Benzo[1,2,3]Dithiazole Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Benzo[1,2,3]Dithiazole Compounds reactions Review Review Benzo[1,2,3]dithiazole Compounds: A History of Synthesis and Their RenewedRenewed ApplicabilityApplicability inin MaterialsMaterials andand SyntheticSynthetic Chemistry, OriginatingOriginating fromfrom thethe HerzHerz ReactionReaction AlexanderAlexander J. Nicholls * andand Ian Ian R.R. Baxendale Baxendale Department of Chemistry, University of Durham, SouthSouth Road,Road, DurhamDurham DH1DH1 3LE,3LE, UK;UK [email protected]@durham.ac.uk * Correspondence:Correspondence: [email protected]@durham.ac.uk Abstract: The benzo[1,2,3]dithiazole is a unique heteroaromatic functionality whose conjugatedconjugated profileprofile instils some fascinating electronic properties. This has been historically recognized in the design and manufacture of organic dyes early last century. Although, with the benefitbenefit of increased diagnostic techniques and improved understanding, these structures are attracting greater attention inin additional research settings,settings, including applicationsapplications as organicorganic radicalsradicals andand semiconductors.semiconductors. In addition, the benzodithiazolebenzodithiazole functionalityfunctionality has has been been shown shown to to be be a valuablea valuable synthetic synthetic intermediate intermediate in inthe the preparation preparation of aof variety a variety of other of other privileged privileged aromatic aromatic and heteroaromatic and heteroaromatic targets, targets, many ofmany which of whichare important are important APIs. InAPIs. this In review, this review, the authors the authors aim to criticallyaim to critically analyse analyse the potential the potential applicability applica- of bilitythese compoundsof these compounds to the fields to the of notfields only of small-scalenot only small laboratory-scale laboratory synthetic andsynthetic medicinal and chemistrymedicinal chemistrybut also commercial-scale but also commercial processes-scale andprocess increasinglyes and increasingly materials chemistry. materials chemistry. Nicholls, A.J.; Baxendale, Citation: Nicholls, A.J.; Baxendale, Keywords: thiazole;thiazole; disulfurdisulfur dichloride;dichloride; Herz Herz reaction; reaction; heterocycle heterocycle formation; formation; organic organic radical radical anion; an- I.R. Benzo[1,2,3]dithiazole ion; semiconductor; dye Compounds: A History of Synthesis semiconductor; dye and Their Renewed Applicability inin Materials and Synthetic Chemistry, Originating from the Herz Reaction. Reactions 2021,, 22,, 175–208.x. https://doi.org/ https:// 1. Introduction to Benz Benzo[1,2,3]dithiazoleo[1,2,3]dithiazole Compounds 10.3390/xxxxx doi.org/10.3390/reactions2030013 The benzo[1,2,3]dithiazole is a rare and enigmatic heterocycle (Figure(Figure 11),), whichwhich atat firstfirst glance has has similarity similarity to to the the more more common common benzothiazole benzothiazole structure, structure, with with the thecarbon car- Academic Editors: Silvana Pedatella Academic Editors: Silvana Pedatella bonat the at the2-position 2-position exchanged exchanged for forsulphur sulphur.. In Inaddition addition,, there there also also exists exists the the isomeric and Dmitry Yu. Murzin and Dmitry Yu. Murzin benzo[1,3,2]dithiazole,benzo[1,3,2]dithiazole, which which,, although also also displaying some some similar similar properties properties and and ap- ap- plications [1 [1––4]4],, will will not not be be covered covered in inthis this review review owing owing largely largely to the to differences the differences in syn- in Received: 303 May May 2021 2021 synthesisthesis [5] [(and5] (and from from here here forward forward for for simplicity, simplicity, ‘benzodithiazole’ ‘benzodithiazole’ will will refer refer only only to to the Accepted: 24 June 2021 [1,2,3]dithiazole derivatives). Published: 2928 June 2021 [1,2,3]dithiazole derivatives). Publisher’s Note: MDPI stays neu- 4 4 4 Publisher’s Note: H MDPI stays neutral 5 3 5 3 3 tral with regard to jurisdictional N S 5 N with regard to jurisdictional claims in 2 2 claims in published maps and institu- S NH published maps and institutional affil- 6 6 2 6 tional affiliations. S S S iations. 7 1 7 1 7 1 Benzo[1,2,3]dithiazole Benzo[1,3,2]dithiazole Benzo[1,3]thiazole Figure 1. 1.The structureThe structure and parent and numbering parent system numbering for benzo[1, system2,3]dithiazole, for benzo[1,2,3]dithiazole, benzo[1,3,2]dithi- Copyright: © 2021 by the authors. Li- benzo[1,3,2]dithiazoleazole and benzothiazole. and benzothiazole. Copyright:censee MDPI,© 2021Basel, by Switzerland. the authors. LicenseeThis article MDPI, is an Basel,open access Switzerland. article While all but neglectedneglected as aa syntheticsynthetic intermediateintermediate inin APIAPI andand bulk/finebulk/fine chemicals, Thisdistributed article under is an the open terms access and article con- the valuable electronic properties of the dithiazoledithiazole structures havehave engenderedengendered renewedrenewed distributedditions of the underCreative the Commons terms At- and interest in recent years. As a result, the general benzo[1,2,3]dithiazole structure appears conditionstribution (CC of BY) the license Creative (http://crea- Commons interest in recent years. As a result, the general benzo[1,2,3]dithiazole structure appears roughly equally in both the scientific and patent literature over the previous ten years Attributiontivecommons.org/licenses/by/4.0/). (CC BY) license (https:// roughly equally in both the scientific and patent literature over the previous ten years as creativecommons.org/licenses/by/ asit did it did in the in thenear near 100 100years years of its of preceding its preceding existence existence [6]. Despite [6]. Despite a renewed a renewed interest interest in the 4.0/). in the compounds recently, much of the synthetic methods and understanding remain Reactions 2021, 2, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/reactions Reactions 2021, 2, 175–208. https://doi.org/10.3390/reactions2030013 https://www.mdpi.com/journal/reactions Reactions 2021, 2, FOR PEER REVIEW 2 Reactions 2021, 2 176 compounds recently, much of the synthetic methods and understanding remain mostly transcribedmostly transcribed from the from original the original literature literature (early (early-to-mid-to-mid last century). last century). This This review review aims aims to highlightto highlight their their interesting interesting synthetic synthetic chemistry chemistry and andsignpost signpost some some of the of most the most popular popular end- useend-use applications. applications. 1.11.1.. Categorisation Categorisation of Benzo Benzo[1,2,3]dithiazole[1,2,3]dithiazole Compounds The benzo[1,2,3]dithiazole structure structure exists exists most commonly in three different formsforms with vastly different characteristic properties: the benzodithiazolium cation, the neutral compound andand the the benzodithiazoyl benzodithiazoyl radical. radical. All threeAll three are reversibly are reversibly interconverted interconverted through throughsimple chemical simple chemical transformations transformations [4,7]. The [4,7] benzodithiazolium. The benzodithiazolium cation cation is a planar, is a planar, 10-π 10aromatic-π aromatic system system and isand the is most the most facile facile benzo[1,2,3]dithaizole benzo[1,2,3]dithaizole to generate to generate experimentally. experimen- tally.Supported Supported by a by counterion a counterion (most (most commonly commonly chloride), chloride), it is itgenerically is generically referred referred to to as as a ‘Herza ‘Herz salt,’ salt, and’ and these these compounds compounds are are generally generally amorphous amorphous andand areare sparinglysparingly solublesoluble in most organic solventssolvents andand aqueousaqueous media media unless unless there there are are large large substituents substituents or or counterions counteri- onspresent. present. In suchIn such circumstances, circumstances crystalline, crystalline polymorphs polymorphs have have been been isolated,isolated, allowing analysis of of the the solid solid structure structure by by X X-ray-ray diffraction diffraction (XRD) (XRD) analysis analysis [8] [8. ].The The second second form form of benzo[1,2,3]dithiazoles,of benzo[1,2,3]dithiazoles, the the neutral neutral compounds, compounds, can can normally normally only only form form when when specific specific substituents areare locatedlocated atat the the 2 2 or or 6 6 positions; positions; otherwise, otherwise the, the molecule’s molecule’s lack lack of conjugationof conjuga- tionmakes makes the structure the structure too high too in high energy. in energy. The most The common most common examples examples being the being 2-sulfoxides the 2- sulfoxidesand 6-malononitrile and 6-malononitrile derivatives. derivatives. These compounds These compounds generally generally replicate replicate the Herz the salts Herz in saltstheir in physical their physical properties properties (high melting (high melting solid, poorsolid, solubility), poor solubility), although although they canthey have can haveextremely extremely different different absorption absorption properties, properties, notably notably the intense-purplethe intense-purple appearance appearance of the of theS-sulfoxides. S-sulfoxides. These These materials materials tend tend to beto bench-stable,be bench-stable whereas, whereas the the Herz Herz salts salts are are found found to togradually gradually hydrolyse hydrolyse to theto the 2-sulfoxides
Recommended publications
  • Nomenclature Worksheet Part 2-Binary Molecular Compounds
    Nomenclature Worksheet Part 2-Binary Molecular Compounds. When two different elements combine, they form a binary compound. We have seen some ionic binary compounds such as sodium chloride, NaCl, or copper(II) oxide, CuO. But, non-metals can also form binary compounds, the most famous of which is water, H2O. We have learned how to name binary ionic compounds. In this worksheet, we will practice naming binary molecular compounds. Binary molecular compounds are held together by covalent bonds. As in ionic compounds, the more metallic element is listed first, and the less metallic is listed second. This coincides with the concept of electronegativity (and the converse, electropositivity) that we discussed in class. So, another way of stating this is the more electropositive element is written first followed by the more electronegative element. An example of this is SF6, Notice that sulfur is more electropositive than fluoride and is written first. If both elements are in the same group, the element with the higher period number goes first. We see this in the formulas of SO2 and IBr. Binary molecular compounds differ from ionic compounds in a key way: we can’t use charge to name the compound. So how will we distinguish CO2 from CO, NO2 from N2O? We will use need a different system from ionic nomenclature. In ionic nomenclature, we use charges and the position on the periodic table to indicate the number and types of ions in the compounds. The charges are whole numbers. Binary molecules can have fractional charges and multiple compounds for the combination of elements.
    [Show full text]
  • A COORDINATION and REDOX CHEMISTRY of ANTIMONY-BASED LIGANDS and APPLICATIONS in ORGANOMETALLIC CATALYSIS a Dissertation by YING
    COORDINATION AND REDOX CHEMISTRY OF ANTIMONY-BASED LIGANDS AND APPLICATIONS IN ORGANOMETALLIC CATALYSIS A Dissertation by YING-HAO LO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, François P. Gabbaï Committee Members, Michael B. Hall Michael Nippe Hung-Jen Wu Head of Department, Simon W. North December 2019 Major Subject: Chemistry Copyright 2019 Ying-Hao Lo a ABSTRACT The use of Z-ligands to modulate the electronic property of transition metal centers is a powerful strategy in catalyst design. Our group has shown that antimony- based ambiphilic ligand, accept electron density from adjacent metal centers by the σ* orbital of the antimony (V) center and thus increasing the electrophilic reactivity of the trancition metal center. In this thesis, we were eager to determine if the charge of the Z- type ligand can be used to further enhance this effect. To this end, we synthesized a 2+ 2+ dicationic gold complex [46] ([(o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuCl] ) featuring a dicationic antimony (V) ligand with a phosphine oxide arm coordinating to the antimony center. Both experimental and computational results show that the gold complex possess a strong Au→Sb interaction reinforced by the dicationic character of the antimony center. The gold‐bound chloride anion of this complex is rather inert and necessitates the addition of excess AgNTf2 to undergo activation. The activated complex, referred to as 2+ 2+ [47] ([((o‐(Ph2P)C6H4)2(o‐Ph2PO)C6H4)SbAuNTf2] ) readily catalyzes both the polymerization and the hydroamination of styrene.
    [Show full text]
  • CHEM 1000 Practice Final a (Answers)
    1 Name: ________________________ Student Number: _____________________ Chemistry 1000 Practice Final Exam A Based on Fall 2009 Test (Content Updated to Fall 2012 Curriculum) INSTRUCTIONS 1) Read the exam carefully before beginning. There are 19 questions on pages 2 to 12 followed by 2 pages of “Data Sheet” (including periodic table) and a blank page for any rough work. Please ensure that you have a complete exam. If not, let an invigilator know immediately. All pages must be submitted at the end of the exam. 2) If your work is not legible, it will be given a mark of zero. 3) Marks will be deducted for incorrect information added to an otherwise correct answer. 4) You may use a calculator. 5) Show your work for all calculations. Answers without supporting calculations will not be given full credit. 6) Marks will be deducted for improper use of significant figures and for numerical answers with incorrect/missing units. 7) Do not open the exam until you are told to begin. Beginning prematurely will result in removal of your exam paper and a mark of 0. 8) You have 3 hours to complete this exam. Nobody may leave the exam room during the first hour or the last 15 minutes of the exam. Q Mark Q Mark 1 / 23 11 / 7 2 / 3 12 / 9 3 / 5 13 / 8 4 / 3 14 / 3 5 / 3 15 / 4 6 / 2 16 / 10 7 / 4 17 / 6 8 / 3 18 / 2 9 / 12 19 / 1 10 / 2 Total / 110 2 Name: ________________________ Student Number: _____________________ 1.
    [Show full text]
  • 90934 Demonstrate Understanding of Aspects of Chemical Reactions
    No Brain Too Small CHEMISTRY 90934 Demonstrate understanding of aspects of chemical reactions Collated questions on Synthesis/Combination reactions 2011-2013 Question One A teacher showed her class two video clips of chemical reactions. One was of a reaction between sodium metal and chlorine gas. The second was of a reaction between solid sulfur and chlorine gas. (a) When the sodium metal reacted with chlorine gas, the video clip showed a shiny grey solid reacting with a yellow-green gas. The reaction resulted in the formation of white crystals. Link these observations to the reactants and products involved in this reaction. (b) (i) Name the product that will be formed when solid sulfur reacts with chlorine gas. (ii) Identify the type of reaction that is occurring, and give a reason for your choice. (c) (i) Write a balanced symbol equation for the reaction between sodium and chlorine. (ii) Write a balanced symbol equation for the reaction between sulfur and chlorine. (d) Explain the differences in the two reactions: sodium with chlorine gas and sulfur with chlorine gas, in terms of electron transfer. Question Two A teacher demonstrates a reaction between hydrogen gas and oxygen in the air. Analyse the reaction (i) Identify the type of reaction that occurs: Give a reason for your choice: (ii) Describe any observations that would be made of this reaction, and link these to the substances involved in the reaction. Outline a test that could be used to confirm the presence of the product formed. (iii) Write a balanced symbol equation for this reaction. Question Three Different elements can be reacted together to form compounds with properties that are different to the original elements.
    [Show full text]
  • United States Patent (19) 11) 4,183,924 Green Et Al
    United States Patent (19) 11) 4,183,924 Green et al. 45 Jan. 15, 1980 (54) 17a-CHLORO-179-HYDROCARBONSULFI 58) Field of Search .................... 260/239.55 R, 397.3, NYL-1,4-ANDROSTADENES AND THE 260/.397.45; 424/242; Steroids MS File/ CORRESPONDING 176-HYDROCARBONSULFONYL 56 References Cited DERVATIVES AND THEIR USE AS U.S. PATENT DOCUMENTS ANT-ACNE AGENTS 4,091,036 5/1978 Varma ........................... 260/.397.3 X 75 Inventors: Michael J. Green, Kendall Park; Primary Examiner-Ethel G. Love Robert Tiberi, Englishtown, both of Attorney, Agent, or Firm-Elizabeth A. Bellamy; Mary N.J. S. King 73 Assignee: Schering Corporation, Kenilworth, N.J. 57 ABSTRACT Novel 17a-chloro-1743-hydrocarbonsulfinyl and 17a 21) Appl. No.: 881,217 chloro-17 (3-hydrocarbonsulfonyl derivatives of 3-oxo (22 Filed: Feb. 27, 1978 1,4-androstadienes and their use as anti-acne agents are 51) Int. C.? ...................... A61K 31/565; C07J 31/00 described. 52 U.S.C. ........................... 424/242; 260/239.55 R; 260/.397.3; 260/.397.45 18 Claims, No Drawings 4,183,924 1. 2 Preferred compounds of our invention are those de 17a-CHLORO-176-HYDROCARBONSULFINYL fined by the following formula II: 1,4-ANDROSTADIENES AND THE CORRESPONDING II 176-HYDROCARBONSULFONYL DERIVATIVES 5 AND THER USE AS ANT-ACNE AGENTS FIELD OF THE INVENTION This invention relates to novel compositions-of-mat ter, to methods for their manufacture and methods for 10 their use as anti-acne agents. Specifically, this invention relates to novel 17a chloro-176-hydrocarbonsulfinyl and 17a-chloro-1718 hydrocarbonsulfonyl derivatives of 3-oxo-1,4-andros 15 tadienes useful as anti-acne agents.
    [Show full text]
  • Addition Reactions and Photoisomerization of Cis,Trans-1,5-Cyclodecadiene
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1970 Addition Reactions and Photoisomerization of Cis,trans-1,5-Cyclodecadiene. Hsin-hsiong Hsieh Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Hsieh, Hsin-hsiong, "Addition Reactions and Photoisomerization of Cis,trans-1,5-Cyclodecadiene." (1970). LSU Historical Dissertations and Theses. 1859. https://digitalcommons.lsu.edu/gradschool_disstheses/1859 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-6579 HSIEH, Hsin-Hsiong, 1936- ADDITION REACTIONS AND PHOTOISOMERIZATION OF CIS,TRANS-1,5-CYCLODECADIENE. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1970 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ADDITION REACTIONS AND PHOTOISOMERIZATION OF CIS,TRANS-1,5“CYCLODECADIENE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Hsin-Hsiong Hsieh B.S., Taiwan Provincial Chung-Hsing University, i960 M.S., Louisiana State University,
    [Show full text]
  • Sulfur Chloride Hazard Summary Identification
    Common Name: SULFUR CHLORIDE CAS Number: 10025-67-9 RTK Substance number: 1758 DOT Number: UN 1828 Date: October 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Sulfur Chloride can affect you when breathed in. * If you think you are experiencing any work-related health * Sulfur Chloride is a HIGHLY CORROSIVE problems, see a doctor trained to recognize occupational CHEMICAL and contact can severely irritate and burn the diseases. Take this Fact Sheet with you. skin and eyes with possible eye damage. * Breathing Sulfur Chloride can irritate the nose and throat. WORKPLACE EXPOSURE LIMITS * Breathing Sulfur Chloride can irritate the lungs causing OSHA: The legal airborne permissible exposure limit coughing and/or shortness of breath. Higher exposures (PEL) is 1 ppm averaged over an 8-hour can cause a build-up of fluid in the lungs (pulmonary workshift. edema), a medical emergency, with severe shortness of breath. NIOSH: The recommended airborne exposure limit is * Exposure to Sulfur Chloride can cause headache, nausea 1 ppm, which should not be exceeded at any and dizziness. time. * Repeated exposure to Sulfur Chloride can cause drying and cracking of the skin. ACGIH: The recommended airborne exposure limit is 1 ppm, which should not be exceeded at any IDENTIFICATION time. Sulfur Chloride is a light amber to yellowish red, fuming, oily liquid with a strong, nauseating and irritating odor. It is WAYS OF REDUCING EXPOSURE used as an intermediate and chlorinating agent in the * Where possible, enclose operations and use local exhaust manufacture of organic chemicals, sulfur dyes, insecticides, ventilation at the site of chemical release. If local exhaust and synthetic rubber.
    [Show full text]
  • New Heterocyclic Materials by New Mcrs and Domino Reactions
    New Fourth International Electronic Conference on Synthetic Organic Chemistry (ECSOC-4), Heterocyclic www.mdpi.org/ecsoc-4.htm, September 1-30, 2000 Materials [A0001] New heterocyclic materials CPK ball & stick stick Tomás Torroba1*, Oleg A. Rakitin2, Charles W. Rees3 wireframe 1. Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain 2. N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, Moscow 117913, Russia 3. Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom E-mail: [email protected] Received: 2 August 2000 / Uploaded: 3 August 2000 The preparation of new heterocyclic systems by conventional ways is normally a hard work that implies many synthetic steps and expensive starting materials. Even more, many heterocyclic systems, being predictably stable, are impossible to be prepared because the synthetic approach simply does not exist. There is a very different approach to get new heterocyclic systems that uses simple organic starting materials (tertiary amines, alicyclic oximes) bearing a nucleophilic nitrogen which generates reactive intermediates, subsequently trapped by a inorganic reagent, disulfur dichloride (S2Cl2). In general, trapping of intermediates is followed by extensive dehydrogenation and chlorination to give new intermediates that can be trapped by selected nucleophiles on the way to stable final products.1-2 A good combination of reagents and reaction sequences permits the preparation of heterocycles that imply up to fifteen different steps all working sequentially in a one-pot reaction. The best example of this chemistry is the reaction of N-ethyldiisopropylamine (Hünig’s base), with disulfur dichloride.3-4 The first step is a slow oxidation of the amine to an immonium salt by a combination of disulfur dichloride and DABCO (diazabicyclo[2.2.2]octane).
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Electrosynthetic and other studies of sulfur imides and aromatic thiazenes Clarke, H. G. How to cite: Clarke, H. G. (1974) Electrosynthetic and other studies of sulfur imides and aromatic thiazenes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8276/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk ELECTROSYNTHETIC AND OTHER STUDIES OF SULFUR IMIDES AND AROMATIC THIAZENES by H.e;. CLARKE, B.Sc. A thesis submitted for the degree of Doctor of Philosophy in the University of Durham September 1974 6 DEC 1974 HE0T10* LIBRA Acknowledgments The author wishes to express his gratitude to Sr. A.J. Banister, under whose supervision this research v/as carried out, for his unflagging enthusiasm, constant interest and valuable advice throughout the whole period of study. My thanks are also due to the Science Research Council and Staveley Chemicals Limited for providing a research grant, to the Senate of the University of Durham for research facilities, to many of the departments technical staff and to Dr.
    [Show full text]
  • Reactions of Sulfur-Dicyanide and Sulfur-Dichlorides with Transition Metal Complexes." (1974)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1974 Reactions of Sulfur-Dicyanide and Sulfur- Dichlorides With Transition Metal Complexes. Diane Singleton Hamilton Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Hamilton, Diane Singleton, "Reactions of Sulfur-Dicyanide and Sulfur-Dichlorides With Transition Metal Complexes." (1974). LSU Historical Dissertations and Theses. 2730. https://digitalcommons.lsu.edu/gradschool_disstheses/2730 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Solvent Mediated Synthesis of Metal Chalcogenides
    Solvent Mediated Synthesis of Metal Chalcogenides Graham Andrew Shaw Supervised by Dr. I. P. Parkin Presented August 2000 Christopher Ingold Laboratories, University College London This thesis is submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy (Chemistry) ProQuest Number: U642612 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642612 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract This thesis is primarily concerned with the synthesis of binary and ternary transition metal and main-group metal chalcogenides (excluding oxides) at room temperature. Bulk material was sought using both elemental combination and metathetical reactions, in either liquid ammonia or n-butylamine. In addition, solid-state metathesis reactions were employed in the synthesis of a selection of low valent transition metal chalcogenides. Elemental combination reactions at room temperature afforded a simple, reproducible single- stage preparation of a range of transition and main-group metal chalcogenides in good yield (> 90%). Products were either highly crystalline (c) or X-ray amorphous {a) in nature. In most cases, annealing the X-ray amorphous powders at 200-250 °C for 2h was found to induce sufficient crystallinity for characterisation by X-ray powder diffraction.
    [Show full text]
  • United States Patent Office Patented Jan
    3,361,719 United States Patent Office Patented Jan. 2, 1968 2 chloride at a temperature of 20 C. Providing a further 3,361,719 reaction the mixture was heated to about 100 C., then VULCANIZATION AGENTS the resulting product was treated with carbon tetrachloride to separate retained sulfur. HaraldGermany, Blimel, assignors Otto Wiechulla, to Chemische and WaiterWerke Reuter,Huls Aktien Marl, gesellschaft, Marl, Germany 5 Dicyclohexanone-disulfide was obtained by reacting 2 No Drawing. Filed Jan. 22, 1964, Ser. No. 339,337 mols cyclohexanone with 1 mol disulfur-dichloride at a Claims priority, application Germany, Feb. 6, 1963, temperature of 0 to 10 C. for one hour. For further C 29,102 reaction the mixture was held at 30° C. for 3 hours, then 6 Claims. (C. 260-66) poured into benzene to remove present hydrochloric acid 10 and finally washed with diluted aqueous alkali hydroxide This invention relates to elastomer technology, partic Solution and water. ularly to vulcanization agents. Relatively small amounts of the material are used, It is known that for the vulcanization of elastomers, generally from 0.05 to 20%, and preferably 0.1 to 10% so-called vulcanization agents are used. These Vulcaniza based on the weight of the elastomers. tion agents are substances which by themselves or in com Suitable vulcanizable elastomeric mixtures comprise bination with other substances will effect a transition of e.g. natural rubber and synthetic rubber-like vulcanizable elastomers from the non-crosslinked into the cross-linked elastomers such as butadiene-styrene
    [Show full text]