Phylogenetic Relationships Among the Leiurus Abdullahbayrami (Scorpiones: Buthidae) Populations in Turkey Inferred from Mitochondrial DNA Sequence Data
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Rediscovery of the Holotype of Leiurus Berdmorei Blyth, 1853 (Sauria: Gekkonidae)
J. South Asian nat. Hist., ISSN 1022-0828. January, 1998. Vol.3, No. 1, pp. 51-52,1 fig. © Wildlife Heritage Trust of Sri Lanka, 95 Cotta Road, Colombo 8, Sri Lanka. SHORT COMMUNICATION Rediscovery of the holotype of Leiurus berdmorei Blyth, 1853 (Sauria: Gekkonidae) Indraneil Das* and Basudeb Dattagupta** The gekkonid Leiurus berdmorei was described by Blyth (1853: 646) from "Mergui" (in Myanmar), and named for its collector, Captain Thomas Mathew Berdmore (1811-1859). By the time the taxon was synonymised by Boulenger (1885) under Hemidactylus bowringii (Gray, 1845), a decision followed by most recent reviewers, including Wermuth (1965) and Kluge (1993), it had already been referred to the genus Doryura by Theobald (1868: 29) and Hemidactylus (Doryura) by Stoliczka (1872: 100) (who redescribed and illustrated the taxon obviously with additional material), and by Blanford (1876: 637). Smith (1935: 99) reported that the holotype of Leiurus berdmorei was lost. The reptile collection of the Zoological Survey of India (ZSI; see Roonwal, 1963; Sewell, 1932 for, historical sketches of the institution), which has most of the types described by Edward Blyth (1810-1873), a former curator of the zoo logical museum of the Asiatic Society of Bengal at Calcutta, is an important repository of Asian zoological types. A specimen of Hemidactylus bowringii was discovered in the collection of the ZSI with two labels prepared by Mahendranath Acharji, then Assistant Zoologist, ZSI, on 13 May, 1935. One referred to the material as the type of Hemidactylus (Doryura) berdmorei Stoliczka, with the locality of collection given as "Mergui", and Capt. Berdmore as col lector. -
Notes on Phyllodactylus Palmeus (Squamata; Gekkonidae); a Case Of
Captive & Field Herpetology Volume 3 Issue 1 2019 Notes on Phyllodactylus palmeus (Squamata; Gekkonidae); A Case of Diurnal Refuge Co-inhabitancy with Centruroides gracilis (Scorpiones: Buthidae) on Utila Island, Honduras. Tom Brown1 & Cristina Arrivillaga1 1Kanahau Utila Research and Conservation Facility, Isla de Utila, Islas de la Bahía, Honduras Introduction House Gecko (Hemidactylus frenatus) (Wilson and Cruz Diaz, 1993: McCranie et al., 2005). The Honduran Leaf-toed Palm Gecko Over seventeen years following the (Phyllodactylus palmeus) is a medium-sized Hemidactylus invasion of Utila (Kohler, 2001), (maximum male SVL = 82 mm, maximum our current observations spanning from 2016 female SVL = 73 mm) species endemic to -2018 support those of McCranie & Hedges Utila, Roatan and the Cayos Cochinos (2013) in that P. palmeus is now primarily Acceptedarchipelago (McCranie and Hedges, 2013); Manuscript restricted to undisturbed forested areas, and islands which constitute part of the Bay Island that H. frenatus is now unequivocally the most group on the Caribbean coast of Honduras. The commonly observed gecko species across species is not currently evaluated by the IUCN Utila. We report that H. frenatus has subjugated Redlist, though Johnson et al (2015) calculated all habitat types on Utila Island, having a an Environmental Vulnerability Score (EVS) of practically all encompassing distribution 16 out of 20 for this species, placing P. occupying urban and agricultural areas, palmeus in the lower portion of the high hardwood, swamp, mangrove and coastal vulnerability category. To date, little forest habitats and even areas of neo-tropical information has been published on the natural savannah (T. Brown pers. observ). On the other historyC&F of P. -
A Redescription and Family Placement of Uintascorpio Perry, 1995 from the Parachute Creek Member Of
ARTÍCULO: A REDESCRIPTION AND FAMILY PLACEMENT OF UINTASCORPIO PERRY, 1995 FROM THE PARACHUTE CREEK MEMBER OF THE GREEN RIVER FORMATION (MIDDLE EOCENE) OF COLORADO, USA (SCORPIONES: BUTHIDAE) Jorge A. Santiago-Blay, Michael E. Soleglad & Victor Fet Abstract: The monotypic genus Uintascorpio Perry, 1995 from the Parachute Creek Member of ARTÍCULO: the Uinta Basin in the Green River Formation, Colorado, USA (Middle Eocene; ap- A redescription and family proximate age 48 Ma) is redescribed and placed in the family Buthidae (parvorder placement of Uintascorpio Perry, Buthida). The placement of this fossil in the Buthidae is supported by the diagnostic 1995 from the Parachute Creek carination of the pedipalp, metasoma, and other morphological details. This fossil is the Member of the Green River most ancient known record of the Buthidae in the New World and the oldest North Formation (Middle Eocene) of American scorpion fossil since Carboniferous. The existence of Uintascorpio halandra- Colorado, USA sorum reflects a long Cenozoic history of buthid evolution in North America. (Scorpiones: Buthidae) Key words: Scorpiones, Buthidae, Uintascorpio, Uintascorpio halandrasorum, Middle Eocene, morphology, Uinta Basin, Green River Formation, Colorado, USA. Jorge A. Santiago-Blay Department of Paleobiology, MRC-121 Redescripción y asignación familiar de Uintascorpio Perry, 1995 del and Department of Entomology, Eoceno Medio de Colorado, EEUU (Scorpiones: Buthidae) National Museum of Natural History, Resumen: Smithsonian Institution, El género monotípico Uintascorpio Perry, 1995 de Parachute Creek, en la Cuenca de P.O. Box 37012, Uinta, localizada en la Formación Green River, Colorado, Estados Unidos (Eoceno Washington, DC 20013-7012, USA Medio; edad aproximada 48 Ma) se redescribe y se asigna a la familia Buthidae (par- [email protected] vorder Buthida). -
Tityus Asthenes (Pocock, 1893)
Tityus asthenes (Pocock, 1893) by Michiel Cozijn Fig. 1:T.asthenes adult couple from Peru, top: ♀, down: ♂ M.A.C.Cozijn © 2008 What’s in a name? Tityus asthenes has no generally accepted common name, but they are sometimes sold under names like “Peruvian black scorpion” or as other species like Tityus metuendus (Pocock, 1897). Etymology: The name ‘asthenes’ in apposition to the generic name (Tityus) literally means weak or sick in ancient Greek, but it refers to ‘a thin or slender habitus’ in this case. M.A.C.Cozijn © 2011 All text and images. E-mail :[email protected] 1 Fig.2: part of South and Central America (modified) © Google maps 2011 Distribution Colombia, Costa Rica, Ecuador, Panama, Peru (1). Natural habitat T.asthenes is a common element of the tropical forests of Eastern Amazonia. T.asthenes can be found on tree trunks, but also on the forest floor under fallen logs and other debris, aswell as in the rootsystems of large trees. They are more common in rural areas. In Costa Rica the species is considered rare (Viquez, 1999). Most of the specimens in the hobby circuit originate from Peru, leading me to believe it is rather common in that country. Venom The LD50 value of the venom is 6.1 mg/ kg, and this value seems rather high when compared to T.serrulatus Lutz & Mello 1922 (0.43 Zlotkin et al, 1978) or T.bahiensis Perty 1833 (1.38, Hassan 1984). A study in Colombia revealed that systemic effects occurred mostly in children. Eighty patients where studied, of which fourteen sought medical help in a hospital. -
Checklist and Review of the Scorpion Fauna of Iraq (Arachnida: Scorpiones)
Arachnologische Mitteilungen / Arachnology Letters 61: 1-10 Karlsruhe, April 2021 Checklist and review of the scorpion fauna of Iraq (Arachnida: Scorpiones) Hamid Saeid Kachel, Azhar Mohammed Al-Khazali, Fenik Sherzad Hussen & Ersen Aydın Yağmur doi: 10.30963/aramit6101 Abstract. The knowledge of the scorpion fauna of Iraq and its geographical distribution is limited. Our review reveals the presence in this country of 19 species belonging to 13 genera and five families: Buthidae, Euscorpiidae, Hemiscorpiidae, Iuridae and Scorpionidae. Buthidae is, with nine genera and 15 species, the richest and the most diverse family in Iraq. Synonymies of several scorpion species were reviewed. Due to erroneous identifications and locality data, we exclude 18 species of scorpion from the list of the Iraqi fauna. The geographical distribution of Iraqi scorpions is discussed. Compsobuthus iraqensis Al-Azawii, 2018, syn. nov. is synonymized with C. matthiesseni (Birula, 1905). Keywords: Buthidae, distribution, diversity, Euscorpiidae, Hemiscorpiidae, Iuridae, Scorpionidae Zusammenfassung. Checkliste und Übersicht der Skorpione im Irak (Arachnida: Scorpiones). Die Kenntnisse über die Skorpionfau- na im Irak und deren geografische Verbreitung sind begrenzt. Die Checkliste umfasst 19 Arten aus 13 Gattungen und fünf Familien: Buthidae, Euscorpiidae, Hemiscorpiidae, Iuridae und Scorpionidae. Die Buthidae sind mit neun Gattungen und 15 Arten die artenreichste und diverseste Familie im Irak. Aufgrund von Fehlbestimmungen und falschen Ortsangaben werden 18 Skorpionarten für den Irak ge- strichen. Die geografische Verbreitung der Skorpionarten innerhalb des Landes wird diskutiert. Compsobuthus iraqensis Al-Azawii, 2018, syn. nov. wird mit C. matthiesseni (Birula, 1905) synonymisiert. The scorpion fauna of Iraq is one of the least known in the & Qi (2007), Sissom & Fet (1998), Fet et al. -
A Global Accounting of Medically Significant Scorpions
Toxicon 151 (2018) 137–155 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts T ∗ Micaiah J. Ward , Schyler A. Ellsworth1, Gunnar S. Nystrom1 Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA ARTICLE INFO ABSTRACT Keywords: Scorpions are an ancient and diverse venomous lineage, with over 2200 currently recognized species. Only a Scorpion small fraction of scorpion species are considered harmful to humans, but the often life-threatening symptoms Venom caused by a single sting are significant enough to recognize scorpionism as a global health problem. The con- Scorpionism tinued discovery and classification of new species has led to a steady increase in the number of both harmful and Scorpion envenomation harmless scorpion species. The purpose of this review is to update the global record of medically significant Scorpion distribution scorpion species, assigning each to a recognized sting class based on reported symptoms, and provide the major toxin classes identified in their venoms. We also aim to shed light on the harmless species that, although not a threat to human health, should still be considered medically relevant for their potential in therapeutic devel- opment. Included in our review is discussion of the many contributing factors that may cause error in epide- miological estimations and in the determination of medically significant scorpion species, and we provide suggestions for future scorpion research that will aid in overcoming these errors. 1. Introduction toxins (Possani et al., 1999; de la Vega and Possani, 2004; de la Vega et al., 2010; Quintero-Hernández et al., 2013). -
Exploring the Evolution and Terrestrialization of Scorpions (Arachnida: Scorpiones) with Rocks and Clocks
Howard, R., Edgecombe, G. D., Legg, D., Pisani, D., & Lozano- Fernandez, J. (2019). Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Organisms Diversity and Evolution, 19(1), 71-86. https://doi.org/10.1007/s13127- 019-00390-7 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s13127-019-00390-7 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at https://doi.org/10.1007/s13127-019-00390-7 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Organisms Diversity & Evolution (2019) 19:71–86 https://doi.org/10.1007/s13127-019-00390-7 REVIEW Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks Richard J. Howard1,2,3 & Gregory D. Edgecombe2 & David A. Legg4 & Davide Pisani3 & Jesus Lozano-Fernandez5,3 Received: 3 August 2018 /Accepted: 2 January 2019 /Published online: 6 February 2019 # The Author(s) 2019 Abstract Scorpions (Arachnida: Scorpiones Koch, 1837) are an ancient chelicerate arthropod lineage characterised by distinctive subdi- vision of the opisthosoma and venomous toxicity. The crown group is represented by over 2400 extant species, and unambiguous fossil representatives are known at least from the Cretaceous Period. -
Arachnologische Arachnology
Arachnologische Gesellschaft E u Arachnology 2015 o 24.-28.8.2015 Brno, p Czech Republic e www.european-arachnology.org a n Arachnologische Mitteilungen Arachnology Letters Heft / Volume 51 Karlsruhe, April 2016 ISSN 1018-4171 (Druck), 2199-7233 (Online) www.AraGes.de/aramit Arachnologische Mitteilungen veröffentlichen Arbeiten zur Faunistik, Ökologie und Taxonomie von Spinnentieren (außer Acari). Publi- ziert werden Artikel in Deutsch oder Englisch nach Begutachtung, online und gedruckt. Mitgliedschaft in der Arachnologischen Gesellschaft beinhaltet den Bezug der Hefte. Autoren zahlen keine Druckgebühren. Inhalte werden unter der freien internationalen Lizenz Creative Commons 4.0 veröffentlicht. Arachnology Logo: P. Jäger, K. Rehbinder Letters Publiziert von / Published by is a peer-reviewed, open-access, online and print, rapidly produced journal focusing on faunistics, ecology Arachnologische and taxonomy of Arachnida (excl. Acari). German and English manuscripts are equally welcome. Members Gesellschaft e.V. of Arachnologische Gesellschaft receive the printed issues. There are no page charges. URL: http://www.AraGes.de Arachnology Letters is licensed under a Creative Commons Attribution 4.0 International License. Autorenhinweise / Author guidelines www.AraGes.de/aramit/ Schriftleitung / Editors Theo Blick, Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/M. and Callistus, Gemeinschaft für Zoologische & Ökologische Untersuchungen, D-95503 Hummeltal; E-Mail: [email protected], [email protected] Sascha -
Geological History and Phylogeny of Chelicerata
Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while -
Molecular Cytogenetics of Androctonus Scorpions: an Oasis of Calm in the Turbulent Karyotype Evolution of the Diverse Family Buthidae
bs_bs_banner Biological Journal of the Linnean Society, 2015, 115, 69–76. With 2 figures Molecular cytogenetics of Androctonus scorpions: an oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae DAVID SADÍLEK1†, PETR NGUYEN2,3†, HALI˙L KOÇ4, FRANTIŠEK KOVARˇ ÍK1, ERSEN AYDIN YAG˘ MUR5 and FRANTIŠEK ŠTˇ ÁHLAVSKÝ1* 1Department of Zoology, Faculty of Science, Charles University in Prague, Vinicˇná 7, CZ-12844 Prague, Czech Republic 2Institute of Entomology, Biology Centre ASCR, Branišovská 31, 37005 Cˇ eské Budeˇjovice, Czech Republic 3Faculty of Science, University of South Bohemia in Cˇ eské Budeˇjovice, Branišovská 1760, 37005 Cˇ eské Budeˇjovice, Czech Republic 4Biology Department, Science and Art Faculty, Sinop University, Sinop, Turkey 5Celal Bayar University, Alas¸ehir Vocational School, Alas¸ehir, Manisa, Turkey Received 1 October 2014; revised 2 December 2014; accepted for publication 3 December 2014 Recent cytogenetic and genomic studies suggest that morphological and molecular evolution is decoupled in the basal arachnid order Scorpiones. Extraordinary karyotype variation has been observed particularly in the family Buthidae, which is unique among scorpions for its holokinetic chromosomes. We analyzed the karyotypes of four geographically distant species of the genus Androctonus Ehrenberg, 1828 (Androctonus australis, Androctonus bourdoni, Androctonus crassicauda, Androctonus maelfaiti) (Scorpiones: Buthidae) using both classic and molecu- lar cytogenetic methods. The mitotic complement of all species consisted of 2n = 24 elements. Fluorescence in situ hybridization with a fragment of the 18S ribosomal RNA gene, a cytogenetic marker well known for its mobility, identified a single interstitial rDNA locus on the largest chromosome pair in all species examined. Our findings thus support the evolutionary stasis of the Androctonus karyotype, which is discussed with respect to current hypotheses on chromosome evolution both within and beyond the family Buthidae. -
Part XXIV. Leiurus (Buthidae), with Description of Leiurus Gubanensis Sp
Scorpions of the Horn of Africa (Arachnida: Scorpiones). Part XXIV. Leiurus (Buthidae), with description of Leiurus gubanensis sp. n. František Kovařík & Graeme Lowe May 2020 — No. 309 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ TECHNICAL EDITOR: František Kovařík, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology).Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: https://mds.marshall.edu/euscorpius/ Archive of issues 1-270 see also at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: • Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) • Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/. -
Full-Text (PDF)
Vol. 6(1), pp. 21-28, January 2014 DOI: 10.5897/JMA2013.0286 ISSN 2141-2308 ©2014 Academic Journals Journal of Microbiology and Antimicrobials http://www.academicjournals.org/JMA Full Length Research Paper Investigation of the antimicrobial and hemolytic activity of venom of some Egyptian scorpion Wesam Salama* and Naglaa Geasa Zoology Department, Faculty of Science, Tanta University, Egypt. Accepted 16 January, 2014 Leuirus quinquestriatus, Androctonus amoreuxi and Androctonus australis are venomous scorpion in Egypt. Their venom is complex mixture of salts, neurotoxins, peptides and proteins which has therapeutic applications, and can rapidly kill a broad range of microbes. Estimations of total proteins of the venom indicated that L. quinquestriatus had the highest value than the others (10.64 ± 0.04). Hemolytic activity of human erythrocytes was detected and showed that all concentrations (20, 8 and 5 mg/ml) of tested scorpion species crude venom have hemolytic activity against human erythrocytes. The present study was conducted to evaluate the antimicrobial activity of the three Egyptian scorpion’s venom against four Gram-positive and negative bacterial strains (Bacillus cereus, Bacillus subtillis, Citrobacter freundi and Klibsella pneumonia) in addition to one fungus species Candida albicans. The results show that L. quinquestriatus venom has a significant antibacterial effect against B. subtillis and C. freundi. In contrast, A. amoreuxi and A. australis venoms do not have a noticeable effect on tested microbes. So, the aim of the present study was to investigate the antimicrobial activity of crude venom against Gram-negative, as well as Gram-positive bacteria, fungi and to evaluate the hemolytic activity of the three investigated species on human erythrocytes.