How Does Eukaryotic Gene Prediction Work?

Total Page:16

File Type:pdf, Size:1020Kb

How Does Eukaryotic Gene Prediction Work? PRIMER How does eukaryotic gene prediction work? Michael R Brent Computational prediction of gene structure is crucial for interpreting genomic sequences. But how do the algorithms involved work and how accurate are they? ene-prediction programs are used primar- in accuracy using one or more additional and can now predict a perfect open reading Gily to annotate large, contiguous sequences genomes (see below). Expression-based systems frame for more than one-third of known pro- generated by whole-genome sequencing. Most work by aligning cDNA or protein sequences tein-encoding human genes4. In more com- programs used for this purpose aim to predict to one or more genome locations based on pact genomes, exact ORF accuracy can reach the complete exon-intron structures of the sequence similarity. Some expression-based 60–70%. In general, accuracy increases as http://www.nature.com/naturebiotechnology protein-encoding portions of transcripts (open systems are designed to output only alignments the number and sizes of introns in a genome reading frames or ORFs). Some programs also of expressed sequences to the loci from which decrease. Some systems can now use multiple predict 5′ untranslated regions, and a few pre- they were transcribed (native or cis alignment); informants, but results so far indicate rapidly dict only the boundaries of isolated exons. other systems include alignments of expressed diminishing returns as the number of infor- The resulting predictions are often distributed sequences transcribed from other loci or even mants increases4. through web portals such as the University of other species (trans alignment). The greatest limitation of GENSCAN was California Santa Cruz genome browser (http:// Expression-based systems that use only that it predicted too many genes (~45,000 in genome.ucsc.edu/), where users can examine native alignments tend to produce exon-intron human) and exons (~315,000 in human), many and compare predictions in regions of inter- structures that are quite accurate. Their primary of which were false positives. For comparison, est. If whole-genome prediction sets are not limitation is that there are many genomes for today’s best estimates place the number of available for a sequence in question, users can which little or no cDNA sequence is avail- human protein-coding genes at 20,000–21,000 Nature Publishing Group Group Nature Publishing 7 submit genomic sequences to online gene-pre- able. Even fairly deep sequencing of randomly (Michele Clamp, personal communication). diction servers such as the Twinscan/N-SCAN selected cDNA clones fails to elucidate the The best dual-genome predictors have nearly 200 1 © server (http://mblab.wustl.edu/nscan/) . Gene structures of the 20–40% of genes in a typical eliminated this problem, but fragments of pro- predictions can also be used as a springboard eukaryotic genome that are expressed only at cessed pseudogenes can still show up as false- to obtaining more direct evidence of gene low levels or under rare conditions. Including positive exons. Such fragments can now be structures through high-throughput reverse trans alignments in an annotation increases its eliminated by integrating dual-genome de novo transcription (RT)-PCR and sequencing using sensitivity, but the accuracy of trans alignments predictors with automated pseudogene detec- primers designed on the basis of gene predic- depends on the degree of similarity between the tors6. In the past, the number of predicted genes tions. expressed sequence and the locus to which it is was also inflated by the fact that some programs aligned. For loci that cannot be annotated by a could not process entire chromosomes at once. What are the major approaches to gene high identity cDNA or protein alignment, de Splitting chromosomes before processing would prediction? novo systems—which are the primary focus of split genes that crossed boundaries The best Gene-prediction programs can be broadly this tutorial—can provide more accurate pre- dual-genome predictors have nearly eliminated divided into those whose only inputs are the dictions. this problem, but fragments of processed pseu- sequences of one or more genomes (de novo dogenes can still show up as false-positive exons. predictors) and those that also consider cDNA How well does de novo gene prediction Such fragments can now be eliminated by inte- sequences and/or their predicted translations work? grating dual-genome de novo predictors with (expression-based predictors). Originally, de The accuracy of de novo gene prediction has automated pseudogene detectors5. In the past, novo predictors used only the genome sequence improved steadily since the introduction of the number of predicted genes was also inflated to be annotated (the target sequence), but the GENSCAN2 ten years ago. GENSCAN correctly by the inability of some programs to process past five years have witnessed substantial gains predicts an ORF at ~10% of human gene loci an entire chromosome at once. Disassembling that contain a known ORF (gene sensitivity). chromosomes before processing would split Michael Brent is at the Center for Genome The next major improvement came in 2001, genes that crossed boundaries. This problem Sciences, Campus Box 1045, Washington with the advent of dual-genome de novo pre- was recently solved by a new, memory-efficient University, One Brookings Drive, Saint Louis, dictors such as TWINSCAN3. Dual-genome algorithm that eliminates the need for separate Missouri 63130, USA. predictors use alignments between the target analysis of chromosome fragments6. With e-mail: [email protected] genome and a related genome (the informant), pseudogene detection and whole-chromosome NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 8 AUGUST 2007 883 PRIMER inputs, the number of human genes predicted How do de novo gene predictors work? followed by “s,” rare examples notwithstand- by the N-SCAN system fell to 20,138—remark- De novo gene predictors are based on some ing (Fig. 1a). An alternative hypothesis that ably close to the current estimates cited above, variant of hidden Markov models (HMMs)8. solves this problem is that the sender intended although, of course, predicting the right num- To get an intuition for HMMs, imagine that you to type “hot.” However, typing “o” for “s” is an ber of genes does not mean that all the predicted found a scrap of paper containing the typed let- unlikely error, as “o” is nowhere near “s” on the genes are correct! ters “hst” and suppose that these letters are a keyboard. A more likely hypothesis is that the A detailed analysis of the accuracy of various fragment of a message written in English. It is sender intended to type “hat”: “h” is frequently gene-prediction programs spanning the entire not likely that the sender intended to type “hst,” followed by “a” in correctly spelled English range of methods can be found in reference 7. as relatively few English words contain an “h” words, and “a” is frequently mistyped as “s”. This situation can be modeled by an HMM. In HMM terminology, the intended letters are a Unlikely Unlikely More likely called hidden states, or simply states, and the hypothesis hypothesis hypothesis letters on the paper are called observations. For ? each state, the HMM specifies the probabil- Intention h s t h o t h a t ity that it will be followed by each other state (transition probabilities) and the probability ? that it will result in each possible observed let- Outcome h s t h s t h s t ter (emission probabilities). For any particular HMM and any particular sequence of obser- b Less likely hypothesis More likely hypothesis vations, the Viterbi algorithm can be used to efficiently find the most likely sequence of hid- Intron Intron Intron Intron Exon Exon den states. middle end start middle One can imagine a simple application of http://www.nature.com/naturebiotechnology HMMs to de novo gene prediction in which GTAAGA TAGATACTTGTCTGC... GTAAGA TAGATACTTGTCTGC... ...CTC ...CTC the observations are nucleotides of the target c Intron end Intron start sequence and the hidden states are the functions – 6 – 5 – 4 – 3 – 2 –1 1 2 3 4 5 6 they serve in RNA processing and translation, such as the first and second base of an intron (splice donor), a base in the middle region of an intron or the first, second and third base of a codon. Most gene predictors use a more elabo- rate type of HMM called a generalized hidden Markov model (GHMM). The observation cor- d responding to each state of a GHMM may be a Nature Publishing Group Group Nature Publishing Less likely hypothesis More likely hypothesis 7 DNA sequence of any length, whereas in ordi- nary HMMs, the observation is always a single 200 Intron © Exon nucleotide. The states correspond to functions middle such as coding exon, splice donor region of an intron, middle region of an intron and so TAGATACTTGTCTGCCACCCTC... TAGATACTTGTCTGCCACCCTC... on (Fig. 1b). As the input DNA sequence does ||| || || ||||| || ||| ||| || || ||||| || ||| not include the segment boundaries shown in TAGGTATTTATCTGCTACTCTC... TAGGTATTTATCTGCTACTCTC... Figure 1b, the Viterbi algorithm for GHMMs must consider the most likely segmentation e Less likely hypothesis More likely hypothesis of the DNA sequence as well as the most likely state sequence for each segmentation. Intron Exon For each state, there is a model that defines middle the probability of each possible observation string. For example, consider the first six TAGATACTTGTCTGCCACCCTC... TAGATACTTGTCTGCCACCCTC... nucleotides of an intron (splice donor region).
Recommended publications
  • Gene Prediction and Genome Annotation
    A Crash Course in Gene and Genome Annotation Lieven Sterck, Bioinformatics & Systems Biology VIB-UGent [email protected] ProCoGen Dissemination Workshop, Riga, 5 nov 2013 “Conifer sequencing: basic concepts in conifer genomics” “This Project is financially supported by the European Commission under the 7th Framework Programme” Genome annotation: finding the biological relevant features on a raw genomic sequence (in a high throughput manner) ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Thx to: BSB - annotation team • Lieven Sterck (Ectocarpus, higher plants, conifers, … ) • Yao-cheng Lin (Fungi, conifers, …) • Stephane Rombauts (green alga, mites, …) • Bram Verhelst (green algae) • Pierre Rouzé • Yves Van de Peer ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Annotation experience • Plant genomes : A.thaliana & relatives (e.g. A.lyrata), Poplar, Physcomitrella patens, Medicago, Tomato, Vitis, Apple, Eucalyptus, Zostera, Spruce, Oak, Orchids … • Fungal genomes: Laccaria bicolor, Melampsora laricis- populina, Heterobasidion, other basidiomycetes, Glomus intraradices, Pichia pastoris, Geotrichum Candidum, Candida ... • Algal genomes: Ostreococcus spp, Micromonas, Bathycoccus, Phaeodactylum (and other diatoms), E.hux, Ectocarpus, Amoebophrya … • Animal genomes: Tetranychus urticae, Brevipalpus spp (mites), ... ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Why genome annotation? • Raw sequence data is not useful for most biologists • To be meaningful to them it has to be converted into biological significant knowledge
    [Show full text]
  • Gene Structure Prediction
    Gene finding Lorenzo Cerutti Swiss Institute of Bioinformatics EMBNet course, September 2002 Gene finding EMBNet 2002 Introduction Gene finding is about detecting coding regions and infer gene structure Gene finding is difficult DNA sequence signals have low information content (degenerated and highly unspe- • cific) It is difficult to discriminate real signals • Sequencing errors • Prokaryotes High gene density and simple gene structure • Short genes have little information • Overlapping genes • Eukaryotes Low gene density and complex gene structure • Alternative splicing • Pseudo-genes • 1 Gene finding EMBNet 2002 Gene finding strategies Homology method Gene structure can be deduced by homology • Requires a not too distant homologous sequence • Ab initio method Requires two types of information • . compositional information . signal information 2 Gene finding EMBNet 2002 Gene finding: Homology method 3 Gene finding EMBNet 2002 Homology method Principles of the homology method. Coding regions evolve slower than non-coding regions, i.e. local sequence similarity • can be used as a gene finder. Homologous sequences reflect a common evolutionary origin and possibly a common • gene structure, i.e. gene structure can be solved by homology (mRNAs, ESTs, proteins, domains). Standard homology search methods can be used (BLAST, Smith-Waterman, ...). • Include ”gene syntax” information (start/stop codons, ...). • Homology methods are also useful to confirm predictions inferred by other methods 4 Gene finding EMBNet 2002 Homology method: a simple view Gene of unknown structure Homology with a gene of known structure Exon 1 Exon 2 Exon 3 Find DNA signals ATG GT {TAA,TGA,TAG} AG 5 Gene finding EMBNet 2002 Procrustes Procrustes is a software to predict gene structure from homology found in pro- teins (Gelfand et al., 1996) Principle of the algorithm • .
    [Show full text]
  • A Curated Benchmark of Enhancer-Gene Interactions for Evaluating Enhancer-Target Gene Prediction Methods
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2020-01-22 A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods Jill E. Moore University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Bioinformatics Commons, Computational Biology Commons, Genetic Phenomena Commons, and the Genomics Commons Repository Citation Moore JE, Pratt HE, Purcaro MJ, Weng Z. (2020). A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods. Open Access Articles. https://doi.org/10.1186/ s13059-019-1924-8. Retrieved from https://escholarship.umassmed.edu/oapubs/4118 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Moore et al. Genome Biology (2020) 21:17 https://doi.org/10.1186/s13059-019-1924-8 RESEARCH Open Access A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods Jill E. Moore, Henry E. Pratt, Michael J. Purcaro and Zhiping Weng* Abstract Background: Many genome-wide collections of candidate cis-regulatory elements (cCREs) have been defined using genomic and epigenomic data, but it remains a major challenge to connect these elements to their target genes. Results: To facilitate the development of computational methods for predicting target genes, we develop a Benchmark of candidate Enhancer-Gene Interactions (BENGI) by integrating the recently developed Registry of cCREs with experimentally derived genomic interactions.
    [Show full text]
  • There Is a Lot of Research on Gene Prediction Methods
    LBNL #58992 Fungal Genomic Annotation Igor V. Grigoriev1, Diego A. Martinez2 and Asaf A. Salamov1 1US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 ([email protected], [email protected]); 2Los Alamos National Laboratory Joint Genome Institute, P.O. Box 1663 Los Alamos, NM 87545 ([email protected]). Sequencing technology in the last decade has advanced at an incredible pace. Currently there are hundreds of microbial genomes available with more still to come. Automated genome annotation aims to analyze this amount of sequence data in a high-throughput fashion and help researches to understand the biology of these organisms. Manual curation of automatically annotated genomes validates the predictions and set up 'gold' standards for improving the methodologies used. Here we review the methods and tools used for annotation of fungal genomes in different genome sequencing centers. 1. INTRODUCTION In recent years the power of DNA sequencing has dramatically increased, with dedicated centers running 24 hours a day 7 days a week able to produce as much as 2 gigabases of raw sequence or more a month. The researchers who work on a variety of fungi are fortunate, as most fungal genomes are under 50 megabases and produce high- quality draft assembly almost as easily as bacteria. This feature of fungal genomes is a key reason that the first sequenced eukaryotic genome was of the ascomycete Saccharomyces cerevisiae (Goffeau et al. 1996). As of the submission of this chapter, one can obtain draft sequences of more than 100 fungal genomes (Table 1) and the list is growing. While some are species of the same genus (e.g., Aspergillus has three members and more coming), there still remains a height of data that could confuse and bury a researcher for many years.
    [Show full text]
  • Gene Prediction Using Deep Learning
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Gene prediction using Deep Learning Pedro Vieira Lamares Martins Mestrado Integrado em Engenharia Informática e Computação Supervisor: Rui Camacho (FEUP) Second Supervisor: Nuno Fonseca (EBI-Cambridge, UK) July 22, 2018 Gene prediction using Deep Learning Pedro Vieira Lamares Martins Mestrado Integrado em Engenharia Informática e Computação Approved in oral examination by the committee: Chair: Doctor Jorge Alves da Silva External Examiner: Doctor Carlos Manuel Abreu Gomes Ferreira Supervisor: Doctor Rui Carlos Camacho de Sousa Ferreira da Silva July 22, 2018 Abstract Every living being has in their cells complex molecules called Deoxyribonucleic Acid (or DNA) which are responsible for all their biological features. This DNA molecule is condensed into larger structures called chromosomes, which all together compose the individual’s genome. Genes are size varying DNA sequences which contain a code that are often used to synthesize proteins. Proteins are very large molecules which have a multitude of purposes within the individual’s body. Only a very small portion of the DNA has gene sequences. There is no accurate number on the total number of genes that exist in the human genome, but current estimations place that number between 20000 and 25000. Ever since the entire human genome has been sequenced, there has been an effort to consistently try to identify the gene sequences. The number was initially thought to be much higher, but it has since been furthered down following improvements in gene finding techniques. Computational prediction of genes is among these improvements, and is nowadays an area of deep interest in bioinformatics as new tools focused on the theme are developed.
    [Show full text]
  • Prediction of Protein-Protein Interactions and Essential Genes Through Data Integration
    Prediction of Protein-Protein Interactions and Essential Genes Through Data Integration by Max Kotlyar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Department of Medical Biophysics University of Toronto Copyright °c 2011 by Max Kotlyar Abstract Prediction of Protein-Protein Interactions and Essential Genes Through Data Integration Max Kotlyar Doctor of Philosophy Graduate Department of Department of Medical Biophysics University of Toronto 2011 The currently known network of human protein-protein interactions (PPIs) is pro- viding new insights into diseases and helping to identify potential therapies. However, according to several estimates, the known interaction network may represent only 10% of the entire interactome – indicating that more comprehensive knowledge of the inter- actome could have a major impact on understanding and treating diseases. The primary aim of this thesis was to develop computational methods to provide increased coverage of the interactome. A secondary aim was to gain a better understanding of the link between networks and phenotype, by analyzing essential mouse genes. Two algorithms were developed to predict PPIs and provide increased coverage of the interactome: F pClass and mixed co-expression. F pClass differs from previous PPI prediction methods in two key ways: it integrates both positive and negative evidence for protein interactions, and it identifies synergies between predictive features. Through these approaches F pClass provides interaction networks with significantly improved reli- ability and interactome coverage. Compared to previous predicted human PPI networks, FpClass provides a network with over 10 times more interactions, about 2 times more pro- teins and a lower false discovery rate.
    [Show full text]
  • "An Overview of Gene Identification: Approaches, Strategies, and Considerations"
    An Overview of Gene Identification: UNIT 4.1 Approaches, Strategies, and Considerations Modern biology has officially ushered in a new era with the completion of the sequencing of the human genome in April 2003. While often erroneously called the “post-genome” era, this milestone truly marks the beginning of the “genome era,” a time in which the availability of sequence data for many genomes will have a significant effect on how science is performed in the 21st century. While complete human sequence data is now available at an overall accuracy of 99.99%, the mere availability of all of these As, Cs, Ts, and Gs still does not answer some of the basic questions regarding the human genome—how many genes actually comprise the genome, how many of these genes code for multiple gene products, and where those genes actually lie along the complement of human chromosomes. Current estimates, based on preliminary analyses of the draft sequence, place the number of human genes at ∼30,000 (International Human Genome Sequencing Consortium, 2001). This number is in stark contrast to previously-suggested estimates, which had ranged as high as 140,000. A number that is in the 30,000 range brings into question the one-gene, one-protein hypothesis, underscoring the importance of processes such as alternative splicing in the generation of multiple gene products from a single gene. Finding all of the genes and the positions of those genes within the human genome sequence—and in other model organism genome sequences as well—requires the devel- opment and application of robust computational methods, some of which are listed in Table 4.1.1.
    [Show full text]
  • A Benchmark Study of Ab Initio Gene Prediction Methods in Diverse Eukaryotic Organisms
    A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms Nicolas Scalzitti Laboratoire ICube Anne Jeannin-Girardon Laboratoire ICube https://orcid.org/0000-0003-4691-904X Pierre Collet Laboratoire ICube Olivier Poch Laboratoire ICube Julie Dawn Thompson ( [email protected] ) Laboratoire ICube https://orcid.org/0000-0003-4893-3478 Research article Keywords: genome annotation, gene prediction, protein prediction, benchmark study. Posted Date: March 3rd, 2020 DOI: https://doi.org/10.21203/rs.2.19444/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on April 9th, 2020. See the published version at https://doi.org/10.1186/s12864-020-6707-9. 1 A benchmark study of ab initio gene prediction 2 methods in diverse eukaryotic organisms 3 Nicolas Scalzitti1, Anne Jeannin-Girardon1, Pierre Collet1, Olivier Poch1, Julie D. 4 Thompson1* 5 6 1 Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France 7 *Corresponding author: 8 Email: [email protected] 9 10 Abstract 11 Background: The draft genome assemblies produced by new sequencing technologies 12 present important challenges for automatic gene prediction pipelines, leading to less accurate 13 gene models. New benchmark methods are needed to evaluate the accuracy of gene prediction 14 methods in the face of incomplete genome assemblies, low genome coverage and quality, 15 complex gene structures, or a lack of suitable sequences for evidence-based annotations. 16 Results: We describe the construction of a new benchmark, called G3PO (benchmark for 17 Gene and Protein Prediction PrOgrams), designed to represent many of the typical challenges 18 faced by current genome annotation projects.
    [Show full text]
  • Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, Second Edition Andreas D
    BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto BIOINFORMATICS SECOND EDITION METHODS OF BIOCHEMICAL ANALYSIS Volume 43 BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ᭧ 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
    [Show full text]
  • Progress in Gene Prediction: Principles and Challenges Srabanti Maji and Deepak Garg*
    Send Orders of Reprints at [email protected] Current Bioinformatics, 2013, 8, 000-000 1 Progress in Gene Prediction: Principles and Challenges Srabanti Maji and Deepak Garg* Department of Computer Science and Engineering, Thapar University, Patiala-147004, India Abstract: Bioinformatics is a promising and innovative research field in 21st century. Automatic gene prediction has been an actively researched field of bioinformatics. Despite a high number of techniques specifically dedicated to bioinformatics problems as well as many successful applications, we are in the beginning of a process to massively integrate the aspects and experiences in the different core subjects such as biology, medicine, computer science, engineering, chemistry, physics, and mathematics. Presently, a large number of gene identification tools are based on computational intelligence approaches. Here, we have discussed the existing conventional as well as computational methods to identify gene(s) and various gene predictors are compared. The paper includes some drawbacks of the presently available methods and also, the probable guidelines for future directions are discussed. Keywords: Bioinformatics, gene identification, DNA, content sensor, splice site, dynamic programming, neural networks, SVM. 1. INTRODUCTION identification in eukaryotic organisms, their advantages as well as the limitations [14-16]. A large number of gene In the field of bioinformatics, gene identification from identification tools are available publicly in the Web site large DNA sequence is known to be a significant setback. http://www.nslij-genetics.org/gene/. A new algorithm for The human genome project was completed in April 2003, the gene identification, CONTRAST is also studied and reported exact number of genes encoded by the human genome is still [17].
    [Show full text]
  • PATTERNS of DIPEPTIDE USAGE for GENE PREDICTION a Thesis
    PATTERNS OF DIPEPTIDE USAGE FOR GENE PREDICTION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Engineering By DAYANANDA SAGAR GANGADHARAIAH B.E., Visvesvaraya Technological University, 2005 2010 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES July 2, 2010 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Dayananda Sagar Gangadharaiah ENTITLED Patterns of Dipeptide usage for gene prediction BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Computer Engineering. Travis E. Doom, Ph.D. Thesis Director Thomas Sudkamp, Ph.D. Department Chair Committee on Final Examination Travis E. Doom, Ph.D. Michael L. Raymer, Ph.D. Sridhar Ramachandran, Ph.D. John A. Bantle, Ph.D. Interim Dean, School of Graduate Studies DEDICATED TO MOTHER SHARADAMBE- THE GODDESS OF KNOWLEDGE ABSTRACT Dayananda Sagar Gangadharaiah. M.S.C.E., Department of Computer Science and Engineering, Wright State University, 2010. Patterns of dipeptide usage for gene prediction. As the number of complete genomes that have been sequenced continues to grow rapidly, the identification of genes regions in DNA sequence data remains one of the most important open problems in bio-informatics. Improving the accuracy of such gene finding tools by a small percentage would affect accurate predictions of many genes of an organism (Zhu et al., 2010). This thesis presents a novel approach for identifying coding regions of a genome based on dipeptide usage. The patterns in dipeptide usage are used to discriminate between coding and non-coding DNA regions. Two sample T-tests are used as tests of significance to determine the dipeptides that show significant difference in their occurrences in coding and non-coding regions.
    [Show full text]
  • Bioinformatics Is a New Discipline That Addresses the Need to Manage and Interpret the Data That in the Past Decade Was Massively Generated by Genomic Research
    SABU M. THAMPI Assistant Professor Dept. of CSE LBS College of Engineering Kasaragod, Kerala-671542 [email protected] Introduction Bioinformatics is a new discipline that addresses the need to manage and interpret the data that in the past decade was massively generated by genomic research. This discipline represents the convergence of genomics, biotechnology and information technology, and encompasses analysis and interpretation of data, modeling of biological phenomena, and development of algorithms and statistics. Bioinformatics is by nature a cross-disciplinary field that began in the 1960s with the efforts of Margaret O. Dayhoff, Walter M. Fitch, Russell F. Doolittle and others and has matured into a fully developed discipline. However, bioinformatics is wide-encompassing and is therefore difficult to define. For many, including myself, it is still a nebulous term that encompasses molecular evolution, biological modeling, biophysics, and systems biology. For others, it is plainly computational science applied to a biological system. Bioinformatics is also a thriving field that is currently in the forefront of science and technology. Our society is investing heavily in the acquisition, transfer and exploitation of data and bioinformatics is at the center stage of activities that focus on the living world. It is currently a hot commodity, and students in bioinformatics will benefit from employment demand in government, the private sector, and academia. With the advent of computers, humans have become ‘data gatherers’, measuring every aspect of our life with inferences derived from these activities. In this new culture, everything can and will become data (from internet traffic and consumer taste to the mapping of galaxies or human behavior).
    [Show full text]