Introduction to Ab Initio and Evidence-Based Gene Finding

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Ab Initio and Evidence-Based Gene Finding 08/09/2021 Outline Introduction to ab initio and Overview of computational gene predictions evidence-based gene finding Different types of eukaryotic gene predictors Common types of gene prediction errors Wilson Leung 08/2021 1 2 Primary goal of computational Computational gene predictions gene prediction algorithms Identify genes within genomic sequences Label each nucleotide in a genomic sequence Protein-coding genes Identify the most likely sequence of labels (i.e. optimal path) Non-coding RNA genes Regulatory regions (enhancers, promoters) Sequence TTTCACACGTAAGTATAGTGTGTGA Path 1 EEEEEEEESSIIIIIIIIIIIIIII Predictions must be confirmed experimentally Eukaryotic gene predictions have high error rates Path 2 EEEEEEEEEEEESSIIIIIIIIIII Two major types of RefSeq records: Path 3 EEEEEEEEEEEEEEEEESSIIIIII NM_/NP_ = experimentally confirmed XM_/XP_ = computational predictions Labels Exon (E) 5’ Splice Site (S) Intron (I) 3 4 Basic properties of gene prediction Prokaryotic gene predictions algorithms Prokaryotes have relatively simple gene structure Model must satisfy biological constraints Single open reading frame Coding region must begin with a start codon Alternative start codons: AUG, GUG, UUG Initial exon must occur before splice sites and introns Coding region must end with a stop codon Gene finders can predict most prokaryotic genes accurately (> 90% sensitivity and specificity) Model rules using a finite state machine (FSM) Glimmer Salzberg S., et al. Microbial gene identification using interpolated Markov models, Use species-specific characteristics to improve the NAR. (1998) 26, 544-548 accuracy of gene predictions Distribution of exon and intron sizes NCBI Prokaryotic Genome Annotation Pipeline (PGAP) Li W., et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach Base frequencies (e.g., GC content, codon bias) with protein family model curation, NAR. (2021) 49(D1), D1020-D1028 Protein sequences from the same or closely related species https://github.com/ncbi/pgap 5 6 1 08/09/2021 Eukaryotic gene predictions have Types of eukaryotic gene predictors high error rates Ab initio Gene finders generally do a poor job (<50%) predicting genes in eukaryotes GENSCAN, geneid, SNAP, GlimmerHMM Evidence-based (extrinsic) More variations in the gene models Augustus, genBlastG, GeMoMa, Exonerate, GenomeScan Alternative splicing (multiple isoforms) Comparative genomics Non-canonical splice sites (e.g., toy) Twinscan/N-SCAN, SGP2 Non-canonical start codon (e.g., Fmr1) Stop codon read through (e.g., gish) Transcriptome-based (RNA-Seq) Nested genes (e.g., ko) Cufflinks, StringTie, Trinity, CodingQuarry Trans-splicing (e.g., mod(mdg4)) Combine ab initio and evidence-based approaches Pseudogenes (e.g., swaPsi) GLEAN, Gnomon, JIGSAW, EVM, MAKER, IPred 7 8 Ab initio gene prediction Hidden Markov Models (HMM) A type of supervised machine Ab initio = from the beginning learning algorithm Predict genes using only the genomic DNA sequence Uses Bayesian statistics Makes classifications based on Search for signals of protein coding regions characteristics of training data Based on a probabilistic model Hidden Markov Models (HMM) Many types of applications Support Vector Machines (SVM) Speech and gesture recognition Bioinformatics GENSCAN Gene predictions Sequence alignments Burge C. and Karlin S. Prediction of complete gene structures in ChIP-seq analysis human genomic DNA, JMB. (1997), 268, 78-94 Protein folding 9 10 Supervised machine learning GEP curriculum on HMM Use an HMM to predict a splice donor site Use Excel to experiment with different emission and transition probabilities See the Curriculum section of the GEP web site Also available on CourseSource Use previous search results to predict search terms and correct spelling errors Wei sst ei n AE et al. A Hands-on Introduction to Hidden Markov Models. CourseSource. (2016), Norvig P. How to write a spelling corrector. https://www.norvig.com/spell-correct.html https://doi.org/10.24918/cs.2016.8 11 12 2 08/09/2021 Ways to create training sets to estimate BRAKER training protocols transition and emission parameters Training with Training with genome assembly only proteins and RNA-Seq alignments Manually curated genes for the target species Bootstrap with ab initio gene predictions GeneMark-ES, GENSCAN Sequence similarity to orthologs in informant species BUSCO, BRAKER2 Whole genome conservation profiles Augustus-cgp, N-SCAN, SGP2 RNA-Seq (splice junctions, assembled transcripts) BRAKER1 Hoff KJ. BRAKER 2 User Guide. https://github.com/Gaius-Augustus/BRAKER 13 14 Use multiple HMMs to describe GENSCAN HMM Model different parts of a gene Internal exons GENSCAN considers: Promoter, splice sites and polyadenylation signals Introns Hexamer frequencies and base compositions Initial exon Terminal exon Probability of coding and non-coding DNA UTRs Distributions of gene, exon and intron lengths Promoter Poly A signal Intergenic Burge C. and Karlin S. Prediction of complete gene structures in human genomic DNA, JMB. Stanke M. and Waack S. Gene prediction with a hidden Markov model and a new intron (1997) 268, 78-94 submodel. Bioinformatics. (2003) 19 Suppl 2:ii215-25. 15 16 Predictions using comparative genomics Evidence-based gene predictions Use sequence alignments to improve predictions Use whole genome EST, cDNA or protein from closely-related species alignments from one or more informant species Exon sensitivity: Percent of real exons CONTRAST predicts 50% identified of genes correctly Exon specificity: Percent of predicted Requires high quality exons that are correct whole genome alignments Yeh RF, et al. Computational and training data Inference of Homologous Gene Structures in the Human Genome, Genome Res. (2001) 11, 803-816 Flicek P. Gene prediction: compare and CONTRAST. Genome Biology (2007), 8, 233 17 18 3 08/09/2021 Intron predictions based on Cufflinks – reference-based transcriptome assembly spliced RNA-Seq reads 1. Build graph of incompatible RNA-Seq fragments 5’ cap M * Poly-A tail Processed mRNA AAAAAA 2. Identify minimum path cover (Dilworth’s theorem) RNA-Seq reads Intron Intron Contig 3. Assemble isoforms Splice junctions Use TransDecoder to identify coding regions within assembled transcripts Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. (2011) Sep 7;12(10):671-82. 19 20 Generate consensus gene models Automated annotation pipelines NCBI Gnomon Integrate biological Gene predictors have different strengths and weaknesses evidence into the gene prediction pipeline predicted gene models Create consensus gene models by combining results Examples: from multiple gene finders and sequence alignments NCBI Gnomon GLEAN Ensembl UCSC Gene Build Eisik CG et al. Creating a honey bee consensus gene set. Genome Biology 2007, 8:R13 EGASP results for the Ensembl pipeline: EVidenceModeler (EVM) 71.6% gene sensitivity Haas BJ et al. Automated eukaryotic gene structure annotation using 67.3% gene specificity EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 2008, 9:R7 https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/ 21 22 Drosophila RefSeq gene predictions Common problems with gene finders Based on RNA-Seq data from either the same or Final closely-related species models Predictions include untranslated regions and multiple isoforms Gene Gnomon gene predictions are available through the predictions NCBI RefSeq database: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/ Split single gene into multiple predictions Fused with neighboring genes Missing exons Gnomon Over predict exons or genes Protein alignments Missing isoforms 23 24 4 08/09/2021 Non-canonical splice donors and acceptors Annotate unusual features in gene models Many gene predictors strongly prefer models with canonical using D. melanogaster as a reference splice donor (GT) and acceptor (AG) sites Examine the “Comments on Gene Model” and the “ ” sections of the FlyBase Gene Report Check Gene Record Finder or FlyBase for genes that use Sequence Ontology non-canonical splice sites in D. melanogaster Non-canonical start codon: Frequency of non-canonical splice sites in Stop codon read through: FlyBase Release 6.40 (Number of unique introns: 71,901) Donor site Count Acceptor site Count GC 603 AC 34 AT 30 TG 28 GA 15 AT 16 25 26 Nested genes in Drosophila Trans-spliced gene in Drosophila D. mel. D. erecta A special type of RNA processing where exons from two primary transcripts are ligated together 27 28 Gene prediction results for the Summary GEP annotation projects Gene prediction results are available through the Gene predictors can quickly identify potentially GEP UCSC Genome Browser mirror interesting features within a genomic sequence Under the Genes and Gene Prediction Tracks section The predictions are hypotheses that must be confirmed experimentally Access the predicted peptide sequence: Eukaryotic gene predictors generally can accurately Click on the feature, and then click on the Predicted identify internal exons Protein link Much lower sensitivity and specificity when predicting complete gene models 29 30 5.
Recommended publications
  • Functional Aspects and Genomic Analysis
    Discussion IV./ Discussion IV.1. The discovery of UEV protein and its role in different cellular processes In our studies of cell differentiation and cell cycle control, we have isolated a new gene that is downregulated upon cell differentiation. We have demonstrated that this gene, previously called CROC1 and considered a transcriptional activator of c-fos (Rothofsky and Lin, 1997), is highly conserved in phylogeny, and constitutes, by sequence relationship, a novel subfamily of the ubiquitin-conjugating, or E2, enzymes. We have demonstrated that these proteins are very conserved in all eukaryotic organisms and that they are very similar to the E2 enzymes in sequence and structure, but these proteins lack a conserved cysteine residue responsible for the catalytic activity of the E2 enzymes (Chen et al., 1993; Jentsch, 1992a). We have given these proteins the name UEV (ubiquitin-conjugating E2 enzyme variant). Work by other laboratories has shown that experimental mutagenesis of this cysteine in the catalytic center leads to the inactivation of the E2 enzyme activity, and the mutated protein can behave as a dominant negative variant (Banerjee et al., 1995; Sung et al., 1990; Madura et al., 1993). However, in our initial experiments with recombinant proteins, UEV did not behave as a negative regulator of ubiquitination (Sancho et al., 1998). We have demonstrated also the existence of at least two different human UEV genes, one coding for UEV1/CROC-1, and the other coding for UEV2. The second protein has also been given different names by others, DDVit-1 (Fritsche et al., 1997). 30 Discussion The transcripts from the two human UEV genes differ in their 3’untranslated regions, and produce almost identical proteins.
    [Show full text]
  • Gene Prediction and Genome Annotation
    A Crash Course in Gene and Genome Annotation Lieven Sterck, Bioinformatics & Systems Biology VIB-UGent [email protected] ProCoGen Dissemination Workshop, Riga, 5 nov 2013 “Conifer sequencing: basic concepts in conifer genomics” “This Project is financially supported by the European Commission under the 7th Framework Programme” Genome annotation: finding the biological relevant features on a raw genomic sequence (in a high throughput manner) ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Thx to: BSB - annotation team • Lieven Sterck (Ectocarpus, higher plants, conifers, … ) • Yao-cheng Lin (Fungi, conifers, …) • Stephane Rombauts (green alga, mites, …) • Bram Verhelst (green algae) • Pierre Rouzé • Yves Van de Peer ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Annotation experience • Plant genomes : A.thaliana & relatives (e.g. A.lyrata), Poplar, Physcomitrella patens, Medicago, Tomato, Vitis, Apple, Eucalyptus, Zostera, Spruce, Oak, Orchids … • Fungal genomes: Laccaria bicolor, Melampsora laricis- populina, Heterobasidion, other basidiomycetes, Glomus intraradices, Pichia pastoris, Geotrichum Candidum, Candida ... • Algal genomes: Ostreococcus spp, Micromonas, Bathycoccus, Phaeodactylum (and other diatoms), E.hux, Ectocarpus, Amoebophrya … • Animal genomes: Tetranychus urticae, Brevipalpus spp (mites), ... ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Why genome annotation? • Raw sequence data is not useful for most biologists • To be meaningful to them it has to be converted into biological significant knowledge
    [Show full text]
  • Gene Structure Prediction
    Gene finding Lorenzo Cerutti Swiss Institute of Bioinformatics EMBNet course, September 2002 Gene finding EMBNet 2002 Introduction Gene finding is about detecting coding regions and infer gene structure Gene finding is difficult DNA sequence signals have low information content (degenerated and highly unspe- • cific) It is difficult to discriminate real signals • Sequencing errors • Prokaryotes High gene density and simple gene structure • Short genes have little information • Overlapping genes • Eukaryotes Low gene density and complex gene structure • Alternative splicing • Pseudo-genes • 1 Gene finding EMBNet 2002 Gene finding strategies Homology method Gene structure can be deduced by homology • Requires a not too distant homologous sequence • Ab initio method Requires two types of information • . compositional information . signal information 2 Gene finding EMBNet 2002 Gene finding: Homology method 3 Gene finding EMBNet 2002 Homology method Principles of the homology method. Coding regions evolve slower than non-coding regions, i.e. local sequence similarity • can be used as a gene finder. Homologous sequences reflect a common evolutionary origin and possibly a common • gene structure, i.e. gene structure can be solved by homology (mRNAs, ESTs, proteins, domains). Standard homology search methods can be used (BLAST, Smith-Waterman, ...). • Include ”gene syntax” information (start/stop codons, ...). • Homology methods are also useful to confirm predictions inferred by other methods 4 Gene finding EMBNet 2002 Homology method: a simple view Gene of unknown structure Homology with a gene of known structure Exon 1 Exon 2 Exon 3 Find DNA signals ATG GT {TAA,TGA,TAG} AG 5 Gene finding EMBNet 2002 Procrustes Procrustes is a software to predict gene structure from homology found in pro- teins (Gelfand et al., 1996) Principle of the algorithm • .
    [Show full text]
  • A Curated Benchmark of Enhancer-Gene Interactions for Evaluating Enhancer-Target Gene Prediction Methods
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2020-01-22 A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods Jill E. Moore University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Bioinformatics Commons, Computational Biology Commons, Genetic Phenomena Commons, and the Genomics Commons Repository Citation Moore JE, Pratt HE, Purcaro MJ, Weng Z. (2020). A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods. Open Access Articles. https://doi.org/10.1186/ s13059-019-1924-8. Retrieved from https://escholarship.umassmed.edu/oapubs/4118 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Moore et al. Genome Biology (2020) 21:17 https://doi.org/10.1186/s13059-019-1924-8 RESEARCH Open Access A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods Jill E. Moore, Henry E. Pratt, Michael J. Purcaro and Zhiping Weng* Abstract Background: Many genome-wide collections of candidate cis-regulatory elements (cCREs) have been defined using genomic and epigenomic data, but it remains a major challenge to connect these elements to their target genes. Results: To facilitate the development of computational methods for predicting target genes, we develop a Benchmark of candidate Enhancer-Gene Interactions (BENGI) by integrating the recently developed Registry of cCREs with experimentally derived genomic interactions.
    [Show full text]
  • There Is a Lot of Research on Gene Prediction Methods
    LBNL #58992 Fungal Genomic Annotation Igor V. Grigoriev1, Diego A. Martinez2 and Asaf A. Salamov1 1US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 ([email protected], [email protected]); 2Los Alamos National Laboratory Joint Genome Institute, P.O. Box 1663 Los Alamos, NM 87545 ([email protected]). Sequencing technology in the last decade has advanced at an incredible pace. Currently there are hundreds of microbial genomes available with more still to come. Automated genome annotation aims to analyze this amount of sequence data in a high-throughput fashion and help researches to understand the biology of these organisms. Manual curation of automatically annotated genomes validates the predictions and set up 'gold' standards for improving the methodologies used. Here we review the methods and tools used for annotation of fungal genomes in different genome sequencing centers. 1. INTRODUCTION In recent years the power of DNA sequencing has dramatically increased, with dedicated centers running 24 hours a day 7 days a week able to produce as much as 2 gigabases of raw sequence or more a month. The researchers who work on a variety of fungi are fortunate, as most fungal genomes are under 50 megabases and produce high- quality draft assembly almost as easily as bacteria. This feature of fungal genomes is a key reason that the first sequenced eukaryotic genome was of the ascomycete Saccharomyces cerevisiae (Goffeau et al. 1996). As of the submission of this chapter, one can obtain draft sequences of more than 100 fungal genomes (Table 1) and the list is growing. While some are species of the same genus (e.g., Aspergillus has three members and more coming), there still remains a height of data that could confuse and bury a researcher for many years.
    [Show full text]
  • Gene Prediction Using Deep Learning
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Gene prediction using Deep Learning Pedro Vieira Lamares Martins Mestrado Integrado em Engenharia Informática e Computação Supervisor: Rui Camacho (FEUP) Second Supervisor: Nuno Fonseca (EBI-Cambridge, UK) July 22, 2018 Gene prediction using Deep Learning Pedro Vieira Lamares Martins Mestrado Integrado em Engenharia Informática e Computação Approved in oral examination by the committee: Chair: Doctor Jorge Alves da Silva External Examiner: Doctor Carlos Manuel Abreu Gomes Ferreira Supervisor: Doctor Rui Carlos Camacho de Sousa Ferreira da Silva July 22, 2018 Abstract Every living being has in their cells complex molecules called Deoxyribonucleic Acid (or DNA) which are responsible for all their biological features. This DNA molecule is condensed into larger structures called chromosomes, which all together compose the individual’s genome. Genes are size varying DNA sequences which contain a code that are often used to synthesize proteins. Proteins are very large molecules which have a multitude of purposes within the individual’s body. Only a very small portion of the DNA has gene sequences. There is no accurate number on the total number of genes that exist in the human genome, but current estimations place that number between 20000 and 25000. Ever since the entire human genome has been sequenced, there has been an effort to consistently try to identify the gene sequences. The number was initially thought to be much higher, but it has since been furthered down following improvements in gene finding techniques. Computational prediction of genes is among these improvements, and is nowadays an area of deep interest in bioinformatics as new tools focused on the theme are developed.
    [Show full text]
  • Prediction of Protein-Protein Interactions and Essential Genes Through Data Integration
    Prediction of Protein-Protein Interactions and Essential Genes Through Data Integration by Max Kotlyar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Department of Medical Biophysics University of Toronto Copyright °c 2011 by Max Kotlyar Abstract Prediction of Protein-Protein Interactions and Essential Genes Through Data Integration Max Kotlyar Doctor of Philosophy Graduate Department of Department of Medical Biophysics University of Toronto 2011 The currently known network of human protein-protein interactions (PPIs) is pro- viding new insights into diseases and helping to identify potential therapies. However, according to several estimates, the known interaction network may represent only 10% of the entire interactome – indicating that more comprehensive knowledge of the inter- actome could have a major impact on understanding and treating diseases. The primary aim of this thesis was to develop computational methods to provide increased coverage of the interactome. A secondary aim was to gain a better understanding of the link between networks and phenotype, by analyzing essential mouse genes. Two algorithms were developed to predict PPIs and provide increased coverage of the interactome: F pClass and mixed co-expression. F pClass differs from previous PPI prediction methods in two key ways: it integrates both positive and negative evidence for protein interactions, and it identifies synergies between predictive features. Through these approaches F pClass provides interaction networks with significantly improved reli- ability and interactome coverage. Compared to previous predicted human PPI networks, FpClass provides a network with over 10 times more interactions, about 2 times more pro- teins and a lower false discovery rate.
    [Show full text]
  • "An Overview of Gene Identification: Approaches, Strategies, and Considerations"
    An Overview of Gene Identification: UNIT 4.1 Approaches, Strategies, and Considerations Modern biology has officially ushered in a new era with the completion of the sequencing of the human genome in April 2003. While often erroneously called the “post-genome” era, this milestone truly marks the beginning of the “genome era,” a time in which the availability of sequence data for many genomes will have a significant effect on how science is performed in the 21st century. While complete human sequence data is now available at an overall accuracy of 99.99%, the mere availability of all of these As, Cs, Ts, and Gs still does not answer some of the basic questions regarding the human genome—how many genes actually comprise the genome, how many of these genes code for multiple gene products, and where those genes actually lie along the complement of human chromosomes. Current estimates, based on preliminary analyses of the draft sequence, place the number of human genes at ∼30,000 (International Human Genome Sequencing Consortium, 2001). This number is in stark contrast to previously-suggested estimates, which had ranged as high as 140,000. A number that is in the 30,000 range brings into question the one-gene, one-protein hypothesis, underscoring the importance of processes such as alternative splicing in the generation of multiple gene products from a single gene. Finding all of the genes and the positions of those genes within the human genome sequence—and in other model organism genome sequences as well—requires the devel- opment and application of robust computational methods, some of which are listed in Table 4.1.1.
    [Show full text]
  • Complete Genome Sequence of the Hyperthermophilic Bacteria- Thermotoga Sp
    COMPLETE GENOME SEQUENCE OF THE HYPERTHERMOPHILIC BACTERIA- THERMOTOGA SP. STRAIN RQ7 Rutika Puranik A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2015 Committee: Zhaohui Xu, Advisor Scott Rogers George Bullerjahn © 2015 Rutika Puranik All Rights Reserved iii ABSTRACT Zhaohui Xu, Advisor The genus Thermotoga is one of the deep-rooted genus in the phylogenetic tree of life and has been studied for its thermostable enzymes and the property of hydrogen production at higher temperatures. The current study focuses on the complete genome sequencing of T. sp. strain RQ7 to understand and identify the conserved as well as variable properties between the strains and its genus with the approach of comparative genomics. A pipeline was developed to assemble the complete genome based on the next generation sequencing (NGS) data. The pipeline successfully combined computational approaches with wet lab experiments to deliver a completed genome of T. sp. strain RQ7 that has the genome size of 1,851,618 bp with a GC content of 47.1%. The genome is submitted to Genbank with accession CP07633. Comparative genomic analysis of this genome with three other strains of Thermotoga, helped identifying putative natural transformation and competence protein coding genes in addition to the absence of TneDI restriction- modification system in T. sp. strain RQ7. Genome analysis also assisted in recognizing the unique genes in T. sp. strain RQ7 and CRISPR/Cas system. This strain has 8 CRISPR loci and an array of Cas coding genes in the entire genome.
    [Show full text]
  • Cep-2020-00633.Pdf
    Clin Exp Pediatr Vol. 64, No. 5, 208–222, 2021 Review article CEP https://doi.org/10.3345/cep.2020.00633 Understanding the genetics of systemic lupus erythematosus using Bayesian statistics and gene network analysis Seoung Wan Nam, MD, PhD1,*, Kwang Seob Lee, MD2,*, Jae Won Yang, MD, PhD3,*, Younhee Ko, PhD4, Michael Eisenhut, MD, FRCP, FRCPCH, DTM&H5, Keum Hwa Lee, MD, MS6,7,8, Jae Il Shin, MD, PhD6,7,8, Andreas Kronbichler, MD, PhD9 1Department of Rheumatology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea; 2Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; 3Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Korea; 4Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea; 5Department of Pediatrics, Luton & Dunstable University Hospital NHS Foundation Trust, Luton, UK; 6Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea; 7Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul, Korea; 8Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea; 9Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria 1,3) The publication of genetic epidemiology meta-analyses has analyses have redundant duplicate topics and many errors. increased rapidly, but it has been suggested that many of the Although there has been an impressive increase in meta-analyses statistically significant results are false positive. In addition, from China, particularly those on genetic associa tions, most most such meta-analyses have been redundant, duplicate, and claimed candidate gene associations are likely false-positives, erroneous, leading to research waste. In addition, since most suggesting an urgent global need to incorporate genome-wide claimed candidate gene associations were false-positives, cor- data and state-of-the art statistical inferences to avoid a flood of rectly interpreting the published results is important.
    [Show full text]
  • A Benchmark Study of Ab Initio Gene Prediction Methods in Diverse Eukaryotic Organisms
    A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms Nicolas Scalzitti Laboratoire ICube Anne Jeannin-Girardon Laboratoire ICube https://orcid.org/0000-0003-4691-904X Pierre Collet Laboratoire ICube Olivier Poch Laboratoire ICube Julie Dawn Thompson ( [email protected] ) Laboratoire ICube https://orcid.org/0000-0003-4893-3478 Research article Keywords: genome annotation, gene prediction, protein prediction, benchmark study. Posted Date: March 3rd, 2020 DOI: https://doi.org/10.21203/rs.2.19444/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on April 9th, 2020. See the published version at https://doi.org/10.1186/s12864-020-6707-9. 1 A benchmark study of ab initio gene prediction 2 methods in diverse eukaryotic organisms 3 Nicolas Scalzitti1, Anne Jeannin-Girardon1, Pierre Collet1, Olivier Poch1, Julie D. 4 Thompson1* 5 6 1 Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France 7 *Corresponding author: 8 Email: [email protected] 9 10 Abstract 11 Background: The draft genome assemblies produced by new sequencing technologies 12 present important challenges for automatic gene prediction pipelines, leading to less accurate 13 gene models. New benchmark methods are needed to evaluate the accuracy of gene prediction 14 methods in the face of incomplete genome assemblies, low genome coverage and quality, 15 complex gene structures, or a lack of suitable sequences for evidence-based annotations. 16 Results: We describe the construction of a new benchmark, called G3PO (benchmark for 17 Gene and Protein Prediction PrOgrams), designed to represent many of the typical challenges 18 faced by current genome annotation projects.
    [Show full text]
  • Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, Second Edition Andreas D
    BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto BIOINFORMATICS SECOND EDITION METHODS OF BIOCHEMICAL ANALYSIS Volume 43 BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ᭧ 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
    [Show full text]