Studies on Triacylglycerol Ester Hydrolase from Bat Adipose Tissue

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Triacylglycerol Ester Hydrolase from Bat Adipose Tissue J. Biosci., Vol.5, Number 1, March 1983, pp. 35–41 © Printed in India. Studies on triacylglycerol ester hydrolase from bat adipose tissue SUBHASH S. PATIL, CHANDA Κ. BHANDARI and VIJAY A. SAWANT Animal Physiology Laboratory, Zoology Department, Shivaji University, Kolhapur 416 004 MS received 20 April 1982; revised 4 October 1982. Abstract. Triacylglycerol ester hydrolase was isolated from bat adipose tissue and characterized. The partially purified enzyme had pH optimum of 8.6 and a Km value of 0.6 mM. The enzyme was denaturated upon freezing and thawing, which was prevented by 25% glycerol. The enzyme was activated by EDTA and NaCl, while it was inhibited by serum and bovine serum albumin. Heparin, sodium fluoride and diisopropyl fluorophosphate had no effect on triacylglycerol ester hydrolase activity. It hydrolyzed triglycerides partially. Triacylglycerol ester hydrolase lost its activity during delipidation but it was reactivated by endogenous lipids and phospholipids, viz. phosphatidyl ethanolamine, phosphatidyl choline and sphingomyelin. The enzyme shows kinetic properties altogether different from lipoprotein lipase and hormone sensitive lipase. Keywords. Bat adipose tissue; triacylglycerol ester hydrolase; bovine serum albumin; phospholipids. Introduction Hormone sensitive lipase [EC 3.1.1.3] and lipoprotein lipase [EC 3.1.1.34] have been extensively studied (Hiromichi and Setsuro, 1974; Mare, 1975; Bolzano, 1977; Setsurp and Yasuyuki, 1977; Anon, 1979). The functional importance of lipase has been shown (Vaughan et al., 1964; Hollenberg, 1965). Matsumura et al. (1976a,b) showed the presence of triglyceride lipase in rat and pig adipose tissue in addition to the occurrence of lipoprotein lipase and hormone sensitive lipase. Triglyceride lipase was active in the absence of serum and was strongly inhibited by bovine serum albumin. It was not affected by NaF and cyclic AMP-dependent protein kinase. Similarly many authors have reported hepatic triglyceride lipases in liver homogenates (Varinkova and Mosinger, 1965) and in plasma membrane, cytosol, microsomes and lysomes (Hayashi and Tappel, 1970; Assmann et al., 1973; Teng and Kaplan, 1974; Debeer et al., 1979). The cellular fractions show alkaline pH optima for lipolytic activity, except the lysosomal preparation, which has an optimum of pH 4 to 6. Very little is known about lipase activity of bat adipose tissue. Geroge and Eapan (1959) assayed lipase in the crude extracts and showed a difference in the levels of the enzyme in brown and yellow adipose tissues of bat. No reports are available on Abbreviations used: BSA, bovine serum albumin; DFP, diisopropyl fiuorophosphate 35 36 Patil et al. the isolation and characterization of lipase from the adipose tissue of bat. In the present studies attempts were made to purify partially and characterize the lipase. The enzyme showed kinetic properties altogether different from hormone sensitive lipase and lipoprotein lipase. Hence the enzyme has been referred to as triacylglycerol ester hydrolase or triglyceride lipase (Matsumura et al., 1976a, b). Materials and methods Materials Diphenyl carbazid was obtained from E. Merk, Dermstat, Germany, Diphenyl carbazone was from Veb Jenpharm Laborchemie, Apolda, Germany. Tris (hydroxymethyl)-aminomethane was from British Drug House Ltd., Poole, England. Bovine serum albumin (BSA), phosphatidyl ethanolamine, phosphatidyl choline, sphingomyelin, cholesterol, lysolecitin, phosphatidyl inositol, phosphatidyl serine, triglycerides and brain extract were obtained from Sigma Chemical Company, St. Louis, Missouri, USA. Diisopropylfluorophosphate (DFP) was from Kotch-Light Laboratories Ltd., Colnbrook , Bucks, England. Other chemicals were of the highest purity commercially available. Methods Purification of triglycerides from olive oil: Triglycerides from olive oil were purified using neutral alumina gel (Jensen et al., 1966). Purity of triglycerides was checked with thin layer chromatography (Sawant and Varute, 1973). Preparation of the substrate emulsion: The emulsion of triglycerides was prepared in gum acacia according to Fraser and Nicol (1966). Other emulsifiers when used were dispersed in appropriate buffer for the preparation of substrate emulsion. Preparation of delipidated tissue powder: The bats, Cynopterus sphinx sphinx were collected from their local natural habitat and were killed by occipital blow. The interscapular brown adipose tissue was dissected out and pooled. The tissue (6.4 g) was homogenized with approximately 10 vol of chilled acetone and the mixture was rapidly filtered through Whatman No. 1 filter paper. The residue was washed with 10 vol of chilled acetone and 10 vol of chilled ethyl ether. The defatted residue of adipose tissue thus obtained weighed one g. It was stored below 0°C. Preparation of enzyme: Delipidated adipose tissue powder was homogenized in 0.1 M Tris-HCl buffer pH 8.6, containing 1 mM DFP, 1 mM EDTA and 25% glycerol. The homogenate was agitated in a metabolic shaker at the rate of 240 strokes per min with 4 cm amplitude for 60 min at 20°C. It was then centrifuged for 30 min at 10000 g. The clear supernatant was removed and stored below 0°C. But lipase denatures upon freezing and thawing. Extraction of the enzyme in a medium containing 25% glycerol prevented denaturation and made it possible to store the enzyme at 0-4°C. This enzyme preparation can be stored for several weeks without loss of its activity. Triacylglycerol ester hydrolase 37 Enzyme assay: The lipase was assayed by the method of Hayashi and Tappel (1970) except for free fatty acids. The assay system contained 0.25 ml of substrate dispersed in gum acacia, 1.0 m. of 0.1 Μ Tris-HCl buffer pH 8.6, and suitably diluted enzyme sample in a total volume of 1.5 ml. The final substrated concentra- tion was 0.6 mM. Incubations were carried out in a metabolic shaker with continuous shaking at the rate of 160 strokes per min with 4 cm amplitude for 10 min at 37°C. At the end of the incubation the liberated fatty acids were measured colorimetrically according to Itaya (1977). Protein determination: Protein was estimated by the method of Lowry et al. (1951). The protein in wet adipose tissue was measured according to Tornqvist and Belfrage (1976). Esterase assay: Esterase was assayed with p-nitrophenyl acetate as a substrate, as described by Egelrud and Olivercrona (1974). Enzyme unit: One unit of lipase was defined as the amount of enzyme, which produced one n mol of free fatty acids per minute under appropriate assay conditions (Matsumura et al., 1967a, b). Results The levels of lipase activity in wet adipose tissue from different locations are shown in table 1. Table 1. Levels of triacylglycerol ester hydrolase in adipose tissue from different locations in bat. Values in the paranthesis represent the number of animals used for the study. Bat adipose tissue lipase was denatured upon freezing and thawing, and the denaturation can be prevented by 25% glycerol (Giudicelli and Boyer, 1973). Then the homogenate of adipose tissue in Tris-HCl buffer pH 8.6, containing 25% glycerol was incubated for 30 min at 50°C and the lipase activity was increased by about 35%. The lipase activity was found in the clear supernatant after centrifuga- tion of the homogenate at 10,000 g for 30 min. No activity was associated with the , 38 Patil et al. lipid fraction. However lipase activity was found in the fat layer, if the homogenate was not incubated at 50°C in the presence of 25% glycerol. Characterization of lipase activity Lipase activity in the homogenate of wet adipose tissue and acetone powder resuspension showed a broad pH optimum, while the enzyme extracted as described in the experimental section had a sharp pH optimum at 8.6. The triglyceride lipase activity was maximal at 37°C. The delipidated tissue powder resuspended in Tris-HCl buffer pH 8.6, agitated for 1 h, centrifuged at 10000 g for 30 min yielded a stable enzyme preparation. The increase in the rate of reaction at pH 8.6 measured as a function of increasing amount of substrate, triglyceride emulsion was apparently maximal at 6 mM. However above 6 mM the velocity was decreased. The Km was estimated to be 0.6 mM. The insoluble proteins present in acetone powder resuspension might interfere with the triacylglycerol ester hydrolase activity similar to the extraneously added starch particles. Effect of NaCl, BSA, serum, DFP, heparin, NaF and Na2EDTA The lipase was assayed in the presence of 0.2, 0.4, 0.6, 0.8 and 1.0 Μ NaCl. The enzyme was stimulated 1.5 fold beyond 0.4 Μ concentration. The enzyme was markedly inhibited by serum (table 2) and BSA (table 3), while DFP, heparin and Table 2. Inhibition of triacylglycerol ester hydrolase activity by serum. Table 3. Inhibition of triacylglycerol ester hydrolase by bovine serum albumin (BSA). Triacylglycerol ester hydrolase 39 NaF had no effect on lipase activity. The activity in the presence of 20, 40, 60, 120 m M EDTA was 133, 170, 200, 218% of the activity in its absence. Effect of emulsifiers Gum acacia, glycerol, BSA, tween 80 and ethanol were used as emulsifying agents for the preparation of substrate emulsion to ascertain their effect on the activity of lipase. It was observed that gum acacia, glycerol and ethanol are suitable emulsi- fiers to prepare the substrate emulsion required for bat adipose tissue lipase. Effect of lipids Emulsions of sphingomyelin, phosphatidyl choline, phosphatidyl ethanol amine, phosphatidyl serine, phosphatidyl inositol, phosphatide acid, triglycerides, brain extract, glycolipid, gangliosides, cholesterol, cholesterol ester and endogenous lipids were prepared separately using an ultrasonic oscillator. A mixture containing 1 mg delipidated tissue powder and 5 μΜ of lipids were incubated at 37°C for 30 min. In these mixtures phosphatidyl ethanolamine, phosphatidyl choline, sphingomyelin and endogenous lipids enhanced the lipase activity (table 4), while Table 4. Effect of phospholipids on triacylglycerol ester hydrolase activity in delipidated tissue powder. Each value is the mean of three expts.
Recommended publications
  • Autophagy As a Promoter of Longevity – Insights from Model Organisms
    1 2 3 4 Autophagy as a promoter of longevity – insights from model organisms 5 Malene Hansen1, David C. Rubinsztein2,3, and David W. Walker4,5 6 7 8 1Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and 9 Regeneration, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA. 10 2Cambridge Institute for Medical Research, Department of Medical Genetics; 11 3UK Dementia Research Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, 12 UK. 13 4 Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 14 90095, USA; 15 5Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA. 16 17 Correspondence: 18 MH ([email protected]), DWW ([email protected]), DCR ([email protected]) 19 20 Keywords: 21 Selective autophagy, tissue specificity, pathophysiology, ageing, S. cerevisiae, C. elegans, 22 Drosophila 23 24 1 25 Glossary 26 Aggrephagy: The selective removal of cytosolic aggregates by autophagy. 27 28 Autophagosome: A cytosolic double membrane-bound vesicle, capable of sequestering 29 cytoplasmic inclusions and organelles destined for degradation in the autolysosome. 30 31 Autolysosome: A cytosolic vesicle resulting from fusion between an autophagosome and 32 acidic lysosomes in which degradation of the inner membrane and sequestered material in the 33 autophagosome takes place. 34 35 Glomerulus: A key structure of a nephron, the functional unit of the kidney. 36 37 Hormesis/Hormetic heat shock: Beneficial effects of a treatment that at a higher intensity is 38 harmful. In one form of hormesis, non-lethal exposure to elevated temperature induces a 39 response that results in increased stress resistance and longevity.
    [Show full text]
  • Scientific Report 2012 Ongoing Research 2013
    SCIENTIFIC REPORT 2012 ONGOING RESEARCH 2013 IRCCS “Istituto Giannina Gaslini” Via Gerolamo Gaslini, 5 16147 Genova – Italy Tel. +39 010 5636 806/807 Fax +39 010 3776590 e-mail: [email protected] www.gaslini.org Some pictures of the Istituto Giannina Gaslini Nobel laureates at Gaslini: Renato Dulbecco and Rolf Zinkernagel Pope Benedict XVI visiting Gaslini Monsignor Angelo Bagnasco visiting Gaslini Some moments of the visit of the International Scientific Committee (Professors Alain Fischer, Max Cooper, Sergio Romagnani and Anthony Fauci) Annual Meeting of the SIOP Brain Tumor Sub-Committee The Germana International Centre for Studies and training (CISEF): a center of excellence which carries out educational activities in the fields of scientific research, prediatrics, organization and quality of health care services. TRIPR (Translational Research in Pediatric Rheumatology) Congress 2009 The 2 nd Training Course on Blood and Marrow Trasplantation: a course of paediatricians and pediatric nurses on HSCT in children and adolescents “I am not a man of science, but I am perfectly aware that only by starting from scientific research, conducted under proper direction, can physicians conscientiously accomplish their difficult task” (Gerolamo Gaslini) Foreword A recent publication by Via Academy - “Small is beautiful” – analyzed the quality of research carried out in different Italian universities and institutes. Small and medium-sized organizations with fewer than 100 principal investigators (PI) or university professors were extracted and in this ranking, based on the ratio of PI/TIS (Top Italian Scientists, Via Academy), Gaslini is ranked first, closely above the Humanitas Institute of Milan. This is a remarkable result and underscores once more the caliber of Gaslini’s researchers, among whom 23 are TIS, equally distributed between basic and clinical investigators.
    [Show full text]
  • The Activity of Lysosomal Enzymes in Blood Serum, Liver, Kidney and Skeletal Muscle of Rabbits Divergently Selected for Locomotor Activity in Open-Field Test
    Animal Science Papers and Reports vol. 27 (2009) no. 3, 249-257 Institute of Genetics and Animal Breeding, Jastrzębiec, Poland REPORT The activity of lysosomal enzymes in blood serum, liver, kidney and skeletal muscle of rabbits divergently selected for locomotor activity in open-field test Artur Jóźwik*, Anna Śliwa-Jóźwik, Tadeusz Jezierski, Wojciech Daniewski, Aleksandra Górecka, Adam Kołątaj Polish Academy of Sciences Institute of Genetics and Animal Breeding, Jastrzębiec, 05-552 Wólka Kosowska, Poland (Received August 25, 2008; accepted March 10, 2009) Twenty males were used from generation 8 of rabbits divergently selected for high (line H, n=10) vs. low (line L, n=10) locomotor activity in the open-field (OF-test). At the age of 98 days, blood samples were withdrawn from the ear vein and the rabbits were killed. Immediately, liver, kidney and the left femoral muscle samples were excised. In lysosomal fractions of blood serum and three tissues mentioned the activity of lysosomal enzymes AlaAP, LeuAP, ArgAP, Cat D and L, AcP, EL, LAL, BGRD, BGAL, BGLU, aGlu, MAN and HEX was determined. Significant interline differences were identified in activity of blood and tissue enzymes in question. The results suggest that the divergent selection for high vs. low locomotor activity in the open-field (OF-test) alters the lysosomal degradation processes in the organism. KEY WORDS: lysosomal enzymes / open-field test / rabbits / selection *Corresponding author: [email protected] 249 A. Jóźwik et al. The metabolic processes in live cells and tissues depend, among others, on specific rate of synthesis and degradation of basic energetic compounds.
    [Show full text]
  • The Role of Lysosomal Acid Lipase in Regulation of the Atp
    THE ROLE OF LYSOSOMAL ACID LIPASE IN REGULATION OF THE ATP- BINDING CASSETTE TRANSPORTER A1, HIGH DENSITY LIPOPROTEIN AND REVERSE CHOLESTEROL TRANSPORT by Kristin Louise Bowden B.Sc., Queen’s University, 2005 M.Sc., Dalhousie University, 2008. A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2013 © Kristin Louise Bowden, 2013. Abstract The key regulator of initial HDL particle formation by cells is the ATP-binding cassette transporter A1 (ABCA1). ABCA1 expression is regulated primarily by oxysterol dependent activation of the liver X receptor (LXR). We investigated the role of lysosomal cholesterol on ABCA1 regulation by studying the lysosomal disorder Cholesteryl Ester Storage Disease (CESD). CESD is caused by genetic mutations in the LIP-A gene that result in only 5% of normal activity of lysosomal acid lipase (LAL), an enzyme that hydrolyzes cholesteryl esters (CE) and triglycerides on internalized lipoproteins specifically within the lysosome. We hypothesized that the flux of unesterified cholesterol out of the lysosomes from LAL- mediated hydrolysis of LDL cholesteryl esters is a key regulator of cellular ABCA1 expression, HDL formation and reverse cholesterol transport (RCT). We found that primary skin fibroblasts derived from individuals with CESD had impaired upregulation of ABCA1 in response to LDL loading, reduced phospholipid and cholesterol efflux to apoA-I, lower production of 27-hydroxycholesterol (27-OH) production in response to LDL loading and reduced α-HDL particle formation. This defect was recapitulated in normal fibroblasts following treatment with LAL inhibitors, whereas, treatment with conditioned medium from normal fibroblasts containing secreted LAL rescued ABCA1 expression, apoA-I-mediated cholesterol efflux, HDL particle formation and production of 27-OH by CESD cells.
    [Show full text]
  • The Physiological Role of Glucocorticoid and Mineralocorticoid Receptor Activation in Zebrafish
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-06-25 The Physiological Role of Glucocorticoid and Mineralocorticoid Receptor Activation in Zebrafish Faught, Leslie Erin Faught, L. E. (2019). The Physiological Role of Glucocorticoid and Mineralocorticoid Receptor Activation in Zebrafish (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110575 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY The Physiological Role of Glucocorticoid and Mineralocorticoid Receptor Activation in Zebrafish by Leslie Erin Faught A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA JUNE, 2019 © Leslie Erin Faught 2019 Abstract Glucocorticoids are key mediators of the vertebrate stress response. In teleosts, the primary glucocorticoid, cortisol, is a ligand for two corticosteroid receptors (CRs), the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). The affinity of cortisol for these receptors is markedly different, with MR having an almost 10-fold higher affinity for the ligand compared to GR. This led to the hypothesis 30 years ago in mammals, that MR is responsible for basal cortisol function, while GR is active only when cortisol levels are high.
    [Show full text]
  • The Role of Lipid Metabolism in Aging, Lifespan Regulation, and Age‐Related Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository Received: 6 May 2019 | Revised: 11 August 2019 | Accepted: 4 September 2019 DOI: 10.1111/acel.13048 REVIEW The role of lipid metabolism in aging, lifespan regulation, and age‐related disease Adiv A. Johnson1 | Alexandra Stolzing2,3 1Nikon Instruments, Melville, NY, USA Abstract 2BIOAGE Labs, Richmond, CA, USA 3Loughborough University, Loughborough, An emerging body of data suggests that lipid metabolism has an important role to UK play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and Correspondence surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and Adiv A. Johnson, Nikon Instruments, rats. For example, the impairment of genes involved in ceramide and sphingolipid Melville, NY, USA. Email: [email protected] synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacyl‐ glycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various health‐ span parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively.
    [Show full text]
  • Emerging Roles of PHLPP Phosphatases in Cell Signaling
    Annual Review of Pharmacology and Toxicology PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling Timothy R. Baffi,∗ Ksenya Cohen-Katsenelson,∗ and Alexandra C. Newton Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA; email: [email protected] Annu. Rev. Pharmacol. Toxicol. 2021. 61:723–43 Keywords First published as a Review in Advance on PHLPP, Akt, PKC, phosphatase, phosphorylation, cancer, transcription, September 30, 2020 inflammation The Annual Review of Pharmacology and Toxicology is online at pharmtox.annualreviews.org Abstract https://doi.org/10.1146/annurev-pharmtox-031820- Whereas protein kinases have been successfully targeted for a variety of dis- 122108 eases, protein phosphatases remain an underutilized therapeutic target, in Copyright © 2021 by Annual Reviews. part because of incomplete characterization of their effects on signaling net- All rights reserved works. The pleckstrin homology domain leucine-rich repeat protein phos- ∗ These authors contributed equally to this article phatase (PHLPP) is a relatively new player in the cell signaling field, and new Access provided by University of California - San Diego on 03/15/21. For personal use only. Annu. Rev. Pharmacol. Toxicol. 2021.61:723-743. Downloaded from www.annualreviews.org roles in controlling the balance among cell survival, proliferation, and apop- tosis are being increasingly identified. Originally characterized for its tumor- suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response.
    [Show full text]
  • MTOR Signaling and Metabolism in Early T Cell Development
    G C A T T A C G G C A T genes Review MTOR Signaling and Metabolism in Early T Cell Development Guy Werlen, Ritika Jain and Estela Jacinto * Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (G.W.); [email protected] (R.J.) * Correspondence: [email protected]; Tel.: +1-732-235-4476 Abstract: The mechanistic target of rapamycin (mTOR) controls cell fate and responses via its func- tions in regulating metabolism. Its role in controlling immunity was unraveled by early studies on the immunosuppressive properties of rapamycin. Recent studies have provided insights on how metabolic reprogramming and mTOR signaling impact peripheral T cell activation and fate. The contribution of mTOR and metabolism during early T-cell development in the thymus is also emerging and is the subject of this review. Two major T lineages with distinct immune functions and peripheral homing organs diverge during early thymic development; the αβ- and γδ-T cells, which are defined by their respective TCR subunits. Thymic T-regulatory cells, which have immunosup- pressive functions, also develop in the thymus from positively selected αβ-T cells. Here, we review recent findings on how the two mTOR protein complexes, mTORC1 and mTORC2, and the signaling molecules involved in the mTOR pathway are involved in thymocyte differentiation. We discuss emerging views on how metabolic remodeling impacts early T cell development and how this can be mediated via mTOR signaling. Keywords: mTOR; mTORC1; mTORC2; thymocytes; T lymphocytes; early T cell development; T-cell metabolism Citation: Werlen, G.; Jain, R.; Jacinto, E.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,383,367 B1 Liu Et Al
    USOO9383367B1 (12) United States Patent (10) Patent No.: US 9,383,367 B1 Liu et al. (45) Date of Patent: Jul. 5, 2016 (54) METHODS OF DETECTING CONJUGATION 6,465,199 B1 10/2002 Craig et al. SITE-SPECIFIC AND HIDDEN 6,762,045 B2 7/2004 Krebs et al. 6,911,335 B2 6/2005 Kapeller-Libermann et al. EPTOPEAANTIGEN 7,022,493 B2 4/2006 Issakani et al. 7,223,556 B1 5/2007 Zhou et al. (76) Inventors: Chunli Liu, Baltimore, MD (US); 7.460,960 B2 12/2008 Lee et al. Bingren Hu, Baltimore, MD (US) 7,491,501 B2 2/2009 Wooten 7,803,553 B2 9/2010 Kojima et al. (*) Notice: Subject to any disclaimer, the term of this 2007, 0037221 A1 2/2007 Blocket al. patent is extended or adjusted under 35 2007/0218069 A1 9, 2007 Gordon et al. U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 6, 2011 OTHER PUBLICATIONS Related U.S. Application Data Kirkpatricket al. Quantitative analysis of in vitro ubiquitinated cyclin (60) Provisional application No. 61/420.354, filed on Dec. B1 reveals compex chain topology. Nature Cell Biol. 2006, vol. 8, 7, 2010. No. 7, pp. 700-710 and supporting online material.* Koivunen et al. Principles of immunochemical techniques used in (51) Int. Cl. clinical laboratories. Labmedicine 2006, Vo.37, No. 8, pp. 490-497.* GOIN33/53 (2006.01) Continued CI2O I/34 (2006.01) ( ) CI2O I/37 (2006.01) C07K 16/00 (2006.01) GOIN33/68 (2006.01) Primary Examiner — Shafiqul Haq C07K 6/8 (2006.01) (52) U.SCI2O % 1/61 ( 2006.O1 ) (57) ABSTRACT CPC ...............
    [Show full text]
  • Biological Chemistry
    Ministry of Health of Ukraine Zaporizhzhya State Medical University Biochemistry & Laboratory Diagnostics Department Biological chemistry A manual for independent work at home and in class preparation for licensing examination “KROK 1” on module 1 “General regularities of metabolism. Metabolism of carbohydrates, lipids, amino acids and their regulation” for students of International Faculty (the second year of study) speciality: 7.120 10001 «General Medicine» Zaporizhzhya 2015 ББК 28.072я73 Б63 УДК 577.1(072)=111 Editors: Dr. Hab., professor Aleksandrova K.V. PhD, ass. professor Krisanova N.V. PhD, ass. professor Ivanchenko D.G. PhD, as. profesor Rudko N.P. PhD, assistant Levich S.V. This manual is recommended for II year students of International Faculty of specialty 7.12010001 "General medicine" studying biological chemistry, as additional material to prepare for practical training module 1 and licensing exam “KROK 1: General medical training”. Reviewers: • Head of Biological Chemistry Department of National University of Pharmacy, doctor of biological science, professor Zagayko A.L. • Professor of Chemistry Department of Zaporizhzhya National University, doctor of pharmaceutical science, professor Omelianchyk L.O. ББК 28.072я73 УДК 577.1(072)=111 © Aleksandrova K.V., Krisanova N.V., Ivanchenko D.G., Rudko N.P., Levich S.V., 2015 1 CONTENT Introduction…………………………………………………………………... 3 Classification, physicochemical properties and functions of simple proteins in humans. The methods for indication, separation and release of proteins from biological fluids. Created by Levich S.V..……....................................... 4 Conjugated proteins. The methods of allocation and quantitative determination of proteins in biological fluids. Created by Levich S.V..... 18 Enzymes: Structure and physicochemical properties. classification and nomenclature of enzymes.
    [Show full text]
  • Genomics and Proteomics of Vertebrate Cholesterol Ester Lipase (LIPA) and Cholesterol 25-Hydroxylase (CH25H)
    3 Biotech (2011) 1:99–109 DOI 10.1007/s13205-011-0013-9 ORIGINAL ARTICLE Genomics and proteomics of vertebrate cholesterol ester lipase (LIPA) and cholesterol 25-hydroxylase (CH25H) Roger S. Holmes • John L. VandeBerg • Laura A. Cox Received: 24 March 2011 / Accepted: 31 May 2011 / Published online: 3 August 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cholesterol ester lipase (LIPA; EC 3.1.1.13) coding exons, while all vertebrate CH25H genes were and cholesterol 25-hydroxylase (CH25H; EC 1.14.99.48) without introns. Phylogenetic analysis demonstrated the play essential role in cholesterol metabolism in the body by distinct nature of the vertebrate LIPA gene and protein hydrolysing cholesteryl esters and triglycerides within family in comparison with other vertebrate acid lipases and lysosomes (LIPA) and catalysing the formation of has apparently evolved from an ancestral LIPA gene which 25-hydroxycholesterol from cholesterol (CH25H) which predated the appearance of vertebrates. acts to repress cholesterol biosynthesis. Bioinformatic methods were used to predict the amino acid sequences, Keywords Vertebrates Á Lipase A Á Cholesterol structures and genomic features of several vertebrate LIPA 25-hydroxylase Á Cholesterol metabolism and CH25H genes and proteins, and to examine the phy- logeny of vertebrate LIPA. Amino acid sequence align- ments and predicted subunit structures enabled the Introduction identification of key sequences previously reported for human LIPA and CH25H and transmembrane
    [Show full text]
  • US 2004/0146980 A1 Merkulov Et Al
    US 2004O146980A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0146980 A1 Merkulov et al. (43) Pub. Date: Jul. 29, 2004 (54) ISOLATED HUMAN LIPASE PROTEINS, (22) Filed: Mar 18, 2004 NUCLEC ACID MOLECULES ENCODING HUMAN LIPASE PROTEINS, AND USES Related U.S. Application Data THEREOF (62) Division of application No. 10/003,302, filed on Dec. (75) Inventors: Gennady V. Merkulov, Baltimore, MD 6, 2001, which is a division of application No. (US); Karen A. Ketchum, 09/820,001, filed on Mar. 29, 2001, now Pat. No. Germantown, MD (US), Valentina Di 6,387,680. Francesco, Rockville, MD (US); Ellen M. Beasley, Darnestown, MD (US) Publication Classification Correspondence Address: (51) - - - - - - - - C12N 9/20; CO7H 21/04 CELERA GENOMICS CORP. (52) U.S. Cl. ..................... 435/69.1; 435/198; 435/320.1; ATTN: WAYNE MONTGOMERY, VICE PRES, 435/325; 536/23.2 INTEL PROPERTY ABSTRACT 45 WEST GUDE DRIVE (57) C2-4iii.20 The present invention provides amino acid Sequences of ROCKVILLE, MD 20850 (US) peptides that are encoded by genes within the human genome, the lipase peptides of the present invention. The (73) Assignee: APPLERACORPORATION, Norwalk, present invention specifically provides isolated peptide and CT nucleic acid molecules, methods of identifying orthologs and paralogs of the lipase peptides, and methods of identi (21) Appl. No.: 10/802,805 fying modulators of the lipase peptides. 1. CTOTTACTOT TO AGCCTGA GTCAAAAGCA AAAGTTCAGA AGT TOOTCAT 51 CAATAAGGAG TCCGGAG CAGGGAAGCTCATCTAACT AGGCATC 101 ATGATGTGGC TGCTTT TAAC AACAACT GT TTGATC-TGTG GAACT TAAA 1S1 TGCTGGTGGA TCCTGATT TIGGAAAATGA AGTGAATCOT GAGGGGGA 201 TGAAFACTAG TGAAATCATC ATCTACAATG GCTACCCCAG TGAAGAGTAT 251 GAAGTCACGACTGAAGATGG GTATATACTC CTTGTCAACA GAATTCOTTA 301 TGGGCGAACA CATGCTAGGA GCACAGGTCC CCGGCCAGTT GTGTATATGC 351 AGCAIGCCCT GITTTGCAGAC AATGCCTACT GGCTTGAGAA TATGCCAAT 401 GGAAGCOTTG GATTCOT TOT AGCAGATGCA GGTTATGATG TAGGATGGG 451 AAACAGTCGG GGAAACACTT GGTCAAGAAG ACACAAAACA CTOTCAGAGA 501 CAGATGAGAA Al TCTGGGCC TTAGTTTTG ATGAAATGGC CAAATATGAT 551.
    [Show full text]