The Study of Pt and Pd Based Anode Catalysis for Formic Acid Fuel Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Next Generation Anodes for Lithium-Ion Batteries
NEXT GENE ATION ANODES Next Ge eratio A odes for Lithium-Io Batteries Seco d Quarter Progress Report 2018 De is Dees, Poi t-of-Co tact Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-7349 E-mail: [email protected] Bria Cu i gham, DOE-EERE-VTO Tech ology Ma ager U.S. Department of Energy, Battery R&D Phone: (202) 287-5686 E-mail: [email protected] Table of Co te ts Overview (page 2) 1. Research Facilities Support (page 5) CAMP Facility Support Activities (ANL) (page 5) Characterization and Optimization of Si Slurry by Zeta Potential (ORNL) (page 7) Thermodynamic Understanding and Abuse Performance (SNL) (page 9) Hydro/Solvothermal Synthesis and Scale-up of Silicon and Silicon-containing Nanoparticles (ANL) (page 10) 2. Characterization, Diagnostics, and Analysis (page 12) Spectroscopic Characterization of Cycled Si Electrodes: Understanding the Role of Binder (ORNL) (page 12) EQCM Studies of Silicon Anodes (ANL) (page 13) Effect of silicate thickness on the electrochemical performance of silicate-coated silicon nanoparticles (ANL) (page 15) Calendar-life versus Cycle-life aging of Lithium-ion Cells with Silicon-Graphite Composite Electrodes – Electrolyte Analysis (ANL) (page 17) 3. Materials Advancements (page 18) Continued Study of Lithiation Effect of the Poly(Acrylic Acid) Binders on the Silicon Anode of Lithium-Ion Batteries (ANL) (page 19) Probe the relationships between functional electrolytes structure and SEI property for Si materials (LBNL) (page 21) Silicon Surface Modification Using -
Energy Analysis and Fabrication of Photovoltaic Thermal Water Electrolyzer and Ion Transport Through Modified Nanoporous Membranes
ENERGY ANALYSIS AND FABRICATION OF PHOTOVOLTAIC THERMAL WATER ELECTROLYZER AND ION TRANSPORT THROUGH MODIFIED NANOPOROUS MEMBRANES BY MUHAMMED ENES ORUC DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Hong Yang, Chair Professor Ralph G. Nuzzo, Director of Research Professor Paul J.A. Kenis Assistant Professor David W. Flaherty Abstract Hydrogen is an environmentally sustainable energy carrier that can be stored. It is not found naturally and therefore must be artificially produced. We can obtain hydrogen from renewable energy, such solar and wind energy, which is environmentally clean. One such a promising options is via electrolysis using electricity from a photovoltaic generator. In the first part of the dissertation we studied a microfluidic energy conversion device to produce hydrogen. Particularly, we proposed a new integrated system – a so-called “photovoltaic thermal water electrolyzer (PVTE)” – which consists of PV cells positioned on top of a planar micro-water electrolyzers in order to harness waste heat as a storable form of energy. The concept of PVTE has the outputs such as electricity and thermal storage, and also it provides hydrogen production efficiently. First, we provided a comprehensive analysis of the overall efficiency of the PVTE system. COMSOL Multiphysics software was used to predict the temperatures for the electrolyte and the PV cells operating at various temperatures and solar fluxes. Moreover, hourly and monthly efficiency analyses were accomplished for Phoenix, AZ in the year 2010. This new integrated approach is advantageous over conventional PV modules (Chapter 2). -
Elements of Electrochemistry
Page 1 of 8 Chem 201 Winter 2006 ELEM ENTS OF ELEC TROCHEMIS TRY I. Introduction A. A number of analytical techniques are based upon oxidation-reduction reactions. B. Examples of these techniques would include: 1. Determinations of Keq and oxidation-reduction midpoint potentials. 2. Determination of analytes by oxidation-reductions titrations. 3. Ion-specific electrodes (e.g., pH electrodes, etc.) 4. Gas-sensing probes. 5. Electrogravimetric analysis: oxidizing or reducing analytes to a known product and weighing the amount produced 6. Coulometric analysis: measuring the quantity of electrons required to reduce/oxidize an analyte II. Terminology A. Reduction: the gaining of electrons B. Oxidation: the loss of electrons C. Reducing agent (reductant): species that donates electrons to reduce another reagent. (The reducing agent get oxidized.) D. Oxidizing agent (oxidant): species that accepts electrons to oxidize another species. (The oxidizing agent gets reduced.) E. Oxidation-reduction reaction (redox reaction): a reaction in which electrons are transferred from one reactant to another. 1. For example, the reduction of cerium(IV) by iron(II): Ce4+ + Fe2+ ! Ce3+ + Fe3+ a. The reduction half-reaction is given by: Ce4+ + e- ! Ce3+ b. The oxidation half-reaction is given by: Fe2+ ! e- + Fe3+ 2. The half-reactions are the overall reaction broken down into oxidation and reduction steps. 3. Half-reactions cannot occur independently, but are used conceptually to simplify understanding and balancing the equations. III. Rules for Balancing Oxidation-Reduction Reactions A. Write out half-reaction "skeletons." Page 2 of 8 Chem 201 Winter 2006 + - B. Balance the half-reactions by adding H , OH or H2O as needed, maintaining electrical neutrality. -
All-Carbon Electrodes for Flexible Solar Cells
applied sciences Article All-Carbon Electrodes for Flexible Solar Cells Zexia Zhang 1,2,3 ID , Ruitao Lv 1,2,*, Yi Jia 4, Xin Gan 1,5 ID , Hongwei Zhu 1,2 and Feiyu Kang 1,5,* 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Z.Z.); [email protected] (X.G.); [email protected] (H.Z.) 2 Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3 School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830046, Xinjiang Province, China 4 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; [email protected] 5 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China * Correspondences: [email protected] (R.L.); [email protected] (F.K.) Received: 16 December 2017; Accepted: 20 January 2018; Published: 23 January 2018 Abstract: Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materials, including carbon nanotubes (CNTs) and graphene films synthesized by chemical vapor deposition (CVD). Flexible and semitransparent solar cells with all-carbon electrodes are successfully fabricated. -
A Review of Cathode and Anode Materials for Lithium-Ion Batteries
A Review of Cathode and Anode Materials for Lithium-Ion Batteries Yemeserach Mekonnen Aditya Sundararajan Arif I. Sarwat IEEE Student Member IEEE Student Member IEEE Member Department of Electrical & Department of Electrical & Department of Electrical & Computer Engineering Computer Engineering Computer Engineering Florida International University Florida International University Florida International University Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Lithium ion batteries are one of the most technologies such as plug-in HEVs. For greater application use, commercially sought after energy storages today. Their batteries are usually expensive and heavy. Li-ion and Li- based application widely spans from Electric Vehicle (EV) to portable batteries show promising advantages in creating smaller, devices. Their lightness and high energy density makes them lighter and cheaper battery storage for such high-end commercially viable. More research is being conducted to better applications [18]. As a result, these batteries are widely used in select the materials for the anode and cathode parts of Lithium (Li) ion cell. This paper presents a comprehensive review of the common consumer electronics and account for higher sale existing and potential developments in the materials used for the worldwide [2]. Lithium, as the most electropositive element making of the best cathodes, anodes and electrolytes for the Li- and the lightest metal, is a unique element for the design of ion batteries such that maximum efficiency can be tapped. higher density energy storage systems. The discovery of Observed challenges in selecting the right set of materials is also different inorganic compounds that react with alkali metals in a described in detail. -
Catalysis Science & Technology
Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 29 Catalysis Science & Technology Catalysis Science & Technology RSC Publishing MINIREVIEW Hydrogen Energy Future with Formic Acid: A Cite this: DOI: 10.1039/x0xx00000x Renewable Chemical Hydrogen Storage System ,a ,b ,c Manuscript Received 00th August 2015, Ashish Kumar Singh* , Suryabhan Singh* and Abhinav Kumar* Accepted 00th August 2015 DOI: 10.1039/x0xx00000x Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in laboratory (major by-product of some second generation biorefinery processes), an important www.rsc.org/ chemical due to its myriad applications in pharmaceuticals and industries. -
A Highly-Active, Stable and Low-Cost Platinum-Free Anode Catalyst Based on Runi for Hydroxide Exchange Membrane Fuel Cells
ARTICLE https://doi.org/10.1038/s41467-020-19413-5 OPEN A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells Yanrong Xue1,2,5, Lin Shi3,5, Xuerui Liu1,2, Jinjie Fang1,2, Xingdong Wang2, Brian P. Setzler3, Wei Zhu 2, ✉ ✉ Yushan Yan 1,3 & Zhongbin Zhuang 1,2,4 1234567890():,; The development of cost-effective hydroxide exchange membrane fuel cells is limited by the lack of high-performance and low-cost anode hydrogen oxidation reaction catalysts. Here we report a Pt-free catalyst Ru7Ni3/C, which exhibits excellent hydrogen oxidation reaction activity in both rotating disk electrode and membrane electrode assembly measurements. The hydrogen oxidation reaction mass activity and specific activity of Ru7Ni3/C, as measured in rotating disk experiments, is about 21 and 25 times that of Pt/C, and 3 and 5 times that of PtRu/C, respectively. The hydroxide exchange membrane fuel cell with Ru7Ni3/C anode can −2 −2 deliver a high peak power density of 2.03 W cm in H2/O2 and 1.23 W cm in H2/air (CO2-free) at 95 °C, surpassing that using PtRu/C anode catalyst, and good durability with less than 5% voltage loss over 100 h of operation. The weakened hydrogen binding of Ru by alloying with Ni and enhanced water adsorption by the presence of surface Ni oxides lead to the high hydrogen oxidation reaction activity of Ru7Ni3/C. By using the Ru7Ni3/C catalyst, the anode cost can be reduced by 85% of the current state-of-the-art PtRu/C, making it highly promising in economical hydroxide exchange membrane fuel cells. -
Curriculum Vitae
CURRICULUM VITA FOR SU HA EDUCATION Ph.D. in Chemical Engineering, University of Illinois, Urbana, IL Graduation: October, 2005 Advisor: Richard Masel Thesis: Direct Formic Acid Fuel Cells For Alternative Portable Power Sources M.S. in Chemical Engineering, University of Illinois, Urbana, IL Graduation: October 2003 Advisor: Richard Masel Thesis: Direct Formic Acid Polymer Electrolyte Membrane Fuel Cell B.S. in Chemical Engineering, North Carolina State University, Raleigh, NC Graduated with University Honors, June 2000; University Scholars Program Undergraduate Research Advisor: Saad Khan Research Project: Rheology of Protein Gels Synthesized Through a Combined Enzymatic and Heat Treatment Method PROFESSIONAL EXPERIENCE Associate Professor 2011-Present School of Chemical Engineering and Bioengineering Washington State University, Pullman, WA Assistant Professor 2005-2011 School of Chemical Engineering and Bioengineering Washington State University, Pullman, WA Graduate Research Assistant 2000-2005 Department of Chemical Engineering University of Illinois, Urbana, IL Undergraduate Research Assistant 1998-2000 Department of Chemical Engineering North Carolina State University, Raleigh, NC HONORS AND AWARDS 1. Outstanding Teaching Award, Chemical Engineering Department, Washington State University (2008). 2. 3rd Place, Dr. Bernard S. Baker Award for Fuel Cell Research, Fuel Cell Seminar and Fuel Cell Energy, Inc. (2005). 3. Nominated for the Glenn Award, ACS National Meeting (2005). 4. The 205th Meeting of the Electrochemical Society Travel Award, Energy Technology Division of the Electrochemical Society (2004). 5. Vodafone-U.S. Foundation Graduate Fellowship, University of Illinois (2003). 6. Finalist, The College Invention Competition 2003, The National Inventors Hall of Fame (2003). 7. Winner and Best of the Best, The 9th Annual Undergraduate Research Symposium, North Carolina State University (2000). -
Galvanic Cell Notation • Half-Cell Notation • Types of Electrodes • Cell
Galvanic Cell Notation ¾Inactive (inert) electrodes – not involved in the electrode half-reaction (inert solid conductors; • Half-cell notation serve as a contact between the – Different phases are separated by vertical lines solution and the external el. circuit) 3+ 2+ – Species in the same phase are separated by Example: Pt electrode in Fe /Fe soln. commas Fe3+ + e- → Fe2+ (as reduction) • Types of electrodes Notation: Fe3+, Fe2+Pt(s) ¾Active electrodes – involved in the electrode ¾Electrodes involving metals and their half-reaction (most metal electrodes) slightly soluble salts Example: Zn2+/Zn metal electrode Example: Ag/AgCl electrode Zn(s) → Zn2+ + 2e- (as oxidation) AgCl(s) + e- → Ag(s) + Cl- (as reduction) Notation: Zn(s)Zn2+ Notation: Cl-AgCl(s)Ag(s) ¾Electrodes involving gases – a gas is bubbled Example: A combination of the Zn(s)Zn2+ and over an inert electrode Fe3+, Fe2+Pt(s) half-cells leads to: Example: H2 gas over Pt electrode + - H2(g) → 2H + 2e (as oxidation) + Notation: Pt(s)H2(g)H • Cell notation – The anode half-cell is written on the left of the cathode half-cell Zn(s) → Zn2+ + 2e- (anode, oxidation) + – The electrodes appear on the far left (anode) and Fe3+ + e- → Fe2+ (×2) (cathode, reduction) far right (cathode) of the notation Zn(s) + 2Fe3+ → Zn2+ + 2Fe2+ – Salt bridges are represented by double vertical lines ⇒ Zn(s)Zn2+ || Fe3+, Fe2+Pt(s) 1 + Example: A combination of the Pt(s)H2(g)H Example: Write the cell reaction and the cell and Cl-AgCl(s)Ag(s) half-cells leads to: notation for a cell consisting of a graphite cathode - 2+ Note: The immersed in an acidic solution of MnO4 and Mn 4+ reactants in the and a graphite anode immersed in a solution of Sn 2+ overall reaction are and Sn . -
Nickel-Metal Hydride Batteries: a New Generation of Secondary Storage
8 Nickel-Metal Hydride Batteries: A New Generation of Secondary Storage Brian Niece Literature Seminar September 23, 1993 Interest in secondary batteries suitable for use in electric vehicles has increased rapidly in the last decade, as restrictions on vehicle emissions in urban areas have become more stringent. Combustion of fossil fuels in large power plants and storage of the energy electrochemically is more efficient than direct combustion in internal combustion engines [1]. In addition, storage batteries can be charged from alternative sources of electricity, such as solar and hydroelectric plants. In order to be acceptable for use in an electric vehicle, a battery must meet a number of important criteria. It must have a high energy density to make the travel distance between recharges as long as possible. It must be capable of high power output throughout its dis charge cycle to provide the high current necessary to operate a vehicle, and it must be capa ble of especially high peak power for acceleration. The battery must also have a long cycle life as well as a long physical lifetime. It must not undergo rapid self discharge on standing. Finally, it must not be prohibitively expensive. Theoretical energy densities of secondary battery systems in common use are listed in Table 1. Most of these systems are not practical for electric vehicle use for a variety of rea sons. The lead-sulfuric acid battery cannot be sealed, and cannot be produced with a suffi ciently high energy density. The sodium-sulfur cell is undesirable because it contains metal lic sodium and operates at 300°C. -
Preparation of Pt-Pd Catalysts for Direct Formic Acid Fuel Cell and Their Characteristics
Korean J. Chem. Eng., 24(3), 518-521 (2007) SHORT COMMUNICATION Preparation of Pt-Pd catalysts for direct formic acid fuel cell and their characteristics Ki Ho Kim, Jae-Keun Yu*, Hyo Song Lee**, Jae Ho Choi, Soon Young Noh, Soo Kyung Yoon***, Chang-Soo Lee, Taek-Sung Hwang and Young Woo Rhee† Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea *Korea Institute of Footwear and Leather Technology, Busan 614-100, Korea **Korea Environment and Resources Corperation, Incheon 404-170, Korea ***Netpreneur Co., Ltd., Seongnam 463-870, Korea (Received 28 August 2006 • accepted 14 November 2006) Abstract−Pt-Pd catalysts were prepared by using the spontaneous deposition method and their characteristics were analyzed in a direct formic acid fuel cell (DFAFC). Effects of calcination temperature and atmosphere on the cell per- formance were investigated. The calcination temperatures were 300, 400 and 500 oC and the calcination atmospheres were air and nitrogen. The fuel cell with the catalyst calcined at 400 oC showed the best cell performance of 58.8 mW/ cm2. The effect of calcination atmosphere on the overall performance of fuel cell was negligible. The fuel cell with catalyst calcined at air atmosphere showed high open circuit potential (OCP) of 0.812 V. Also the effects of anode and cathode catalyst loadings on the DFAFC performance using Pt-Pd (1 : 1) catalyst were investigated to optimize the catalyst loading. The catalyst loading had a significant effect on the fuel cell performance. Especially, the fuel cell with anode catalyst loading of 4 mg/cm2 and cathode catalyst loading of 5 mg/cm2 showed the best power density of 64.7 mW/ cm2 at current density of 200 mA/cm2. -
Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b.