Spider Distribution in Agroecosystems in Canterbury, New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Spider Distribution in Agroecosystems in Canterbury, New Zealand Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. SPIDER DISTRIBUTION IN AGROECOSYSTEMS IN CANTERBURY, NEW ZEALAND A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by A.R. G. McLachlan Lincoln University 2000 This thesis is dedicated to the memory of Ellen Annie Tricker 20.i.1922 - 22.ix.1996 Nana ... naturalist ... hardcase and Josephus Joannes Schepers 17.ii.1931 - 21.i.2000 friend page 11 I am glad I did it, partly because it was well worth it, and chiefly because I shall never have to do it again. Mark Twain Intriguing paradoxes define the spider persona as presently understood. The spider is food limited, yet does not compete for prey. Thus spiders do not consume enough prey to lower the prey availability substantially for other spiders. This suggests that spiders do not limit population densities of their prey. Furthermore, the foraging behavior of spiders and their life history characteristics lead to the prediction that spiders should not regulate prey populations, i.e. should not inflict pronounced density­ dependent mortality on their prey. Thus individual species of spiders should not be good biocontrol agents in agroecosystems. Indirect evidence, based on estimates of energy flow through the entire community, and direct evidence from field experiments contradict these expectations. However, experimental studies are too few in number to support firm generalizations about the role of spiders in limiting insect numbers. Results so far lead to an enigmatic portrait of the spider persona; its role is clear in some scenes, but only dimly perceived in other acts. Many scripts it follows are still obscure. David Wise, 1993. Spiders in ecological webs. Cambridge University Press. p. 262. page iii Abstract The spider assemblage from four shelterbelts and their adjacent grazed pastures in South Island, New Zealand was suction sampled from August 1994 to July 1995 and from March 1996 to March 1997. Spider density decreased rapidly with distance from the field margin (mean 2411m2) to 72.5/m2 at 2.5 m and 10.3/m2 at 5 m into the pasture. Fenced shelterbelts had 6.7 times more spiders and 3-10 more species than did the adjacent pasture. The most common pasture species was the European linyphiid Lepthyphantes tenuis (Blackwall) (37% of individuals) but, in shelterbelts, L. tenuis was equally common at 26% with an unidentified endemic theridiid species at 25%. Eleven shelterbelts were suction sampled in November 1995 and had spider 2 2 densities ranging from 621m to 369/m , and species richness ranging from 6 to 12 from a 1 m2 sample area at each site. Twenty-three species were recorded; three were introduced European linyphiids, the rest were native or endemic to New Zealand. Spider density was compared in three pasture types (cocksfoot and clovers, lucerne, and rye grass and clovers) both in open and agroforestry pasture (between rows of Pinus radiata trees). There were no differences between either open and agroforestry pasture, or the three pasture types. Spider density was not correlated with vegetation height or cover, although L. tenuis density was positively correlated with vegetation height characteristics in open pasture. Mowing ungrazed pasture plots reduced both spider density and species richness. Unmown plots had a fauna and density similar to those of shelterbelts, but mown plots had a density similar to those in grazed pasture. Field cage experiments in a lucerne (Medicago sativa L.) crop and in broad bean (Vicia/aba L.) plots to investigate the effects of spider density on pea aphid (Acyrthosiphon pisum (Harris)) abundance, showed that a large number of replicates (46 or more) were needed to detect differences in aphid abundance between spider density treatments. Aphid densities reached unnaturally high levels due to the sheltered cage conditions. The results are discussed in the context of the effects of pastoral agricultural practices in New Zealand on spider density, distribution, species composition, and potential in pest management. page iv Contents Abstract.................................................................................................................. iv Contents.................................................................................................................. v List of Tables .....................................................................................................viii List of Fig u res ...................................................................................................... x Chapter 1 : General introduction .............................................................. 1 Research objectives of this thesis ..................................................................... 6 Chapter 2 : Sampling methods .................................................................. 7 Introduction ........................................................................................................... 7 Methods .................................................................................................................. 7 Standard Vortis sample ................................................•..........•......................... 7 Efficiency test 1 .................................................................................................. 8 Efficiency test 2 ..................................................................................•............... 9 Effect of sample duration ......................................•.................•....................... 10 Results .................................................................................................................. 10 Efficiency Test 1 ............................................................................................... 10 Efficiency Test 2 ............................................................................................... 11 Effect of duration ............................................................................................. 12 Discussion ........................................................................................................... 13 Test 1 ................................................................................................................. 13 Test 2 ................................................................................................................. 14 Effect of duration ............................................................................................. 15 Conclusions ...................................................................................................... 16 Chapter 3 : Field-margin and pasture spider communities in Canterbury, New Zealand ................................................................ 17 Abstract ................................................................................................................ 17 Introduction ..................................................................•...................................... 17 Methods .........................................................•...................................................... 19 Spider densities in relation to distance from field margin .................•......... 19 Spider densities in four pastures and shelterbelts ........................................ 19 Site descriptions ............•.•................ ~ .......................•....•................•.............•... 19 Sampling procedures .......•............................................•.................................. 20 Results .................................................................................................................• 21 Spider densities in relation to distance from field margin ........................... 21 Spider densities in four pastures and shelterbelts ........................................ 23 Discussion ........................................................................................................... 27 Acknowledgments ............................................................................................. 29 Chapter 4 : Spider fauna and abundance in fenced-off shelterbelts ............................................................................................. 30 Introduction .................................................................•..............................•........ 30 Methods ................................................................................................................ 30 Site descriptions ............................................................................................... 30 Results .................................................................................................................. 32 Discussion ........................................................................................................... 32 Contents Chapter 5 : Spider faunal composition and densities in pasture in the Lincoln University Agroforestry Experiment
Recommended publications
  • Higher-Level Phylogenetics of Linyphiid Spiders (Araneae, Linyphiidae) Based on Morphological and Molecular Evidence
    Cladistics Cladistics 25 (2009) 231–262 10.1111/j.1096-0031.2009.00249.x Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence Miquel A. Arnedoa,*, Gustavo Hormigab and Nikolaj Scharff c aDepartament Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, E-8028 Barcelona, Spain; bDepartment of Biological Sciences, The George Washington University, Washington, DC 20052, USA; cDepartment of Entomology, Natural History Museum of Denmark, Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark Accepted 19 November 2008 Abstract This study infers the higher-level cladistic relationships of linyphiid spiders from five genes (mitochondrial CO1, 16S; nuclear 28S, 18S, histone H3) and morphological data. In total, the character matrix includes 47 taxa: 35 linyphiids representing the currently used subfamilies of Linyphiidae (Stemonyphantinae, Mynogleninae, Erigoninae, and Linyphiinae (Micronetini plus Linyphiini)) and 12 outgroup species representing nine araneoid families (Pimoidae, Theridiidae, Nesticidae, Synotaxidae, Cyatholipidae, Mysmenidae, Theridiosomatidae, Tetragnathidae, and Araneidae). The morphological characters include those used in recent studies of linyphiid phylogenetics, covering both genitalic and somatic morphology. Different sequence alignments and analytical methods produce different cladistic hypotheses. Lack of congruence among different analyses is, in part, due to the shifting placement of Labulla, Pityohyphantes,
    [Show full text]
  • Habitat Specificity, Dispersal and Burning Season: Recovery
    Biological Conservation 160 (2013) 140–149 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Habitat specificity, dispersal and burning season: Recovery indicators in New Zealand native grassland communities ⇑ Jagoba Malumbres-Olarte a, , Barbara I.P. Barratt b, Cor J. Vink c,d,1, Adrian M. Paterson a, Robert H. Cruickshank a, Colin M. Ferguson b, Diane M. Barton b a Department of Ecology, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand b AgResearch Invermay, Puddle Alley, Private Bag 50034, Mosgiel 9053, Dunedin, New Zealand c AgResearch Lincoln, Private Bag 4749, Christchurch 8140, New Zealand d Entomology Research Museum, Lincoln University, Lincoln 7647, Christchurch, New Zealand article info abstract Article history: Restoration programs for human-disturbed ecosystems rely on a good understanding of how recovery Received 3 October 2012 occurs. This requires elucidating the underlying succession process, which depends on species adapta- Received in revised form 27 December 2012 tions, their interactions, and the spatiotemporal characteristics of the disturbance. Using spiders, we Accepted 7 January 2013 aim to identify the drivers of succession after burning, commonly used in New Zealand native tussock Available online 28 February 2013 grasslands, test the hypothesis of post-burning dominance of generalists over specialists, and test the presumption that managed summer burns are more detrimental than spring burns. We established a Keywords: 7-year experiment, with spring and summer burn treatments and unburned control plots, and sampled Colonisers annually before and after the burning. We identified changes in spider assemblages and their drivers Habitat specificity Indicators using clustering and indicator value analyses, and we analysed the response of spider diversity and taxa Native grasslands through linear mixed-effect models.
    [Show full text]
  • Spider Biodiversity Patterns and Their Conservation in the Azorean
    Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae:
    [Show full text]
  • Programa De Doutoramento Em Biologia ”Dinâmica Das
    Universidade de Evora´ - Instituto de Investiga¸c~aoe Forma¸c~aoAvan¸cada Programa de Doutoramento em Biologia Tese de Doutoramento "Din^amicadas comunidades de grupos selecionados de artr´opodes terrestres nas ´areasemergentes da Barragem de Alqueva (Alentejo: Portugal) Rui Jorge Cegonho Raimundo Orientador(es) j Diogo Francisco Caeiro Figueiredo Paulo Alexandre Vieira Borges Evora´ 2020 Universidade de Evora´ - Instituto de Investiga¸c~aoe Forma¸c~aoAvan¸cada Programa de Doutoramento em Biologia Tese de Doutoramento "Din^amicadas comunidades de grupos selecionados de artr´opodes terrestres nas ´areasemergentes da Barragem de Alqueva (Alentejo: Portugal) Rui Jorge Cegonho Raimundo Orientador(es) j Diogo Francisco Caeiro Figueiredo Paulo Alexandre Vieira Borges Evora´ 2020 A tese de doutoramento foi objeto de aprecia¸c~aoe discuss~aop´ublicapelo seguinte j´urinomeado pelo Diretor do Instituto de Investiga¸c~aoe Forma¸c~ao Avan¸cada: Presidente j Luiz Carlos Gazarini (Universidade de Evora)´ Vogais j Am´aliaMaria Marques Espirid~aode Oliveira (Universidade de Evora)´ Artur Raposo Moniz Serrano (Universidade de Lisboa - Faculdade de Ci^encias) Fernando Manuel de Campos Trindade Rei (Universidade de Evora)´ M´arioRui Canelas Boieiro (Universidade dos A¸cores) Paulo Alexandre Vieira Borges (Universidade dos A¸cores) (Orientador) Pedro Segurado (Universidade T´ecnicade Lisboa - Instituto Superior de Agronomia) Evora´ 2020 IV Ilhas. Trago uma comigo in visível, um pedaço de matéria isolado e denso, que se deslocou numa catástrofe da idade média. Enquanto ilha, não carece de mar. Nem de nuvens passageiras. Enquanto fragmento, só outra catástrofe a devolveria ao corpo primitivo. Dora Neto V VI AGRADECIMENTOS Os momentos e decisões ao longo da vida tornaram-se pontos de inflexão que surgiram de um simples fascínio pelos invertebrados, reminiscência de infância passada na quinta dos avós maternos, para se tornar numa opção científica consubstanciada neste documento.
    [Show full text]
  • On the Australian Linyphiid Spider Alaxchelicera Ordinaria Butler, 1932 (Araneae)
    Zootaxa 3750 (2): 193–196 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3750.2.8 http://zoobank.org/urn:lsid:zoobank.org:pub:9515170F-60D0-43D3-A936-81E16EBEE6C3 On the Australian linyphiid spider Alaxchelicera ordinaria Butler, 1932 (Araneae) NIKOLAJ SCHARFF1 & GUSTAVO HORMIGA2 1Natural History Museum of Denmark, Zoological Museum and Center for Macroecology, Evolution and Climate, Universitetsparken 15, DK-2100 Copenhagen, Denmark. E-mail: [email protected] 2Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, USA. E-mail: [email protected] Very few studies have addressed the linyphiid fauna of Australia. Most of the existing taxonomic work on Australian linyphiids consists of isolated species descriptions (e.g., Rainbow 1912) or at most are based on small number of species also described outside a revisionary context (e.g., Wunderlich 1976) (but see van Helsdingen 1972 for a revision of the Australian species of the genera Laperousea Dalmas, 1917 and Laetesia Simon, 1908). Microctenonyx subitaneus (O. P.-Cambridge, 1875) is a Holarctic erigonine (Linyphiidae) which has been introduced in many parts of the world, including Australia (Brennan 2004). In this paper we report a new junior synonym of Microctenonyx subitaneus described by Butler (1932) under the name Alaxchelicera ordinaria Butler, 1932. In 1932 L.S.G. Butler, a Melbourne-based arachnologist, published a paper in which he described six new spider genera from Victoria and New South Wales, all of them monotypic. Three of these new genera (Microlinypheus, Plectochetos and Alaxchelicera) he placed in the family Linyphiidae, the remaining three (Platycephala, Eterosonycha and Perissopmeros) were placed in Zodariidae.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Conservation Status of New Zealand Araneae (Spiders), 2020
    2021 NEW ZEALAND THREAT CLASSIFICATION SERIES 34 Conservation status of New Zealand Araneae (spiders), 2020 Phil J. Sirvid, Cor J. Vink, Brian M. Fitzgerald, Mike D. Wakelin, Jeremy Rolfe and Pascale Michel Cover: A large sheetweb sider, Cambridgea foliata – Not Threatened. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 5 years. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications. The NZTCS database can be accessed at nztcs.org.nz. For all enquiries, email [email protected]. © Copyright August 2021, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–99–115291–6 (web PDF) This report was prepared for publication by Te Rōpū Ratonga Auaha, Te Papa Atawhai/Creative Services, Department of Conservation; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand Published by Department of Conservation Te Papa Atawhai, PO Box 10420, Wellington 6143, New Zealand. This work is licensed under the Creative Commons Attribution 4.0 International licence.
    [Show full text]
  • Spiders (Aranei) of Moist Meadows on the Mazovian Lowland
    POLISH ACADEMY OF SCIENCES • INSTITUTE OF ZOOLOGY MEMORABILIA ZOOLOGICA MEMORABILIA ZOOL. 43 37-60 1989 WOJCIECH STARĘGA SPIDERS (ARANEI) OF MOIST MEADOWS ON THE MAZOVIAN LOWLAND ABSTRACT The spider material from 4 localities of Arrhenatheretum medioeuropaeum and 2 comparative sites in Warsaw surroundings has been elaborated — 93 species in the epigeon and 77 species in the epiphyton (altogether 129). A typical character of epigeic araneofauna of Arrhenatheretum medioeuropaeum is the dominance of Pardosa palustris and Pachygnatha degeeri at a considerable percentage of Oedothorax fuscus, Erigone atra, E. dentipalpis, Pardosa pullata and P. prativaga. It has been proved that the life cycle of the most abundant and active species — P. palustris — affects mainly the periodical changes in dominance structure. Three species new to Poland have been discovered: Euophrys aperta, Agyneta decora and Pocadicnemis juncea; 2 species not included yet in the list of Polish fauna : Philodromus cespitum and Walckenaeeria alticeps and 2 species new to Mazovia: Agyneta cauta and Dismodicus bifrons and several species rarely caught in Poland. Apart from forests and arable lands, various types of meadows are the main component of the landscape of Polish Lowland. The ryegrass meadow ( Arrhena­ theretum medioeuropaeum) used both as a source of quality dry fodder and a pasture is one of the economically most important meadows. However, it covers rather small areas, because this association (result of man’s interference with natural succession of moist forests) grows on soils very good for cultivation and therefore more frequently used for this purpose. Although the meadows are easily available for investigations, their araneofauna has not been satisfactorily examined yet.
    [Show full text]
  • Nihonella Gen. Nov., a New Troglophilic Genus of Dwarf Spiders from Japan
    European Journal of Taxonomy 733: 1–18 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1215 www.europeanjournaloftaxonomy.eu 2021 · Ballarin F. & Yamasaki T. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:3675D40A-5DE0-49CE-9795-F4FCF13B17CB Nihonella gen. nov., a new troglophilic genus of dwarf spiders from Japan with a discussion on its phylogenetic position within the subfamily Erigoninae (Araneae, Linyphiidae) Francesco BALLARIN 1, * & Takeshi YAMASAKI 2 1 Systematic Zoology Laboratory, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, 192-0397, Tokyo, Japan. 1 Department of Zoology, Museo Civico di Storia Naturale di Verona, Lungadige Porta Vittoria 9, I-37129, Verona, Italy. 2 Institute of Nature and Environmental Sciences, University of Hyogo/Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda-shi, 669-1546, Hyogo, Japan. * Corresponding author: [email protected] 2 Email: [email protected] 1 https://orcid.org/0000-0003-1417-2519 2 https://orcid.org/0000-0002-2419-188X 1 urn:lsid:zoobank.org:author:54F6F9C7-0385-48D4-AB09-52692BD05B53 2 urn:lsid:zoobank.org:author:804886B5-C951-490C-95C4-D2CA7F4F94D7 Abstract. A new monospecifi c genus belonging to the family Linyphiidae Blackwell, 1859, Nihonella gen. nov., is described using an integrative taxonomic approach based on the species N. chika gen. et sp. nov. The new genus is endemic to Western Honshu, Japan, and it shows distinctive genitalic and somatic characters of other genera of the subfamily Erigoninae Emerton, 1882. Nihonella gen. nov.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Acta zoológica mexicana ISSN: 0065-1737 ISSN: 2448-8445 Instituto de Ecología A.C. Campuzano Granados, Emmanuel Franco; Ibarra Núñez, Guillermo; Gómez Rodríguez, José Francisco; Angulo Ordoñes, Gabriela Guadalupe Spiders (Arachnida: Araneae) of the tropical mountain cloud forest from El Triunfo Biosphere Reserve, Mexico Acta zoológica mexicana, vol. 35, e3502092, 2019 Instituto de Ecología A.C. DOI: 10.21829/azm.2019.3502092 Available in: http://www.redalyc.org/articulo.oa?id=57564044 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative e ISSN 2448-8445 (2019) Volumen 35, 1–19 elocation-id: e3502092 https://doi.org/10.21829/azm.2019.3502092 Artículo científico (Original paper) SPIDERS (ARACHNIDA: ARANEAE) OF THE TROPICAL MOUNTAIN CLOUD FOREST FROM EL TRIUNFO BIOSPHERE RESERVE, MEXICO ARAÑAS (ARACHNIDA: ARANEAE) DEL BOSQUE MESÓFILO DE MONTAÑA DE LA RESERVA DE LA BIOSFERA EL TRIUNFO, MÉXICO EMMANUEL FRANCO CAMPUZANO GRANADOS, GUILLERMO IBARRA NÚÑEZ*, JOSÉ FRANCISCO GÓMEZ RODRÍGUEZ, GABRIELA GUADALUPE ANGULO ORDOÑES El Colegio de la Frontera Sur, Unidad Tapachula, Carr. Antiguo Aeropuerto km. 2.5, Tapachula, Chiapas, C. P. 30700, México. <[email protected]>; <[email protected]>; <[email protected]>; <[email protected]> *Autor de correspondencia: <[email protected]> Recibido: 09/10/2018; aceptado: 16/07/2019; publicado en línea: 13/08/2019 Editor responsable: Arturo Bonet Ceballos Campuzano, E. F., Ibarra-Núñez, G., Gómez-Rodríguez, J. F., Angulo-Ordoñes, G. G.
    [Show full text]
  • Araneae, Linyphiidae) 109 Doi: 10.3897/Zookeys.703.13641 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 703:Callosa 109–128 gen. (2017) n., a new troglobitic genus from southwest China (Araneae, Linyphiidae) 109 doi: 10.3897/zookeys.703.13641 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Callosa gen. n., a new troglobitic genus from southwest China (Araneae, Linyphiidae) Qingyuan Zhao1,2, Shuqiang Li1,3 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2 Southeast Asia Biological Diver- sity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar 3 University of the Chinese Academy of Sciences, Beijing 100049, China Corresponding author: Shuqiang Li ([email protected]) Academic editor: Yuri Marusik | Received 12 May 2017 | Accepted 8 September 2017 | Published 28 September 2017 http://zoobank.org/0FF3A9EB-0AC1-45A8-8957-6D3AA945B5C8 Citation: Zhao Q, Li S (2017) Callosa gen. n., a new troglobitic genus from southwest China (Araneae, Linyphiidae). ZooKeys 703: 109–128. https://doi.org/10.3897/zookeys.703.13641 Abstract A new linyphiid genus Callosa gen. n., with two new species Callosa ciliata sp. n. (♂♀, type species) and Callosa baiseensis sp. n. (♂♀), from southwest China are described. Detailed description of genitalic char- acters and somatic features is provided, as well as light microscopy and SEM micrographs of each species. Callosa gen. n. was found in caves in Yunnan and Guangxi, and its copulatory organs are similar to those of Bathyphantes and Porrhomma, but differ greatly in details. The monophyly and placement of Callosa gen. n. are supported by the results of molecular analysis. Keywords Asia, cave spider, eyeless, Linyphiinae, morphology, photographs Introduction In previous collecting work conducted in caves in southwest China, a considerable number of troglobitic spider species belonging to Nesticidae, Leptonetidae, Telemidae, and Pholci- dae were found, but Linyphiidae were seldom encountered.
    [Show full text]
  • Motuora Native Species Restoration Plan
    Motuora Native Species Restoration Plan JUNE 2007 Motuora Native Species Restoration Plan By Robin Gardner-Gee, Sharen Graham, Richard Griffiths, Melinda Habgood, Shelley Heiss Dunlop and Helen Lindsay MOTUORA RESTORATION SOCIETY (INC) PO Box 100-132, NSMC, Auckland. Foreward Deciding to write a Restoration Plan for Motuora was a huge undertaking for a voluntary group, especially since most of those whose help we needed already had busy lives. The project required surveys on the island to establish what plants and animals were already there, followed by much discussion and the writing of the various sections. These sections then had to be edited to make a unified whole. This document could not have been written without the enthusiasm, knowledge, and commitment of a group of keen environmentalists who put in long hours to produce the Restoration Plan. The Motuora Restoration Society thanks the many people and organizations who have provided information, advice and comment on this document. Particular thanks to: Robin Gardner-Gee for her invertebrate knowledge Sharen Graham for her bird knowledge Richard Griffiths for pulling the document together to present an overview of the whole island ecology Melinda Habgood for her reptile knowledge Shelley Heiss-Dunlop for her plant knowledge Helen Lindsay for her input into the plant section and for co-ordinating the project especially in the beginning Te Ngahere Native Forest Management for supporting this project Department of Conservation staff for support and encouragement. The Motuora Restoration Society thanks you all for your generosity in sharing your learning and experience. Ray Lowe Chairman Motuora Restoration Society i ii Executive Summary Motuora is an 80 hectare island in the Hauraki Gulf to the south of Kawau Island.
    [Show full text]