TR-479: Coconut Oil Acid Diethanolamine Condensate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Scope of the Risk Evaluation for Formaldehyde CASRN 50-00-0
EPA Document# EPA-740-R-20-014 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Formaldehyde CASRN 50-00-0 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .....................................................................................................................11 1 INTRODUCTION ............................................................................................................................14 2 SCOPE OF THE EVALUATION ...................................................................................................14 2.1 Reasonably Available Information ..............................................................................................14 Search of Gray Literature ...................................................................................................... 15 Search of Literature from Publicly Available Databases (Peer-reviewed Literature) ........... 16 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................25 Conditions of Use -
Personal Care
HAIR CONDITIONERS SURFACTANTSS • Behenamidopropyl Dime- pholine Lactate • Acetamide MEA • Lauramidopropyl Betaine thylamine • Myristyl Trimethyl Ammo- • Acetamide MEA, Lactamide • Lauramidopropyl Hydroxysul- • Cocodimonium Hydroxy- nium Bromide MEA taine propyl Hydrolyzed Rice • Polymethacrylamidoprop- • Alkyl Dimethyl (C12-C18) • Lauramidopropylamine Oxide Protein yltrimonium Chloride Amine Oxide • Lauramine Oxide • Cocodimonium Hydroxy- • Polyquaternium-2 • Alkylpolyglucoside • Laureth-1 Phosphate propyl Hydrolyzed Silk • Polyquaternium-6 • Ammonium Laureth Sulfate • Laureth-11 Carboxylic Acid Protein • Polyquaternium-7 • Ammonium Lauryl Sulfate • Laureth-11, Myreth-11 • Cocodimonium Hydroxy- • Polyquaternium-74 • Ammonium Lauryl Sulfate, • Laureth-3 Phosphate propyl Hydrolyzed Wheat • PPG-3 Caprylyl Ether Ammonium Laureth Sulfate • Laureth-6 Carboxylic Acid Protein • Quaternium-79 Hydrolyzed • Babassuamidopropyl Betaine • Laureth-9 • Dimethicone Keratin • Behenamidopropyl Dimethyl- • Lauryl Betaine • Guar Hydroxypropyltrimo- • Quaternium-79 Hydrolyzed amine • Lauryl Glucoside nium Chloride Silk • Behenoyl PG-Trimonium • Lauryl Hydroxysultaine • Hydroxypropyl Guar • Sodium Lauroyl Glutamate Chloride • Lauryl Lactate Hydroxypropyltrimonium • Stearalkonium Chloride • Behenoyl PG-Trimonium Chlo- • Modified Oleamide DEA Chloride • Stearamidopropyl Dime- ride, Cetyl Alcohol • Oleamidopropyl Betaine • Isostearamidopropyl Eth- thylamine • Behentrimonium Chloride • Oleth-20, Ceteth-20 yldimonium Ethosulfate, • Sunflowerseedamidopro- • Capryl/Caprylic -
Oxidation of Isobutyraldehyde
Indlan Journal of Chemlstry Vol. 15A, August 1977, pp. 705-708 Kinetics & Mechanism of Cr(VI) Oxidation of Isobutyraldehyde A. A. BHALEKAR, R. SHANKER & G. V. BAKORE Department of Chemistry, University of Udaipur, Udaipur 313001 Received 16 August 1976; accepted 26 March 1977 Cr(VI) oxidation of isobutyraldehyde has been found to take place through the following mechanism: (i) 70% of isobutyraldehyde oxidation occurs via the hydrated form and (ii) 30% of isobutyraldebyde undergoes oxidation via enol intermediate. The reaction follows the rate law: ~d[Cr(VI)]/dt = k'kE[Aldehyde][H+J[HCrO,]/(kA+k'[H+][HCrO-])+k"Kh[Aldehyde][H+][HCrO&] where kh, k', k', kE and kA are equilibrium constant for hydration of aldehyde, rate of oxidation of enol, rate of oxidation of ketone, rate of enolization and the rate of ketonization, respectively. kE obtained from the oxidation of isobutyraldehyde by V(V) under identical conditions as used in chromic acid oxidation, is of the same order. ARNARD and Karayannis! while investigating Results and Discussion chromic acid oxidation of propionaldehyde B and t.-butyraldehyde made some interesting Stoichiometry and identification oj products - These observations. They found that propionaldehyde ~ere carried out in aq. solution keeping [Cr(VI)] reduced 170% of the expected amount of chromic In large excess over [isobutyraldehyde]. It was acid and that besides propionic acid, acetic acid found that 0·94 mole (2·8 equivalents) of C r(VI) was also produced while n-butyraldehyde consumed was consumed per mole of the aldehyde. Under 190% of the theoretical amount of chromic acid stoichiometric conditions, the excess Cr(VI) was and that both propionic acid and to a lesser extent reduced with Fe (II) ions and the solution steam- acetic acid were produced. -
BETADET® BETADET® Anionic-Based Formulations
BETADET® S-20 BETADET® SHR VERY MILD SURFACTANT GREAT FORMULATION STABILITY ENHANCED FOAM VOLUME IMPROVED THICKENING EFFECT SULTAINES: MILD AMPHOTERIC SURFACTANTS FOR PERSONAL CARE KAO SURFACTANTS TECHNOLOGY AT YOUR SERVICE BETADET® S-20 & BETADET® SHR Foam, Viscosity & Mildness enhancers CHARACTERISTICS BETADET® S-20 and BETADET® SHR are recom- pH’s thus allowing their use in cosmetics formulations mended as secondary surfactants for very mild were alkali (i.e. depilatories) or acid media are neces- and high foaming products, achieving higher foam sary. Both products are also very stable to hard water, BETADET® S-20 and BETADET® volumes than alkyl betaines or alkyl amidopropyl improving the behavior of some sensitive anionic MAIN FEATURES betaines. These products are easier to thicken surfactants under extreme conditions. Additionally, SHR are very mild co-surfactants when combined with SLES, thus reducing the BETADET® S-20 shows a highlighted ability to reduce • Vegetable origin for personal care formulations. amount of electrolytes needed to obtain a desired the freezing point of final formulations making them • Preservative-free viscosity compared to other amphoteric surfactants. more stable at low temperatures, which helps to ob- Hydroxysultaines are highly effective amphoteric • Biodegradable Hydroxysultaines show excellent stability at extreme tain clear stable final products. Surfactants that improve the performance of final • Compatible with anionic, non-ionic and cationic cosmetic products. They are extremely mild cosur- surfactants -
View of Bacterial Expression Systems for Heterologous 74
Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites Lang et al. Lang et al. Microbial Cell Factories 2014, 13:2 http://www.microbialcellfactories.com/content/13/1/2 Lang et al. Microbial Cell Factories 2014, 13:2 http://www.microbialcellfactories.com/content/13/1/2 RESEARCH Open Access Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites Karsten Lang, Jessica Zierow, Katja Buehler* and Andreas Schmid Abstract Background: Over the recent years the production of Ehrlich pathway derived chemicals was shown in a variety of hosts such as Escherichia coli, Corynebacterium glutamicum, and yeast. Exemplarily the production of isobutyric acid was demonstrated in Escherichia coli with remarkable titers and yields. However, these examples suffer from byproduct formation due to the fermentative growth mode of the respective organism. We aim at establishing a new aerobic, chassis for the synthesis of isobutyric acid and other interesting metabolites using Pseudomonas sp. strain VLB120, an obligate aerobe organism, as host strain. Results: The overexpression of kivd, coding for a 2-ketoacid decarboxylase from Lactococcus lactis in Ps. sp. strain VLB120 enabled for the production of isobutyric acid and isobutanol via the valine synthesis route (Ehrlich pathway). This indicates the existence of chromosomally encoded alcohol and aldehyde dehydrogenases catalyzing -
Biotransformation of Isobutyraldehyde to Isobutanol by an Engineered Escherichia Coli Strain
Journal of Archive of SID J Appl Biotechnol Rep. 2020 Sep;7(3):159-165 Applied Biotechnology doi 10.30491/JABR.2020.117885 Reports Original Article Biotransformation of Isobutyraldehyde to Isobutanol by an Engineered Escherichia coli Strain Mostafa Hosseini1, Morvarid Ebrahimi2, Ensieh Salehghamari3, Amir Salehi Najafabadi4, Bagher Yakhchali1* 1National Institute of Genetic Engineering and Biotechnology, Tehran, Iran 2Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran 3Department of Cell and Molecular Science, School of Biological Science, Kharazmi University, Tehran, Iran 4Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran Corresponding Author: Bagher Yakhchali, PhD, Professor, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran. Tel: +98-2144787391, Email: [email protected] Received October 20, 2019; Accepted December 8, 2019; Online Published June 13, 2020 Abstract Introduction: Biotransformation process has been used in various industries due to its ability to produce valuable chemicals and address environmental concerns. Propylene hydroformylation is a process in which n-butyraldehyde and isobutyraldehyde are produced. N-butyraldehyde is a high valuable chemical with many industrial applications, while isobutyraldehyde produced as a by-product is an environmental pollutant. This study offers a biotechnological approach for conversion of isobutyraldehyde into a high-value substance. An engineered strain of Escherichia coli was developed by genomic insertion of alcohol-dehydrogenase gene (adhA) from Lactococcus lactis which can convert isobutyraldehyde into isobutanol. Materials and Methods: The adhA gene was engineered to substitute some of its amino acids to result in a more efficient enzyme. -
Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m. -
Product Catalog
Product Catalog Classic Surfactants Service and Quality Brought Together Classic Distributing has been selling surfactants for over 30 years! We have expanded our relationship with multiple toll manufacturers. This allows us to control pricing, quality, and consistency under our own brand. Now all of the high quality surfactants are made to our specifications to insure performance in the market place. We will continue to offer all of the services you have grown to expect from Classic Distributing including formulation knowledge and proprietary blend formulation. We also have capabilities with natural and non alcohol sulfate surfactant technologies that we have added in response to market demand. If you have special formulating requirements, just ask! Cosmetic Products AMIDES INCI DESCRIPTION Classic CE Cocamide DEA Classic KD Cocamide DEA Classic LSM Lauramide DEA (liquid) Classic CME Cocamide MEA (flake) Classic SD Soyamide DEA Classic B-MIPA Cocamide MIPA/Cocamidopropyl Betaine Classic DIPA Cocamide DIPA ALKYL ETHER SULFATES INCI DESCRIPTION Classic ES-2K Sodium Laureth Sulfate Classic ES-60 Sodium Laureth Sulfate Classic ES-70 Sodium Laureth Sulfate (2 mole) ALKYL SULFATES INCI DESCRIPTION Classic ALS Ammonium Lauryl Sulfate Classic TLS TEA-Lauryl Sulfate Classic SLS Sodium Lauryl Sulfate Classic SLN-95 Sodium Lauryl Sulfate Crystals AMINE OXIDES INCI DESCRIPTION Classic CAW Cocamidopropylamine Oxide Classic LO Lauramine Oxide AMPHOTERICS INCI DESCRIPTION Classic DCA Disodium Coco Amphodiacetate BETAINES INCI DESCRIPTION Classic CAS -
Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
SAFETY DATA SHEET Isobutyraldehyde Section 1. Identification GHS product identifier : Isobutyraldehyde Chemical name : isobutyraldehyde Other means of : Propanal, 2-methyl- identification Product type : Liquid. Product use : Synthetic/Analytical chemistry. Synonym : Propanal, 2-methyl- SDS # : 001225 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE LIQUIDS - Category 2 substance or mixture EYE IRRITATION - Category 2A AQUATIC HAZARD (ACUTE) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May form explosive mixtures with air. Highly flammable liquid and vapor. Causes serious eye irritation. Harmful to aquatic life. Precautionary statements General : Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Prevention : Wear protective gloves. Wear eye or face protection. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use explosion- proof electrical, ventilating, lighting and all material-handling equipment. Use only non- sparking tools. Take precautionary measures against static discharge. Keep container tightly closed. Avoid release to the environment. Wash hands thoroughly after handling. Response : IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. -
Coconut Oil Diethanolamine Condensate
COCONUT OIL DIETHANOLAMINE CONDENSATE 1. Exposure Data 1.1.2 Structural and molecular formulae and relative molecular mass 1.1 Chemical and physical data O CH2CH2OH Coconut oil diethanolamine condensate is CH3 (CH2)n CH2 C N a mixture of diethanolamides of the fatty acids that constitute coconut oil, which is composed CH2CH2OH of approximately 48.2% lauric acid (12:0), 18% myristic acid (14:0), 8.5% palmitic acid (16:0), 8% n = 5, 7, 9, 11, 13, 15 caprylic acid (8:0), 7% capric acid (10:0), 6% oleic acid (18:1, n-9), 2.3% stearic acid (18:0) and 2% C(7+n)H(15+2n)NO3 linoleic acid (18:2, n-6) (NTP, 2001). Relative molecular mass: range, 231–371 1.1.1 Nomenclature 1.1.3 Chemical and physical properties of the Chem. Abstr. Serv. Reg. No.: 68603-42-9 pure substance Deleted Chem. Abstr. Serv. Reg. Nos: 8036 Description: Clear, amber-coloured liquid 48-4; 8040-31-1; 8040-33-3; 12751-06-3; with a faint coconut odour (CTFA, 1986) 53028-62-9; 56448-72-7; 56832-66-7; 63091 Boiling-point: 169–275 °C 31-6; 66984-58-5; 67785-10-8; 67785-14-2; Melting-point: 23–35 °C (CTFA, 1986) 71343-51-6; 71343-71-0; 83652-14-6; 87714 Density: 0.99 g/cm3 at 20 °C (IUCLID, 18-9; 90651-47-1; 118104-13-5; 153189-69-6; 2000) 186615-78-1 (ChemID plus) Solubility: Miscible with water at 20 °C; Chem. Abstr. Name: Amides, coco, produces an alkali in aqueous solution N,N-bis(hydroxyethyl) (CTFA, 1986) Synonyms: N,N-Bis(hydroxyethyl)coco Octanol/water partition coefficient (P): amides; N,N-bis(hydroxyethyl)coco fatty log P, 3.52 (IUCLID, 2000) acid amides; cocamide DEA; -
Carbon Dioxide - Wikipedia
5/20/2020 Carbon dioxide - Wikipedia Carbon dioxide Carbon dioxide (chemical formula CO2) is a colorless gas with Carbon dioxide a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (412 ppm) by volume, having risen from pre-industrial levels of 280 ppm.[8] Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations, but at high concentrations, it has a sharp and acidic odor.[1] At such Names concentrations it generates the taste of soda water in the Other names [9] mouth. Carbonic acid gas As the source of available carbon in the carbon cycle, atmospheric Carbonic anhydride carbon dioxide is the primary carbon source for life on Earth and Carbonic oxide its concentration in Earth's pre-industrial atmosphere since late Carbon oxide in the Precambrian has been regulated by photosynthetic organisms and geological phenomena. Plants, algae and Carbon(IV) oxide cyanobacteria use light energy to photosynthesize carbohydrate Dry ice (solid phase) from carbon dioxide and water, with oxygen produced as a waste Identifiers product.[10] CAS Number 124-38-9 (http://ww w.commonchemistr CO2 is produced by all aerobic organisms when they metabolize carbohydrates and lipids to produce energy by respiration.[11] It is y.org/ChemicalDeta returned to water via the gills of fish and to the air via the lungs of il.aspx?ref=124-38- air-breathing land animals, including humans. -
Alternatives to Cocamide DEA California's Office of Environmental Health Hazard Assessment (OEHHA) Has Listed Cocamide DEA (CAS No
Alternatives to Cocamide DEA California's Office of Environmental Health Hazard Assessment (OEHHA) has listed Cocamide DEA (CAS No. 68603-42-9) on Proposition 65. For those looking to reformulate, Stepan is providing the following performance comparison and alternative surfactant recommendations to NINOL® 40-CO (1:1 Cocamide DEA) and NINOL® 11-CM (2:1 Cocamide DEA) for use in liquid dish detergents, all-purpose cleaners, degreasers, and vehicle care detergents. Stepan has a broad amphoteric product line and the technical expertise in hard surface care to assist our customers with product recommendation and reformulation. The recommended surfactants noted below take into consideration performance, handling, typical lead time, and estimated market price. If you require further assistance, please contact your local Stepan sales representative or Stepan U.S. Technical Service at [email protected] or (800) 745-7837. LIQUID DISH DETERGENTS (LDL) For an LDL economy formulation containing Linear Alkylbenzene Sulfonate (LAS) and Sodium Laureth Sulfate (SLES), the following surfactants showed equivalent or improved foam mileage and equivalent foam volume compared to NINOL® 40-CO on an equal actives basis. Recommendations Mixer Foam: LAS/SLES Economy AMMONYX® LMDO (Lauramidopropylamine Oxide) 160 AMPHOSOL® CG-50 (Cocamidopropyl Betaine) 150 AMMONYX® CDO SPECIAL (Cocamidopropylamine Oxide) 140 Shake Foam: LAS/SLES Economy 130 Soil D 500 120 Shell 400 110 Soil 300 100 90 200 Normalized Normalized Foam Mileage 80 100 Foam Volume (mL) 0 40-CO LMDO CG-50 CDO SPECIAL For an LDL premium formulation containing Sodium Lauryl Sulfate (SLS) and Sodium Laureth Sulfate (SLES), the following surfactants showed equivalent or improved foam mileage and equivalent foam volume compared to NINOL® 40-CO on an equal actives basis.