Bolitotherus Cornutus. B. Cornutus Is a Te­ 1984; Price Et Al., 1984)

Total Page:16

File Type:pdf, Size:1020Kb

Bolitotherus Cornutus. B. Cornutus Is a Te­ 1984; Price Et Al., 1984) Evo/utwn, 42(4), 1988, pp. 736-749 FIELD MEASUREMENTS OF NATURAL AND SEXUAL SELECTION IN THE FUNGUS BEETLE, BOLITOTHERUS CORNUTUS JEFFREY CONNER 1 Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 Abstract. -Selection on three phenotypic traits was estimated in a natural population of a fungus beetle, Bolitotherus cornutus. Lifetime fitness of a group of males in this population was estimated, and partitioned into five components: lifespan, attendance at the mating area, number of females courted, number of copulations attempted, and number of females inseminated. Three phenotypic characters were measured-elytral length, horn length, and weight; there were strong positive correlations among the three characters. Selection was estimated by regressing each component of fitness on the phenotypic traits. Of the three traits, only horn length was under significant direct selection. This selection was for longer horns and was due mainly to differences in lifespan and access to females. The positive selection on horn length combined with the positive correlations between horn length and the other two characters resulted in positive total selection on all three characters. Received November 10, 1986. Accepted February 5, 1988 An important goal of current evolution­ selection for an increase in the value of char­ ary biology is to study selection occurring acter x, then an individual with a high value in natural populations. Many studies have of x will tend to have high fitness. If char­ demonstrated selection in nature, but very acter y is positively correlated with char­ few of these studies have measured lifetime acter x, then that same individual will have fitness, separated direct selection acting on a high value of y, thus creating indirect se­ a character from indirect selection on cor­ lection for an increase in y. The total selec­ related characters, or identified selective tion acting on a character is the sum of direct agents (Endler, 1986). The first shortcoming and indirect selection. can only be overcome by long-term field Second, identifying selective agents can studies; in animals, lifetime reproductive be facilitated by dividing lifetime fitness into success of individuals has just begun to be biologically meaningful components (e.g., estimated (Clutton-Brock et al., 1982; lifespan, access to females, insemination Fincke, 1982; Banks and Thompson, 1985; success) that can be more easily linked to Hafemik and Garrison, 1986; Koenig and the agents responsible for fitness differences Albano, 1987). Two recent theoretical ad­ (e.g., predation, male competition, female vances make the second and third problems choice) (Arnold and Wade, 1984a; Koenig easier to resolve. and Albano, 1986). Thus, by estimating as First, the methods of Lande and Arnold many components of fitness as possible over (1983) allow one to estimate selection acting the lifetime of an organism and relating on several correlated traits simultaneously, variation in these components of fitness to separating direct from indirect selection. several different characters simultaneously, Direct selection for an increase in character the specific agents that cause direct selection value (i.e., magnitude of a quantitative on individual target characters can often be character) results from a positive relation­ identified. ship between that character and fitness, when In the study reported here, I estimated other correlated characters are held con­ direct and total selection on three pheno­ stant. A character under direct selection can typic traits during the adult lifetime of male be called the "target" of selection (Price, Bolitotherus cornutus. B. cornutus is a te­ 1984; Price et al., 1984). Indirect selection nebrionid beetle that lives throughout its can be explained as follows. If there is direct life cycle on polypore shelffungi (principally Ganoderma applanatum). Eggs are laid sin­ gly on the surface of the fungi, and larvae 1 Current address: Department of Entomology, Cor­ feed by tunneling through the interior (Liles, nell University, Ithaca, NY 14853. 1956). After pupation (about three months 736 NATURAL AND SEXUAL SELECTION IN A BEETLE 737 after oviposition), adults emerge and are ac­ mate (Conner, 1987). Thus, female coop­ tive at night on the surface of the fungi, eration is necessary for mating to occur, be­ spending the daylight hours behind bark or cause males cannot force entry. After a suc­ in holes in the fungi. Eggs are laid from late cessful mating, a male guards the female for May through August. Adults may emerge two to five hours; this distinct behavior is late in the summer from eggs laid in the a reliable indicator of successful mating and spring, but most larvae overwinter and spermatophore transfer (Conner, 1987). emerge as adults the next year (Liles, 1956). A large natural population of B. cornutus Adults can live for several years (Pace, 1967). near Ithaca, NY, was studied for two mating Individual beetles do not come out on the seasons (1984 and 1985). This species surface of the fungi (where virtually all mat­ proved to be an excellent subject for studies ings occur) every night; thus only a subset of selection, since all of the biologically rel­ of males are active on any given evening. evant components of adult male mating The remainder spend the night behind the success were measurable (see below). Since bark or in holes in the fungi. Males appar­ growth does not occur during the adult stage ently come out on the surface of the fungi of B. cornutus, there were no complications solely for mating, since they cannot feed on due to correlations between the characters the upper surface of the fungi and do noth­ measured and age. One potential problem ing on the surface other than mating and was that generations overlap in this species. aggressive behavior (pers. observ.). Male Cross-sectional (short-term) studies on pop­ B. cornutus possess pronotal horns, which ulations with overlapping generations that vary allometrically with body size (Brown are increasing or decreasing in size can lead and Siegfried, 1983). The horns are used in to erroneous estimates of the magnitude and aggressive encounters between males. Fe­ even the direction of selection (Travis and males lack horns and show little aggressive Heinrich, 1986). In the present study, how­ behavior. ever, fitness was measured over all or most Courtship begins when a male climbs onto of the adult lifespan, and the population size the back of a female. Females appear to was stable throughout the study (see below). have little control over which males court them. A male's courtship frequency is de­ MATERIALS AND METHODS termined at least in part by male competi­ Field Observations tion, since males often aggressively chase The study population of Bolitotherus cor­ each other away from fungi containing fe­ nutus was located on a dead tree with 15 males (pers. observ.). After ten minutes to living fungi (Ganoderma applanatum). Bee­ several hours of courtship, the male at­ tles were collected when they were first seen tempts to mate. The female has very little and taken to the laboratory for marking and control over this stage, since she is rarely measuring; every adult beetle in the popu­ able to prevent a courting male from at­ lation was marked. The lengths of the tempting to copulate. The number of at­ horns and elytra (wing covers) of all males tempts a male makes is determined by at in this population were measured (to ±0.2 least two factors: male competition (since mm) with an ocular grid on a stereo micro­ males disrupt the courtships of other males scope. All beetles were also weighed (to ±0.2 before the courting male can attempt to mg) with a Mettler® balance and given an mate) and, possibly, male choice (since some individual paint mark on the elytra (with courtships are abandoned by males without Testors ® white enamel). This treatment did an attempt [pers. observ.; Pace, 1967; Brown not seem to disturb the beetles, and 90% of et al., 1985]). marked beetles were observed at least once While females probably have little con­ after release. trol over which males attempt to copulate The population was first marked in late with them, they have complete control over July 1983. To estimate lifespans, the beetles which males successfully mate and transfer were censused from one to three times per a spermatophore. Females have a heavy night on a total of 190 nights. Censuses were plate at the abdominal tip that acts as a trap performed on 3 5 nights from 22 July to 21 door; it must be opened before a male can September 1983, 77 nights between 19 May 738 JEFFREY CONNER and 28 August 1984, 59 nights between 16 A total of 134 males were present during May and 27 August 1985, and 19 nights the 1984-1985 observation period; thus, the between 27 May and 28 July 1986. study cohort represents half of the beetles To estimate mating success, the popula­ present. The other 67 males were first ob­ tion was observed for approximately 1,000 served either before 25 September 1983 or hours on 136 nights throughout the 1984 after 6 June 1985. The direct-selection anal­ and 1985 mating seasons (the same nights yses were performed separately on the co­ on which censuses were conducted in those hort and on all 134 males; both sets of anal­ two years; see above). Since the summer of yses are presented here. The population size 1985 was colder than 1984 (mean nightly was stable from 1984 to 1985; of the 134 low temperature 10.9°C vs. 12.3°C, t = 2. l, total males, 94 were present in 1984 and 93 P < 0.025) and beetle activity was sharply in 1985, with 53 males present in both sea­ reduced at temperatures below 10°C (pers.
Recommended publications
  • Handbook 2007-2008
    FLORIDA STATE UNIVERSITY DEPARTMENT OF BIOLOGICAL SCIENCE UNDERGRADUATE HANDBOOK 2007 – 2008 0 THE DEPARTMENT OF BIOLOGICAL SCIENCE ADMINISTRATION The Department of Biological Science administration and faculty are housed in multiple buildings on the Florida State campus including Conradi Building, Biology Unit I, and the Biomedical Research Facility. Biological science faculty is also housed in the Institute of Molecular Biophysics and the Nuclear Research Building. The department consists of 50 faculty members; over 60 administrative, technical, and support staff; 100 graduate students; and 1,800 undergraduate majors. UNDERGRADUATE ADVISING FACULTY & STAFF Dr. Robert Reeves Dr. Joanna Carter Mr. Delmar Little Dr. D. Craig Filar Assoc.Chair, Undergrad Studies Academic Advisor Academic Advisor Academic Advisor 330 Conradi 205 Conradi 204 Conradi 204 Conradi [email protected] [email protected] [email protected] [email protected] (850) 644-2248 (850) 644-3099 (850) 644-9351 (850) 644-4781 ADMINISTRATIVE CONTACTS IN BIOLOGICAL SCIENCE Dr. Timothy S. Moerland Dr. Lloyd Epstein Chairman, Department of Biological Science Associate Chairman for Curriculum and Development 214 Conradi 239 BIO Unit I [email protected] [email protected] (850) 644-4424 (850) 644-4560 Dr. George Bates Dr. Walter Tschinkel Associate Chairman for Graduate Studies Director, Honors In The Major 202 Conradi 203 BIO Unit I [email protected] [email protected] (850) 644-3023 (850) 644-4489 Judy Bowers Dr. Ann Lumsden Graduate Academic Affairs Coordinator Director, Non-Major Biology Curriculum 202 Conradi 428 Carothers [email protected] [email protected] (850) 644-3023 (850) 644-6826 ADMINISTRATIVE CONTACTS IN RELATED PROGRAMS Ms.
    [Show full text]
  • Alternative Reproductive Tactics and Male-Dimorphism in the Horned Beetle Onthophagus Acuminatus (Coleoptera: Scarabaeidae)
    Behav Ecol Sociobiol (1997) 41: 335±341 Ó Springer-Verlag 1997 Douglas J. Emlen Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae) Received: 12 October 1996 / Accepted after revision: 8 August 1997 Abstract Adult dung beetles (Onthophagus acuminatus) Key words Alternative reproductive behavior á exhibit continuous variation in body size resulting from Male dimorphism á Male competition á dierential nutritional conditions experienced during Horned beetles á Onthophagus larval development. Males of this species have a pair of horns that protrude from the base of the head, and the lengths of these horns are bimodally distributed in nat- Introduction ural populations. Males growing larger than a threshold body size develop long horns, and males that do not Males in many animal species show variation in mor- achieve this size grow only rudimentary horns or no phology which is associated with dierences in behavior horns at all. Previous studies of other horned beetle (e.g., Austad 1984; Dominey 1984; Travis 1994). For species have shown that horned and hornless males often example, large and small males frequently utilize strik- have dierent types of reproductive behavior. Here I ingly dierent behaviors to encounter and mate with describe the mating behaviors of the two male morphs of females (Dominey 1980; Rubenstein 1980, 1987; How- O. acuminatus during encounters with females. Females ard 1984; Gross 1985; Kodric-Brown 1986; Arak 1988; excavate tunnels beneath dung, where they feed, mate Reynolds et al. 1993). Occasionally, variation in male and provision eggs. Large, horned males were found to morphology is dimorphic, and two or more distinct male guard entrances to tunnels containing females.
    [Show full text]
  • Natural Selection and Genetic Differentiation of Behaviour Between Parasitoids from Wild and Cultivated Habitats
    Heredity 83 (1999) 127±137 Received 20 November 1998, accepted 18 March 1999 Natural selection and genetic differentiation of behaviour between parasitoids from wild and cultivated habitats SASKYA VAN NOUHUYS* & SARA VIA Department of Entomology, Cornell University, Ithaca, New York 14853, U.S.A. Dierences in behaviour between individuals in populations living in dierent environments may result from evolution proceeding dierently in each population. The parasitoid wasp Cotesia glomerata (L.) (Hymenoptera: Braconidae) parasitizes early instar larvae of butter¯ies in the family Pieridae. In the study area the only host of C. glomerata is the Small Cabbage White Butter¯y [Pieris rapae (L.) (Lepidoptera: Pieridae)], which feeds on cruciferous host plants in a variety of habitats. The behaviour of this parasitoid wasp collected from two habitat types (wild and agricultural) was observed in a reciprocal transplant-style experiment in a greenhouse. Dierences in behaviour between wasp sources and test habitat type were analysed using canonical analysis in multivariate analysis of variance. Directional selection on parasitoid behaviour in each test habitat type was estimated by regressing the relative rate of parasitism (a measure of relative ®tness) on the behavioural character state. We found that there is genetic dierentiation of behaviour between wasps from wild and cultivated habitats and that a dierent set of behaviours is associated with short-term ®tness within models of each source habitat. There was no evidence of local adaptation of wasps to either habitat. Keywords: Cotesia glomerata, evolution, foraging behaviour, Pieris rapae, tritrophic interaction. Introduction have been shown to orientate upwind towards odour sources (see van Alphen & Vet, 1986; Turlings et al., Natural selection in dierent habitat types can lead to 1991; Benrey et al., 1997), and to orientate towards genetic divergence and local adaptation of populations.
    [Show full text]
  • Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, 3–36
    Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management Edited by V. A. DYCK J. HENDRICHS and A.S. ROBINSON Joint FAO/IAEA Programme Vienna, Austria A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4050-4 (HB) ISBN-13 978-1-4020-4050-4 (HB) ISBN-10 1-4020-4051-2 ( e-book) ISBN-13 978-1-4020-4051-1 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springeronline.com Printed on acid-free paper Photo Credits: A.S. Robinson and M.J.B. Vreysen provided some of the photos used on the front and back covers. All Rights Reserved © 2005 IAEA All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention on Intellectual Property as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non- commercial reproductions and translations are welcomed and considered on a case-by-case basis. Inquiries should be addressed to the Publishing Section, IAEA, Wagramer Strasse 5, A-1400 Vienna, Austria. Printed in the Netherlands. PREFACE It is a challenge to bring together all relevant information about the sterile insect technique (SIT) and its application in area-wide integrated pest management (AW- IPM) programmes; this book is the first attempt to do this in a thematic way.
    [Show full text]
  • Surprisingly Little Population Genetic Structure in a Fungus-Associated Beetle Despite Its Exploitation of Multiple Hosts"
    Swarthmore College Works Biology Faculty Works Biology 6-1-2013 Surprisingly Little Population Genetic Structure In A Fungus- Associated Beetle Despite Its Exploitation Of Multiple Hosts Corlett W. Wood , '08 H. M. Donald Vincent A. Formica Swarthmore College, [email protected] E. D. Brodie III Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons, and the Evolution Commons Let us know how access to these works benefits ouy Recommended Citation Corlett W. Wood , '08; H. M. Donald; Vincent A. Formica; and E. D. Brodie III. (2013). "Surprisingly Little Population Genetic Structure In A Fungus-Associated Beetle Despite Its Exploitation Of Multiple Hosts". Ecology And Evolution. Volume 3, Issue 6. 1484-1494. DOI: 10.1002/ece3.560 https://works.swarthmore.edu/fac-biology/110 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Surprisingly little population genetic structure in a fungus- associated beetle despite its exploitation of multiple hosts Corlett W. Wood1, Hannah M. Donald1, Vincent A. Formica2 & Edmund D. Brodie III1 1Mountain Lake Biological Station, Department of Biology, University of Virginia, Charlottesville, Virginia, 22904 2Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, 19801 Keywords Abstract Bolitotherus cornutus, community diversity, environmental heterogeneity, resource- In heterogeneous environments, landscape features directly affect the structure associated population structure. of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use Correspondence different resources (e.g., host plants) are genetically distinct, is a well-studied Corlett W.
    [Show full text]
  • MOVEMENT DYNAMICS of the FORKED FUNGUS BEETLE, Bolitotherus Cornutus PANZER (COLEOPTERA: TENEBRIONIDAE)
    MOVEMENT DYNAMICS OF THE FORKED FUNGUS BEETLE, Bolitotherus cornutus PANZER (COLEOPTERA: TENEBRIONIDAE) BRIAN M. STARZOMSKI Centre for Wildlife and Conservation Biology Acadia University, Wolfville, Nova Scotia Canada, BOP 1x0 B .Sc. Joint Advanced Major, Saint Francis Xavier University, 1996 Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science (Biology) Acadia University Fa11 Convocation 2000 O by BRIAN MARTIN STARZOMSKI 2000 I, Brian M. Starzomski, grant permission to the University Librarian at Acadia University to reproduce, loan, or distrubute copies of my thesis in microform, paper or electronic formats on a non-profit basis. I, however, retain the copyright in my thesis. Signature of Author Date Table of Contents List of tables ......................................................................................................................... v List of figures ................................................................................................................... ...vi List of boxes ........................................................................................................................ vi .. List of fodas.......................................................................... ... ................................ vu... Abstract ............... .., ...................................................................................................... .VU Acknowledgements ............................................................................................................
    [Show full text]
  • Integrating Development with Evolution: a Case Study with Beetle Horns
    University of Montana ScholarWorks at University of Montana Biological Sciences Faculty Publications Biological Sciences 5-2000 Integrating Development with Evolution: a Case Study with Beetle Horns Douglas J. Emlen University of Montana - Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Emlen, Douglas J., "Integrating Development with Evolution: a Case Study with Beetle Horns" (2000). Biological Sciences Faculty Publications. 91. https://scholarworks.umt.edu/biosci_pubs/91 This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Articles Integrating Development with Evolution: A Case Study with Beetle Horns DOUGLAS J. EMLEN apid advances in development and evolution are RESULTS FROM STUDIES OF THE Rproviding unprecedented opportunities for synthesis of these fields. Increasingly, evolutionary biologists are MECHANISMS OF HORN DEVELOPMENT using developmental mechanisms to explain large-scale evolutionary patterns (Alberch 1982, Bonner 1982, Oster SHED NEW LIGHT ON OUR et al. 1988, Hanken and Thorogood 1993, Akam et al. 1994, Raff 1996), including major transformations of UNDERSTANDING OF BEETLE HORN complex phenotypes (e.g., Goldschmidt 1940, Carroll 1994, Halder et al. 1995, Raff 1996) and the origin of EVOLUTION structures such as appendages (Coates 1994, Panganiban et al. 1997, Popadic et al. 1998) and eyes (Halder et al.
    [Show full text]
  • Appendix 5: Fauna Known to Occur on Fort Drum
    Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp.
    [Show full text]
  • A Checklist of the Darkling Beetles (Insecta: Coleoptera: Tenebrionidae)
    A Checklist of the Darkling Beetles (Insecta: Coleoptera: Tenebrionidae) of Maryland, with Notes on the Species Recorded from Plummers Island Through the 20th Century Author(s): Warren E. Steiner Jr. Source: Bulletin of the Biological Society of Washington, 15(1):133-140. Published By: Biological Society of Washington DOI: http://dx.doi.org/10.2988/0097-0298(2008)15[133:ACOTDB]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.2988/0097-0298%282008%2915%5B133%3AACOTDB %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. A Checklist of the Darkling Beetles (Insecta: Coleoptera: Tenebrionidae) of Maryland, with Notes on the Species Recorded from Plummers Island Through the 20th Century Warren E. Steiner, Jr. Department of Entomology, NHB-187, Smithsonian Institution, Washington, D.C. 20560, U.S.A., e-mail: [email protected] Abstract.—Species occurrences of darkling beetles (Coleoptera: Tenebrion- idae) are listed for the historically collected locality of Plummers Island, Maryland, on the Potomac River just upstream from Washington, D.C.
    [Show full text]
  • SICB 2020 Annual Meeting Abstracts
    The Society for Integrative and Comparative Biology with the American Microscopical Society The Crustacean Society SICB 2020 ABSTRACT BOOK January 3-7, 2020 JW Marriott Austin • Austin, TX Abstract Book SICB does not assume responsibility for any inconsistencies or errors in the abstracts for contributed paper and poster presentations. We regret any possible omissions, changes and/ or additions not reflected in this abstract book. SICB 2020 Annual Meeting Abstracts 127-1 AARON GOODMAN, AMG*; LAUREN ESPOSITO, LAE; 56-5 ABBOTT, EA*; DIXON, GB; MATZ, MV; University of California Academy of Sciences, California Academy of Sciences ; Texas; [email protected] [email protected] Disentangling coral stress and bleaching responses by comparing Spatial and Ecological Niche Partitioning in Congeneric Scorpions gene expression in symbiotic partners Species in the scorpion genus Centruroides Marx, 1890 (Scorpiones: Coral bleaching—the disruption of the symbiosis between a coral Buthidae) are good candidates to study ecological niche partitioning host and its endosymbiotic algae—is associated with environmental due to their habitat plasticity, widespread geographic distribution, stressors. However, the molecular processes are not well understood, and presence of cryptic species. Currently, three species belonging to and no studies have disentangled the transcriptional bleaching three subgroups of Centruroides are distributed along the Isthmus of response from the stress response. In order to characterize general Tehuantepec in southern Mexico, presenting a rare opportunity to stress response, specific stress responses, and the bleaching response, study niche partitioning within a single genus. We examined the we isolated host and symbiont RNA from fragments of Acropora environmental, substrate, and habitat preferences of Centruroides millepora which were exposed to 5 different stress treatments.
    [Show full text]
  • A Study of the Life History of the Forked Fungus Beetle, Bolitotherus Cornutus (Panzer) (Coleoptera: Tenebrionidae)1
    A STUDY OF THE LIFE HISTORY OF THE FORKED FUNGUS BEETLE, BOLITOTHERUS CORNUTUS (PANZER) (COLEOPTERA: TENEBRIONIDAE)1 M. PFERRER LILES Department of Zoology and Entomology, The Ohio State University, Columbus 10 The forked fungus beetle, Bolitotherus cornutus (Panzer), is a common inhabitant of polyporoid fungi in forested areas, especially beech-maple, east of the Mississippi River. Although descriptions and brief life history notes concerning B. cornutus (also known as B. bifurcus) have appeared in the literature, no extended study of its development and habits has been published. This study was made by rearing the beetle in the laboratory and observing it in the field. Although some observations were made in Hocking County, Ohio, from February through May, 1954, the majority of the laboratory and field work was conducted in the vicinity of the University of Michigan Biological Station, Cheboygan County, Michigan, during the summers of 1953 and 1954. Over- wintering material was obtained from that area. METHODS Food for laboratory cultures of larvae was prepared by grinding dried, appar- ently uninfested conks of Fomes applanatus (Pers.) Gill, to the consistency of fine sawdust with a micro-pulverizer. This material was autoclaved to reduce mold, and stored in plastic bags. For larval development studies, a one-third inch layer of the ground fungus was placed on several layers of wet paper toweling in a stentor dish, and covered with a single layer of damp toweling. One freshly laid egg, removed from the host fungus, was placed on this toweling and the larva, on hatching, burrowed through it into the fungus material.
    [Show full text]
  • Morphological Correlates of a Combat Performance Trait in the Forked Fungus Beetle, Bolitotherus Cornutus
    Swarthmore College Works Biology Faculty Works Biology 8-15-2012 Morphological Correlates Of A Combat Performance Trait In The Forked Fungus Beetle, Bolitotherus Cornutus K. M. Benowitz E. D. Brodie III Vincent A. Formica Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons, and the Evolution Commons Let us know how access to these works benefits ouy Recommended Citation K. M. Benowitz, E. D. Brodie III, and Vincent A. Formica. (2012). "Morphological Correlates Of A Combat Performance Trait In The Forked Fungus Beetle, Bolitotherus Cornutus". PLOS ONE. Volume 7, Issue 8. DOI: 10.1371/journal.pone.0042738 https://works.swarthmore.edu/fac-biology/1 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Morphological Correlates of a Combat Performance Trait in the Forked Fungus Beetle, Bolitotherus cornutus Kyle M. Benowitz1, Edmund D. Brodie III1, Vincent A. Formica2* 1 Mountain Lake Biological Station, Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America, 2 Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America Abstract Combat traits are thought to have arisen due to intense male-male competition for access to females. While large and elaborate weapons used in attacking other males have often been the focus of sexual selection studies, defensive traits (both morphological and performance) have received less attention. However, if defensive traits help males restrict access to females, their role in the process of sexual selection could also be important.
    [Show full text]