‐>Pro) associated with acid lipase deficiency and cholesterol ester storage disease. Arterioscler.Thromb.Vasc.Biol. 1995, 15:773‐778.

31. Drebber U, Andersen M, Kasper HU, et al. Severe chronic diarrhea and weight loss in cholesteryl ester storage disease: a case report. World J.Gastroenterol. 2005, 11:2364‐2366.

32. Anderson RA, Sando GN. Cloning and expression of cDNA encoding human lysosomal acid lipase/cholesteryl ester hydrolase. Similarities to gastric and lingual . J.Biol.Chem. 1991, 266:22479‐22484.

33. den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum.Mutat. 2000, 15:7‐12.

34. Lohse P, Chahrokh‐Zadeh S, Lohse P, et al. Human lysosomal acid lipase/cholesteryl ester hydrolase and human : identification of the catalytically active serine, aspartic acid, and histidine residues. J.Lipid Res. 1997, 38:892‐903.