Process for Manufacturing Concentrated Surfactant Compositions Konzentrierte Tensidzusammensetzungen Compositions Tensioactives Concentrées

Total Page:16

File Type:pdf, Size:1020Kb

Process for Manufacturing Concentrated Surfactant Compositions Konzentrierte Tensidzusammensetzungen Compositions Tensioactives Concentrées (19) TZZ Z___ T (11) EP 2 089 111 B2 (12) NEW EUROPEAN PATENT SPECIFICATION After opposition procedure (45) Date of publication and mention (51) Int Cl.: of the opposition decision: A61Q 5/02 (2006.01) A61Q 19/10 (2006.01) 04.09.2013 Bulletin 2013/36 A61K 8/02 (2006.01) A61K 8/46 (2006.01) C11D 1/37 (2006.01) C11D 1/83 (2006.01) (2006.01) (2006.01) (45) Mention of the grant of the patent: C11D 1/94 C11D 17/00 24.02.2010 Bulletin 2010/08 (86) International application number: (21) Application number: 07847667.8 PCT/EP2007/063156 (22) Date of filing: 03.12.2007 (87) International publication number: WO 2008/068222 (12.06.2008 Gazette 2008/24) (54) PROCESS FOR MANUFACTURING CONCENTRATED SURFACTANT COMPOSITIONS KONZENTRIERTE TENSIDZUSAMMENSETZUNGEN COMPOSITIONS TENSIOACTIVES CONCENTRÉES (84) Designated Contracting States: (74) Representative: Bristow, Stephen Robert et al AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Unilever Patent Group HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE Colworth House SI SK TR Sharnbrook Bedford, MK44 1LQ (GB) (30) Priority: 08.12.2006 EP 06125743 (56) References cited: (43) Date of publication of application: EP-A- 0 922 754 EP-A1- 1 696 023 19.08.2009 Bulletin 2009/34 EP-A2- 1 225 214 WO-A-99/09944 WO-A1-94/18946 WO-A2-01/25378 (73) Proprietors: DE-A1- 19 641 280 DE-A1- 19 646 882 • Unilever PLC DE-A1- 19 929 511 DE-A1- 19 944 544 London DE-A1- 19 950 925 FR-A1- 2 398 797 EC4Y 0DY (GB) FR-A1- 2 826 017 GB-A- 2 013 235 Designated Contracting States: GB-A- 2 021 141 GB-A- 2 022 125 CY GB IE MT US-A- 4 898 690 US-A- 5 066 425 • Unilever N.V. US-A1- 2005 143 277 3013 AL Rotterdam (NL) Designated Contracting States: • MCCUTCHEON’S: ’Emulsifiers & detergents AT BE BG CH CZ DE DK EE ES FI FR GR HU IS IT international edition’, vol. 1, 1999, THE LI LT LU LV MC NL PL PT RO SE SI SK TR MANUFACTURING CONFECTIONER PUBLISHING CO., GLEN ROCK page 55 (72) Inventors: • HENKEL KGAA: ’Texapon N70’ COSPHA no. 6, • BASAPPA, Geetha September 1996, Bedford • FARN, RICHARD, J.: ’Chemistry and technology Bedfordshire MK44 1LQ (GB) ofsurfactants’, 2006, BLACKWELL PUBLISHING, • BELMAR, Maria Teresa OXFORD pages 1 - 338 Bedford • PROCTER & GAMBLE: ’Process for Bedfordshire MK44 1LQ (GB) manufacturing concentrated surfactant • TELFORD, Julia Helen compositions’ TECHNICAL REPORT 18 July Bedford 2012, pages 1 - 2 Bedfordshire MK44 1LQ (GB) EP 2 089 111 B2 Printed by Jouve, 75001 PARIS (FR) EP 2 089 111 B2 Description [0001] The present invention relates to a method of manufacture of a composition comprising a high amount of a specific surfactant mixture and water. 5 [0002] Concentrated formulations comprising surfactants as well as mixtures of surfactants are usually provided to reduce the transport costs as well as to reduce storage capacities. Usually the commonly known concentrates comprise all essential ingredients for producing, for example, a personal care composition with the exception of solvent (which is usually water). [0003] The goal of the present invention is to provide a highly concentrated surfactant composition which is stable, 10 whichcan serve asa basecomposition (skeleton composition) and whichcan behandled reasonably easily andcomprises two surfactants and water only. [0004] FR 2 826 017 A1 discloses a mixture of surfactants comprising an alkyl and/or alkenyl oligoglycoside, betaine and an alkyl ether sulphate [0005] EP 1 225 214 A2 discloses a detergent composition which foams well and is not slimy containing an alkali 15 metal taurate salt or an organic alkali taurate salt of N-acylmethyltaurate, N- acyltaurine, alkylsulphuric ester, alkyl ether sulphuric ester or alkylsulphonic acid. [0006] DE 199 44 544 A1 discloses a surfactant mixture comprising an alkyloligoglycoside and an alkyl- and/or alke- nylether sulphate. [0007] FR 2 398 797 A1 discloses concentrated aqueous surfactant compositions comprising mixtures of different 20 surfactants for use in aqueous systems. [0008] WO 99/09944 A1 discloses aqueous nacreous lustre dispersions containing fatty acid polyglycol ester sulphate, emulsifiers, nacreous lustre waxes and polyols. [0009] DE 196 41 280 A1 discloses waterborne pearlescent dispersions comprising monoglyceride (ether)sulphate, emulsifiers and polyols. 25 [0010] EP 0 922 754 A1 discloses pearlescent compositions comprising a fatty acid, an alkylether sulphate or acyli- sethionate, and water. [0011] DE 196 46 882 A1 discloses an aqueous polyol free pearlescing concentrate based on selected surface- active emulsifiers and pearlescent waxes. 30 Description of the Invention [0012] The present invention relates to a process for manufacturing a composition, the composition comprising: (i) 50-95% by weight, based on the total weight of the composition, of 35 (ia) an alkyl ether sulphate and/or salt thereof, and (ib) at least one further surfactant which is an anionic and/or amphoteric surfactant, and (ic) optionally one or more non-ionic surfactants; and 40 (ii) 5 - 50 % by weight, based on the total weight of the composition, of water, wherein the alkyl ether sulphate and/or salt thereof of (ia) and the anionic surfactant of (ib) are not identical surfactants, the process comprising the steps of: 45 (a) providing the alkyl ether sulphate or salt thereof in the form of a mixture with no more than 35% by weight, based on the total weight of the mixture, of water; then (b) adding to and mixing with the mixture the at least one further surfactant chosen from the group consisting of anionic and/or amphoteric surfactants in substantially anhydrous form and the optional one or more non- ionic sur- factants in substantially anhydrous form thereby to form the composition, 50 wherein the alkyl ether sulphate or salt thereof remains in a liquid crystalline lamellar phase or lamellar gel phase throughout the process. [0013] Preferred compositions comprise 50 - 90 %, preferably 60 - 85 % by weight of (i). As a consequence thereof preferred compositions comprise 10 - 50 %, preferably 15 - 40 % by weight, based on the total weight of the composition, 55 of water. [0014] A further embodiment of the present invention is a composition where the ratio of (ia) : [(ib) + (ic)] is 1:2 to 40: 1, preferably 1: 1 to 30:1. [0015] Preferred compositions comprise ≤ 10 % by weight, based on the total amount of the composition, of non- ionic 2 EP 2 089 111 B2 surfactants. [0016] The compositions have the advantage that without using any further additives, the compositions show good stability as well as good handling properties. Without the need to include any further additives (such as, for example, preservatives), it opens a wide field of interesting applications and uses. A user can, for example, choose to add a 5 preservative (or other ingredients) or not. The user can be found in industry as well as in private households. [0017] The composition is preferably used as a base composition for a personal care composition. Preferred personal care compositions are body washes (such as for shower or bath) and/or shampoos. [0018] The compositions preferably have a pH ≥ 5, preferably ≥ 5.5. [0019] The composition preferably excludes added preservative, thus the composition may contain traces of preserv- 10 atives which can be found in the commercially available surfactants and which cannot be removed completely. The amount of preservative in the composition is usually less than 0.1 % by weight of the composition. [0020] The term preservative is to be understood as a natural or synthetic chemical that is added to products to retard spoilage, whether from microbial growth, or undesirable chemical changes. A distinction is sometimes made between anti-microbial preservatives which function by inhibiting the growth of bacteria and fungi, and antioxidants such as oxygen 15 absorbers, which inhibit the oxidation of food constituents. Common anti- microbial preservatives include sodium nitrate, sodium nitrite, sulphites (sulfur dioxide, sodium bisulfite, potassium hydrogen sulfite) and disodium EDTA. Antioxidants include BHA and BHT. Other preservatives include formaldehyde (usually in solution), glutaraldehyde, diatomaceous earth (kills insects), ethanol, dimethyl dicarbonate and methylchloroisothiazolinone. Further preservatives include 2- bromo-2-nitropropane-1,3-diol, phenoxy ethanol citric acid, tartaric acid, phosphoric acid, iminodiacetic acid, nitrilotriace- 20 tic acid, hydroxyethyleneaminodiacetic acid and ethylenediaminetetraacetic acid and salts thereof; para-hydroxyben- zoates such as butyl paraben, methyl paraben and propyl paraben; imidazolines (e.g. imidiazolinylurea), triclosan, hydantoins (e.g. dimethyloldimethylhydantoin), isothiazolidinone compounds; and mixtures thereof. Commercially avail- able preservatives include Kathon® CG, Kathon® CGII and Myacide®. [0021] A further preferred embodiment relates to a composition excluding a pearlescent agent or an opacifying agent. 25 Examples of a pearlescent or an opacifying agent include, but are not limited to: mono- or diesters of (a) fatty acids having 16 to 22 carbon atoms and (b) either ethylene or propylene glycol; mono- or diesters of (a) fatty acids having 16 to 22 carbon atoms (b) a polyalkylene glycol of the formula HO-(JO)a-H, wherein J is an alkylene group having 2 to 3 carbon atoms, and a is 2 or 3, and fatty alcohols containing 16 to 22 carbon atoms; fatty esters of the formula KCOOCH 2L, wherein K and L independently contain 15 to 21 carbon atoms; inorganic solids insoluble in the composition; and mixtures 30 thereof. [0022] The compositions always comprise alkyl ether sulphates or salts thereof. Preferred alkyl ether sulphates salts are those of formula RO-(CH2CH2O)xSO3M, 35 wherein R is an alkyl or alkenyl group of 8 to 24 carbon atoms, x is an integer having a value of 1 to 10, and M is a cation such as ammonium, alkanolamines such as triethanolamine, monovalent metals such as sodium and potassium, and polyvalent metal cations such as magnesium and calcium.
Recommended publications
  • Personal Care
    HAIR CONDITIONERS SURFACTANTSS • Behenamidopropyl Dime- pholine Lactate • Acetamide MEA • Lauramidopropyl Betaine thylamine • Myristyl Trimethyl Ammo- • Acetamide MEA, Lactamide • Lauramidopropyl Hydroxysul- • Cocodimonium Hydroxy- nium Bromide MEA taine propyl Hydrolyzed Rice • Polymethacrylamidoprop- • Alkyl Dimethyl (C12-C18) • Lauramidopropylamine Oxide Protein yltrimonium Chloride Amine Oxide • Lauramine Oxide • Cocodimonium Hydroxy- • Polyquaternium-2 • Alkylpolyglucoside • Laureth-1 Phosphate propyl Hydrolyzed Silk • Polyquaternium-6 • Ammonium Laureth Sulfate • Laureth-11 Carboxylic Acid Protein • Polyquaternium-7 • Ammonium Lauryl Sulfate • Laureth-11, Myreth-11 • Cocodimonium Hydroxy- • Polyquaternium-74 • Ammonium Lauryl Sulfate, • Laureth-3 Phosphate propyl Hydrolyzed Wheat • PPG-3 Caprylyl Ether Ammonium Laureth Sulfate • Laureth-6 Carboxylic Acid Protein • Quaternium-79 Hydrolyzed • Babassuamidopropyl Betaine • Laureth-9 • Dimethicone Keratin • Behenamidopropyl Dimethyl- • Lauryl Betaine • Guar Hydroxypropyltrimo- • Quaternium-79 Hydrolyzed amine • Lauryl Glucoside nium Chloride Silk • Behenoyl PG-Trimonium • Lauryl Hydroxysultaine • Hydroxypropyl Guar • Sodium Lauroyl Glutamate Chloride • Lauryl Lactate Hydroxypropyltrimonium • Stearalkonium Chloride • Behenoyl PG-Trimonium Chlo- • Modified Oleamide DEA Chloride • Stearamidopropyl Dime- ride, Cetyl Alcohol • Oleamidopropyl Betaine • Isostearamidopropyl Eth- thylamine • Behentrimonium Chloride • Oleth-20, Ceteth-20 yldimonium Ethosulfate, • Sunflowerseedamidopro- • Capryl/Caprylic
    [Show full text]
  • BETADET® BETADET® Anionic-Based Formulations
    BETADET® S-20 BETADET® SHR VERY MILD SURFACTANT GREAT FORMULATION STABILITY ENHANCED FOAM VOLUME IMPROVED THICKENING EFFECT SULTAINES: MILD AMPHOTERIC SURFACTANTS FOR PERSONAL CARE KAO SURFACTANTS TECHNOLOGY AT YOUR SERVICE BETADET® S-20 & BETADET® SHR Foam, Viscosity & Mildness enhancers CHARACTERISTICS BETADET® S-20 and BETADET® SHR are recom- pH’s thus allowing their use in cosmetics formulations mended as secondary surfactants for very mild were alkali (i.e. depilatories) or acid media are neces- and high foaming products, achieving higher foam sary. Both products are also very stable to hard water, BETADET® S-20 and BETADET® volumes than alkyl betaines or alkyl amidopropyl improving the behavior of some sensitive anionic MAIN FEATURES betaines. These products are easier to thicken surfactants under extreme conditions. Additionally, SHR are very mild co-surfactants when combined with SLES, thus reducing the BETADET® S-20 shows a highlighted ability to reduce • Vegetable origin for personal care formulations. amount of electrolytes needed to obtain a desired the freezing point of final formulations making them • Preservative-free viscosity compared to other amphoteric surfactants. more stable at low temperatures, which helps to ob- Hydroxysultaines are highly effective amphoteric • Biodegradable Hydroxysultaines show excellent stability at extreme tain clear stable final products. Surfactants that improve the performance of final • Compatible with anionic, non-ionic and cationic cosmetic products. They are extremely mild cosur- surfactants
    [Show full text]
  • Product Catalog
    Product Catalog Classic Surfactants Service and Quality Brought Together Classic Distributing has been selling surfactants for over 30 years! We have expanded our relationship with multiple toll manufacturers. This allows us to control pricing, quality, and consistency under our own brand. Now all of the high quality surfactants are made to our specifications to insure performance in the market place. We will continue to offer all of the services you have grown to expect from Classic Distributing including formulation knowledge and proprietary blend formulation. We also have capabilities with natural and non alcohol sulfate surfactant technologies that we have added in response to market demand. If you have special formulating requirements, just ask! Cosmetic Products AMIDES INCI DESCRIPTION Classic CE Cocamide DEA Classic KD Cocamide DEA Classic LSM Lauramide DEA (liquid) Classic CME Cocamide MEA (flake) Classic SD Soyamide DEA Classic B-MIPA Cocamide MIPA/Cocamidopropyl Betaine Classic DIPA Cocamide DIPA ALKYL ETHER SULFATES INCI DESCRIPTION Classic ES-2K Sodium Laureth Sulfate Classic ES-60 Sodium Laureth Sulfate Classic ES-70 Sodium Laureth Sulfate (2 mole) ALKYL SULFATES INCI DESCRIPTION Classic ALS Ammonium Lauryl Sulfate Classic TLS TEA-Lauryl Sulfate Classic SLS Sodium Lauryl Sulfate Classic SLN-95 Sodium Lauryl Sulfate Crystals AMINE OXIDES INCI DESCRIPTION Classic CAW Cocamidopropylamine Oxide Classic LO Lauramine Oxide AMPHOTERICS INCI DESCRIPTION Classic DCA Disodium Coco Amphodiacetate BETAINES INCI DESCRIPTION Classic CAS
    [Show full text]
  • Coconut Oil Diethanolamine Condensate
    COCONUT OIL DIETHANOLAMINE CONDENSATE 1. Exposure Data 1.1.2 Structural and molecular formulae and relative molecular mass 1.1 Chemical and physical data O CH2CH2OH Coconut oil diethanolamine condensate is CH3 (CH2)n CH2 C N a mixture of diethanolamides of the fatty acids that constitute coconut oil, which is composed CH2CH2OH of approximately 48.2% lauric acid (12:0), 18% myristic acid (14:0), 8.5% palmitic acid (16:0), 8% n = 5, 7, 9, 11, 13, 15 caprylic acid (8:0), 7% capric acid (10:0), 6% oleic acid (18:1, n-9), 2.3% stearic acid (18:0) and 2% C(7+n)H(15+2n)NO3 linoleic acid (18:2, n-6) (NTP, 2001). Relative molecular mass: range, 231–371 1.1.1 Nomenclature 1.1.3 Chemical and physical properties of the Chem. Abstr. Serv. Reg. No.: 68603-42-9 pure substance Deleted Chem. Abstr. Serv. Reg. Nos: 8036­ Description: Clear, amber-coloured liquid 48-4; 8040-31-1; 8040-33-3; 12751-06-3; with a faint coconut odour (CTFA, 1986) 53028-62-9; 56448-72-7; 56832-66-7; 63091­ Boiling-point: 169–275 °C 31-6; 66984-58-5; 67785-10-8; 67785-14-2; Melting-point: 23–35 °C (CTFA, 1986) 71343-51-6; 71343-71-0; 83652-14-6; 87714­ Density: 0.99 g/cm3 at 20 °C (IUCLID, 18-9; 90651-47-1; 118104-13-5; 153189-69-6; 2000) 186615-78-1 (ChemID plus) Solubility: Miscible with water at 20 °C; Chem. Abstr. Name: Amides, coco, produces an alkali in aqueous solution N,N-bis(hydroxyethyl) (CTFA, 1986) Synonyms: N,N-Bis(hydroxyethyl)coco Octanol/water partition coefficient (P): amides; N,N-bis(hydroxyethyl)coco fatty log P, 3.52 (IUCLID, 2000) acid amides; cocamide DEA;
    [Show full text]
  • Alternatives to Cocamide DEA California's Office of Environmental Health Hazard Assessment (OEHHA) Has Listed Cocamide DEA (CAS No
    Alternatives to Cocamide DEA California's Office of Environmental Health Hazard Assessment (OEHHA) has listed Cocamide DEA (CAS No. 68603-42-9) on Proposition 65. For those looking to reformulate, Stepan is providing the following performance comparison and alternative surfactant recommendations to NINOL® 40-CO (1:1 Cocamide DEA) and NINOL® 11-CM (2:1 Cocamide DEA) for use in liquid dish detergents, all-purpose cleaners, degreasers, and vehicle care detergents. Stepan has a broad amphoteric product line and the technical expertise in hard surface care to assist our customers with product recommendation and reformulation. The recommended surfactants noted below take into consideration performance, handling, typical lead time, and estimated market price. If you require further assistance, please contact your local Stepan sales representative or Stepan U.S. Technical Service at [email protected] or (800) 745-7837. LIQUID DISH DETERGENTS (LDL) For an LDL economy formulation containing Linear Alkylbenzene Sulfonate (LAS) and Sodium Laureth Sulfate (SLES), the following surfactants showed equivalent or improved foam mileage and equivalent foam volume compared to NINOL® 40-CO on an equal actives basis. Recommendations Mixer Foam: LAS/SLES Economy AMMONYX® LMDO (Lauramidopropylamine Oxide) 160 AMPHOSOL® CG-50 (Cocamidopropyl Betaine) 150 AMMONYX® CDO SPECIAL (Cocamidopropylamine Oxide) 140 Shake Foam: LAS/SLES Economy 130 Soil D 500 120 Shell 400 110 Soil 300 100 90 200 Normalized Normalized Foam Mileage 80 100 Foam Volume (mL) 0 40-CO LMDO CG-50 CDO SPECIAL For an LDL premium formulation containing Sodium Lauryl Sulfate (SLS) and Sodium Laureth Sulfate (SLES), the following surfactants showed equivalent or improved foam mileage and equivalent foam volume compared to NINOL® 40-CO on an equal actives basis.
    [Show full text]
  • Renewable Carbonindex
    BIORENEWABLE CARBON INDEX Formulating green products is one of the current challenges facing developers of personal care and household cleaning REDUCED CARBON PRODUCTS products. SCT's Biorenewable Carbon Index can help make ingredient choices easier. CERTIFIED AND SUSTAINABLE Learn more at www.southern-chemical.com BIORENEWABLE CARBON INDEX Formulating green products is one of the current challenges facing developers of personal care and household cleaning products. SCT's Biorenewable Carbon Index can help make ingredient choices easier. % PALM SCT PRODUCT DESCRIPTION VEGETABLE % RCI FREE SCT-135 Sodium Lauryl Sulfate 65% 100% No SCT-1070 Sodium Laureth Sulfate 50% 76% No SCT-139 Potassium Alkanoate 79% 100% No SCT-140 Potassium Cocoate 80% 100% Yes SCT-722 Disodium Laureth Sulfosuccinate 36% 56% No SCT-725 Disodium Lauryl Sulfosuccinate 46% 76% No Sopal BT Bleach Thickener/Caustic Thickener Concentrate 80% 90% No Sopal JSB Mild Concentrate 24% 35% No Sopal Quat 1216 Sunflowerseedamidopropyl Dimethylamine Lactate 84% 89% Yes 95-100% Sopal Quat Rice Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein 95% (Polymer) Yes Sopalex 222 Babassuamidopropyl betaine 52% 70% Yes Sopalex 340 Octyl Betaine 59% 67% No Sopalex 360-BET Cocamidopropyl Betaine 52% 70% Yes Sopalex 385 Coco-Betaine 69% 80% Yes Sopalex C37-HP Cocamidopropyl Betaine (stripped cut) 48% 66% No Sopalex OAB Caprylamidopropyl Betaine 44% 53% No Sopalteric CBS Cocamidopropyl Hydroxysultaine 57% 75% Yes Sopalteric CHS Cocamidopropyl Hydroxysultaine 55% 81% Yes Sopalteric CS Sodium
    [Show full text]
  • Mild Condition Shampoo with High Foam Level
    Europaisches Patentamt European Patent Office © Publication number: 0 524 434 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 92110406.3 mt . ci .5 :A61K 7/075 @ Date of filing: 19.06.92 © Priority: 24.06.91 US 719818 © Applicant: HELENE CURTIS, INC. 325 North Wells Street © Date of publication of application: Chicago, Illinois 6061 0-471 3(US) 27.01.93 Bulletin 93/04 @ Inventor: Janchitraponvej, Ben © Designated Contracting States: 8142 N. Ottawa AT BE CH DE DK ES FR GB GR IT LI LU NL PT Niles, lllinois(US) SE Inventor: Brown, Willam J. 2832 Bob-o-Link Road Flossmoor, III. (US) © Representative: Reitzner, Bruno, Dr. et al Patentanwalte Dipl.-lng. R. Splanemann Dr. B. Reitzner, Dipl.-lng. K. Baronetzky Tal 13 W-8000 Munchen 2(DE) © Mild condition shampoo with high foam level. © A conditioning shampoo containing an anionic surfactant, in an amount of about 5% to about 25% by weight, and a cationic acrylate/acrylamide copolymer conditioning agent material, in an amount of about 0.1% to about 20% by weight, has extended product stability, excellent overall conditioning to human hair, particularly superior wet and dry combing properties, and unexpectedly maintains very high levels of foam, with a mild anionic cleansing detergent, e.g., an anionic carboxylate detergent, or with lower amounts of a strong anionic cleansing detergent, such as a long chain (C12 - C22) alkyl sulfate, and/or a long chain (C12 - C22) partially or fully ethoxylated alkyl sulfate; and/or a long chain (C12 - C22) sulfonate. CM CO CM
    [Show full text]
  • Product Catalog
    Product Catalog Classic Surfactants Service and Quality Brought Together Classic Distributing has been selling surfactants for 25 years! Classic has expanded our relationship with multiple manufacturers including The Chemlogics Group. They have been manufacturing a number of specialty surfactants for us over the years at their Los Angeles area manufacturing facility. We are now able to return to the flexibility and service that you have come to expect from Classic Distributing. All of our high quality surfactants are toll manufactured to our specifications. Chemlogics is owned and managed by a skilled team which includes at least six key people from the “old” Chemron Corporation. For over 20 years, Chemron was acknowledged as a superior supplier of high quality surfactants for personal care and industrial use. We are now tapping back into that knowledge to continue the tradition of selling high quality surfactants to the industry. We will continue to offer all of the services you have grown to expect from Classic Distributing including formulation knowledge and proprietary blend formulation. Cosmetic Products AMIDES INCI DESCRIPTION Classic CE Cocamide DEA Classic KD Cocamide DEA Classic LSM Lauramide DEA (liquid) Classic CME Cocamide MEA (flake) Classicamide S Soyamide DEA BETAINES INCI DESCRIPTION Classic BW Coco-Betaine Classic CAS Cocamidopropyl Hydroxysultaine Classicbetaine C Cocamidopropyl Betaine SULFOSUCCINATES INCI DESCRIPTION Classic DSLS Disodium Laureth Sulfosuccinate AMINE OXIDES INCI DESCRIPTION Classic CAW Cocamidopropylamine
    [Show full text]
  • Thickening of Foaming Cosmetic Formulations
    THICKENING OF FOAMING COSMETIC FORMULATIONS Geert De Lathauwer, Daisy De Rycke, Annelies Duynslager, Stijn Tanghe, Caroline Oudt EOC Surfactants nv, Belgium Abstract Enhancing the viscosity of a foaming cosmetic formulation has both marketing and technical reasons. A rich appearance will be correlated by end users with high concentration and value for money. Thickening also has an advantage in applying the product: a thin shampoo would run off the hands easily. In formulation development and optimization, a thickened formulation can also allow keeping heterogeneous solutions in a stable equilibrium. This paper gives an overview of the different ways of incorporating viscosity in a surfactant formulation including an explanation of the mechanisms involved. It summarizes the different types of raw materials available to formulators illustrating their advantages and drawbacks. The second part gives an overview of typical frame formulations of commercially available shampoos and shower gels. Finally, this paper presents an up-to-date list of most widely used alternatives to diethanolamine based surfactants whilst showing their performance. The comparative study illustrates the superiority of one of the selected alternatives from point of view of workability and similar viscosity build-up performance in a formulation as Cocamide DEA. Introduction Enhancing the viscosity of a foaming cosmetic formulation has both marketing and technical reasons. A rich appearance will be correlated by end users with high concentration and so gives them the impression that they get value for money. Thickening also has an advantage in applying the product: low viscous liquids are difficult to apply to hair and skin; more viscous products will not run off the hands too easily.
    [Show full text]
  • Your Definitive Solution for Personal Care
    Your Definitive Solution for Personal Care We are a distributor and manufacturer of ingredients with an extensive raw material portfolio. Surfactants • Acetamide MEA • Glycereth-7 Caprylate/Caprate • Sodium Coco-Sulfate • Alkylpolyglucoside • Glycereth-7 Cocoate • Sodium Cocoyl Glycinate • Ammonium Laureth Sulfate • Hempseedamidopropyl • Sodium Cocoyl Isethionate • Ammonium Lauryl Sulfate Hydroxysultaine • Sodium Cocoyl Sarcosinate • Babassuamidopropyl Hydroxysultaine • Hydrogenated Cocamidopropyl Betaine • Sodium Decylglucosides • C12-18 Alkyldimethyl Amine N-Oxides • Lauramide DIPA Hydroxypropylsulfonate • Calcium Stearoyl Lactylate • Lauramide MEA • Sodium Hydroxypropylphosphate • Capryl/Capramidopropyl Betaine • Lauramide MIPA Cocoglucoside Crosspolymer • Caprylyl/Capryl Glucoside • Lauramidopropyl Betaine • Sodium Hydroxypropylphosphate • Cetyl Betaine • Lauramidopropyl Hydroxysultaine Decylglucoside Crosspolymer • Cocamide DIPA • Lauramidopropylamine Oxide • Sodium Hydroxypropylphosphate Laurylglucoside Crosspolymer • Cocamide MIPA • Lauramine Oxide • Sodium Laureth Sulfate • Cocamidopropyl Betaine • Laureth-11 Carboxylic Acid • Sodium Laureth Sulfosuccinate • Cocamidopropyl Hydroxysultaine • Laureth-6 Carboxylic Acid • Sodium Laureth-11 Carboxylate • Cocamidopropylamine Oxide • Lauryl Betaine • Sodium Laureth-5 Carboxylate • Cocamine Oxide • Lauryl Glucoside • Sodium Laureth-6 Carboxylate • Coco-Betaine • Lauryl Hydroxysultaine • Sodium Lauriminodipropionate • Coco-Glucoside • Lauryl Lactate • Sodium Lauroamphoacetate • Decyl Glucoside
    [Show full text]
  • Home Product Brochure
    HOUSEHOLD CARE PRODUCT GUIDE 1407 Abutment Rd Dalton, GA 30721 Phone706-277-3993 Fax 706-277-2966 [email protected] WWW.SOUTHERN-CHEMICAL.COM SPECIALTY CHEMICALS FOR OVER 30 YEARS With new technologies and fast, responsive service we’ve become one of the leading manufacturers of primary and secondary surfactants in North America. Paving the way for this growth has been the vision of success from a family owned business held close for nearly 30 years. Community oriented and environmentally friendly, we strive to have the lowest carbon footprint by utilizing suppliers that have like-minded awareness and TABLE OF CONTENTS sustainable practices. 04 05 06 07 10 12 15 16 APPLICATION QUATERNARY AMIDES AMPHOTERICS ANIONICS PERFORMANCE AMINE OXIDES APPLICATIONS & GROUPS CONDITIONERS CONCENTRATES PROPERTIES Film & Streaking Sopal Quat 1216 Techmide165 Alkyl Amido Alkyl Ether Hand Soap Techmine 280 DravesWetting Reducers Techmide180 Betaines Sulfates Solutions Techmine 290 Caustic Solubility Hypochlorite Techmide220 Alkyl Betaines Alkyl Sulfates Cold Pearlizers Techmine 300 Foam Bleach Stable Techmide225 Sultaines Alpha Olefin Industrial Techmine 350 Coupling Products Sulfonates Specialty Techmide470 Ampho Acetate Hydrogen HI&I Specialty Sulfosuccinates Liquid Mono- Peroxide Stable Techmide LLDEA Amphoterics Alkanolamides Products HI&I Specialty Cleangredients™ Concentrates Listed Products FILM & STREAKING Sopalteric JC-HA REDUCERS Sopalteric DSCYA-27 QUALITY PRODUCTS SopaltericJEM Ideal for all purpose, hard Techmine280 Southern Chemical & Textiles has been at the forefront of the surface cleaners and glass SCT-139 sustainable manufacturing movement since 1984. We utilize raw cleaners. Use level: 1-3% Sopalex 340 materials from only trusted and verified sources that meet or exceed our sustainable sourcing requirements.
    [Show full text]
  • Amended Final Report on the Safety Assessment of Cocamide DEA'
    Journul of the American C~Ikge of Toxicology 15(6):527-542, Lippmcott-Raven Publishers. Philadelphia 0 1996 Cosmetic Ingredient Review Amended Final Report on the Safety Assessment of Cocamide DEA’ Abstract: Cocamide DEA is a mixture of ethanolamides of Coconut Acid that is used as a surfactant-foam booster and viscosity-increasing agent-aqueous in cosmetic products. Production formulation data submitted to the Food and Drug Administration in 1994 indicated that this ingredient was used in 745 products. The Cosmetic Ingredient Review (CIR) Expert Panel had previously evaluated the safety of Cocamide DEA, Lauramide DEA, Linoleamide DEA, and Oleamide DEA in cosmetics and concluded that they were safe as cosmetic ingredients at the concentrations that were currently being used (~50%). CIR’s decision to reevaluate the safety of Cocamide DEA in cosmetics is based on occupational studies indicating that this ingredient may have sensitization po- tential; however, the Expert Panel has determined that these studies are not relevant to cosmetic use. Furthermore, the Panel agreed that its original con- clusion on Cocamide DEA should be clarified relative to use of this ingredient in rinse-off and leave-on products. Clarification of the original conclusion is based on the results of a skin irritation test in which 15 volunteers were tested with a surfactant solution containing 10% Cocamide DEA, the highest concen- tration tested in predictive patch tests. Additional comments that were made during the Panel’s review of other data in the present report include that the severe ocular irritation reactions induced by a chemical (pH 9-10.5) containing >64% Cocamide DEA were likely a result of pH; that the renal effects noted in Fischer 344 rats in the National Toxicology Program (NTP) subchronic dermal toxicity study may be species-related and not test substance-related; and with reference to an ongoing NTP two-year chronic study that was initi- ated in 1993, that the results will be reviewed when the study is available.
    [Show full text]