Diversity, Distribution, and Drivers of Polychromophilus Infection In

Total Page:16

File Type:pdf, Size:1020Kb

Diversity, Distribution, and Drivers of Polychromophilus Infection In Diversity, distribution, and drivers of Polychromophilus infection in Malagasy bats Mercia Rasoanoro, Steven Goodman, Milijaona Randrianarivelojosia, Mbola Rakotondratsimba, Koussay Dellagi, Pablo Tortosa, Beza Ramasindrazana To cite this version: Mercia Rasoanoro, Steven Goodman, Milijaona Randrianarivelojosia, Mbola Rakotondratsimba, Kous- say Dellagi, et al.. Diversity, distribution, and drivers of Polychromophilus infection in Malagasy bats. Malaria Journal, BioMed Central, 2021, 20 (1), 10.1186/s12936-021-03696-0. hal-03200077 HAL Id: hal-03200077 https://hal.archives-ouvertes.fr/hal-03200077 Submitted on 16 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Rasoanoro et al. Malar J (2021) 20:157 https://doi.org/10.1186/s12936-021-03696-0 Malaria Journal RESEARCH Open Access Diversity, distribution, and drivers of Polychromophilus infection in Malagasy bats Mercia Rasoanoro1,2, Steven M. Goodman3,4, Milijaona Randrianarivelojosia1,5, Mbola Rakotondratsimba3, Koussay Dellagi6, Pablo Tortosa7 and Beza Ramasindrazana1,2* Abstract Background: Numerous studies have been undertaken to advance knowledge of apicomplexan parasites infecting vertebrates, including humans. Of these parasites, the genus Plasmodium has been most extensively studied because of the socio-economic and public health impacts of malaria. In non-human vertebrates, studies on malaria or malaria- like parasite groups have been conducted but information is far from complete. In Madagascar, recent studies on bat blood parasites indicate that three chiropteran families (Miniopteridae, Rhinonycteridae, and Vespertilionidae) are infected by the genus Polychromophilus with pronounced host specifcity: Miniopterus spp. (Miniopteridae) harbour Polychromophilus melanipherus and Myotis goudoti (Vespertilionidae) is infected by Polychromophilus murinus. How- ever, most of the individuals analysed in previous studies were sampled on the western and central portions of the island. The aims of this study are (1) to add new information on bat blood parasites in eastern Madagascar, and (2) to highlight biotic and abiotic variables driving prevalence across the island. Methods: Fieldworks were undertaken from 2014 to 2016 in four sites in the eastern portion of Madagascar to cap- ture bats and collect biological samples. Morphological and molecular techniques were used to identify the presence of haemosporidian parasites. Further, a MaxEnt modelling was undertaken using data from Polychromophilus mela- nipherus to identify variables infuencing the presence of this parasite Results: In total, 222 individual bats belonging to 17 species and seven families were analysed. Polychromophilus infections were identifed in two families: Miniopteridae and Vespertilionidae. Molecular data showed that Polychro- mophilus spp. parasitizing Malagasy bats form a monophyletic group composed of three distinct clades displaying marked host specifcity. In addition to P. melanipherus and P. murinus, hosted by Miniopterus spp. and Myotis goudoti, respectively, a novel Polychromophilus lineage was identifed from a single individual of Scotophilus robustus. Based on the present study and the literature, diferent biotic and abiotic factors are shown to infuence Polychromophilus infec- tion in bats, which are correlated based on MaxEnt modelling. Conclusions: The present study improves current knowledge on Polychromophilus blood parasites infecting Mala- gasy bats and confrms the existence of a novel Polychromophilus lineage in Scotophilus bats. Additional studies are needed to obtain additional material of this novel lineage to resolve its taxonomic relationship with known members of the genus. Further, the transmission mode of Polychromophilus in bats as well as its potential efect on bat popu- lations should be investigated to complement the results provided by MaxEnt modelling and eventually provide a comprehensive picture of the biology of host-parasite interactions. *Correspondence: [email protected] 2 Faculté des Sciences, Université d’Antananarivo, BP 706, Antananarivo 101, Antananarivo, Madagascar Full list of author information is available at the end of the article © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Rasoanoro et al. Malar J (2021) 20:157 Page 2 of 11 Keywords: Bats, Polychromophilus, Eastern, MaxEnt, Madagascar Background western dry zone [20, 21]. In terms of microorganisms In recent years, studies in diferent areas of the world hosted by Malagasy bats, diferent published studies have have elucidated the biology, ecology, diversity, and evo- demonstrated the circulation of viruses, bacteria, and lutionary history of apicomplexan parasites infecting metazoan parasites in these nocturnal mammals [22–25]. vertebrates [1–4]. Among these blood parasites, the Besides parasites of potential medical importance, bats genus Plasmodium has been the most intensively stud- from Madagascar also host malaria-related parasites, ied because of the millions of cases of malaria recorded namely the genus Polychromophilus (Haemosporida: per year, leading to more than 400,000 deaths annually in Plasmodiidae). Two species of Polychromophilus are cur- humans [5]. Plasmodium also infects diferent groups of rently documented in Malagasy bats: P. melanipherus vertebrates, such as reptiles, birds, and mammals, includ- infecting Miniopterus spp. and rarely Paratriaenops ing bats [6–8]. Te genus Plasmodium is now recognized furculus (Rhinonycteridae) and P. murinus parasitiz- to be polyphyletic and species diversifcation has led to ing Myotis goudoti (Vespertilionidae) [17, 26]. While 32 the evolution of diferent malaria or malaria-related para- species of bats occurring in the western and the central site lineages. For example, a recent study has highlighted portion of Madagascar were already screened for the that malarial parasites in general can be the subject of presence of Polychromophilus [16, 17, 26], knowledge on diferent host-switching events and shifts in life-history Polychromophilus in bats occurring in the eastern area is traits, which in turn insures their maintenance within not well-known and aspects on biotic and abiotic drivers hosts further facilitated by a simplifcation of their life of infection are far from complete. In the present study, cycle [8]. Polychromophilus diversity and distribution in bats living Based on previous observations, bats are also hosts of in the oriental portion of the island was explored and the diferent malaria-related parasites, including nine genera potential drivers of Polychromophilus infection across the of Haemoproteidae [8–15], but only four of these, includ- island predicted based on new and previous records. ing the genus Polychromophilus, are diagnosed based on molecular tools, which calls for an in-depth investigation Methods of haemosporidian parasites, including their epidemiol- Study sites ogy, host range, distribution, transmission, and patterns Fieldwork to sample bats was undertaken from 2014 to of speciation. 2016 at four main sites in eastern Madagascar: Kianjavato With respect to the genus Polychromophilus, which is Forest Station within the Paysage Harmonieux Protégé limited to bats, fve species have been formerly identi- du Corridor Forestier Ambositra-Vondrozo and sur- fed using morphological characters (Polychromophilus rounding areas; Réserve Naturelle Intégrale de Betam- adami, Polychromophilus deanei, Polychromophilus cor- pona; Parc National de Masoala; and Parc National de radetti, Polychromophilus melanipherus, and Polychro- Marojejy (Fig. 1, Additional fle 1: Table S1). A range of mophilus murinus) of which two have been molecularly habitat types were investigated, including day roosts in characterized (P. melanipherus and P. murinus) infect- buildings, degraded areas associated with croplands, and ing Miniopteridae [16, 17] and Vespertilionidae [17, 18], lowland moist evergreen forests. respectively. Further molecular research has revealed
Recommended publications
  • Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats
    RESEARCH ARTICLE Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats Beza Ramasindrazana1,2,3*, Koussay Dellagi1,2, Erwan Lagadec1,2, Milijaona Randrianarivelojosia4, Steven M. Goodman3,5, Pablo Tortosa1,2 1 Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France, 2 Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U 1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, 97490 Sainte Clotilde, Saint-Denis, La Réunion, France, 3 Association Vahatra, Antananarivo, Madagascar, 4 Institut Pasteur de Madagascar, Antananarivo, Madagascar, 5 The Field Museum of Natural History, Chicago, Illinois, United States of America * [email protected] OPEN ACCESS Abstract Citation: Ramasindrazana B, Dellagi K, Lagadec E, We investigated filarial infection in Malagasy bats to gain insights into the diversity of these Randrianarivelojosia M, Goodman SM, Tortosa P (2016) Diversity, Host Specialization, and Geographic parasites and explore the factors shaping their distribution. Samples were obtained from Structure of Filarial Nematodes Infecting Malagasy 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 Bats. PLoS ONE 11(1): e0145709. doi:10.1371/ species currently recognized on the island. Samples were screened for the presence of journal.pone.0145709 micro- and macro-parasites through both molecular and morphological approaches. Phylo- Editor: Karen E. Samonds, Northern Illinois genetic analyses showed that filarial diversity in Malagasy bats formed three main groups, University, UNITED STATES the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); Received: April 30, 2015 a second group infecting Pipistrellus cf.
    [Show full text]
  • Poxviruses in Bats … So What?
    Viruses 2014, 6, 1564-1577; doi:10.3390/v6041564 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Poxviruses in Bats … so What? Kate S. Baker 1,* and Pablo R. Murcia 2,* 1 Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK 2 University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK * Authors to whom correspondence should be addressed; E-Mails: [email protected] (K.S.B.); [email protected] (P.R.M.); Tel.: + 44-122-349-4761 (K.S.B.); +44-141-330-2196 (P.R.M.). Received: 28 January 2014; in revised form: 13 March 2014 / Accepted: 17 March 2014 / Published: 3 April 2014 Abstract: Poxviruses are important pathogens of man and numerous domestic and wild animal species. Cross species (including zoonotic) poxvirus infections can have drastic consequences for the recipient host. Bats are a diverse order of mammals known to carry lethal viral zoonoses such as Rabies, Hendra, Nipah, and SARS. Consequent targeted research is revealing bats to be infected with a rich diversity of novel viruses. Poxviruses were recently identified in bats and the settings in which they were found were dramatically different. Here, we review the natural history of poxviruses in bats and highlight the relationship of the viruses to each other and their context in the Poxviridae family. In addition to considering the zoonotic potential of these viruses, we reflect on the broader implications of these findings. Specifically, the potential to explore and exploit this newfound relationship to study coevolution and cross species transmission together with fundamental aspects of poxvirus host tropism as well as bat virology and immunology.
    [Show full text]
  • African Bat Conservation News
    Volume 35 African Bat Conservation News August 2014 ISSN 1812-1268 © ECJ Seamark, 2009 (AfricanBats) Above: A male Cape Serotine Bat (Neoromicia capensis) caught in the Chitabi area, Okavango Delta, Botswana. Inside this issue: Research and Conservation Activities Presence of paramyxo and coronaviruses in Limpopo caves, South Africa 2 Observations, Discussions and Updates Recent changes in African Bat Taxonomy (2013-2014). Part II 3 Voucher specimen details for Bakwo Fils et al. (2014) 4 African Chiroptera Report 2014 4 Scientific contributions Documented record of Triaenops menamena (Family Hipposideridae) in the Central Highlands of 6 Madagascar Download and subscribe to African Bat Conservation News published by AfricanBats at: www.africanbats.org The views and opinions expressed in articles are no necessarily those of the editor or publisher. Articles and news items appearing in African Bat Conservation News may be reprinted, provided the author’s and newsletter refer- ence are given. African Bat Conservation News August 2014 vol. 35 2 ISSN 1812-1268 Inside this issue Continued: Recent Literature Conferences 7 Published Books / Reports 7 Papers 7 Notice Board Conferences 13 Call for Contributions 13 Research and Conservation Activities Presence of paramyxo- and coronaviruses in Limpopo caves, South Africa By Carmen Fensham Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, 0001, Republic of South Africa. Correspondence: Prof. Wanda Markotter: [email protected] Carmen Fensham is a honours excrement are excised and used to isolate any viral RNA that student in the research group of may be present. The identity of the RNA is then determined Prof.
    [Show full text]
  • Reconstruction of the Evolutionary History of Haemosporida
    Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats
    RESEARCH ARTICLE Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats Beza Ramasindrazana1,2,3*, Koussay Dellagi1,2, Erwan Lagadec1,2, Milijaona Randrianarivelojosia4, Steven M. Goodman3,5, Pablo Tortosa1,2 1 Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France, 2 Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U 1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, 97490 Sainte Clotilde, Saint-Denis, La Réunion, France, 3 Association Vahatra, Antananarivo, Madagascar, 4 Institut Pasteur de Madagascar, Antananarivo, Madagascar, 5 The Field Museum of Natural History, Chicago, Illinois, United States of America * [email protected] OPEN ACCESS Abstract Citation: Ramasindrazana B, Dellagi K, Lagadec E, We investigated filarial infection in Malagasy bats to gain insights into the diversity of these Randrianarivelojosia M, Goodman SM, Tortosa P (2016) Diversity, Host Specialization, and Geographic parasites and explore the factors shaping their distribution. Samples were obtained from Structure of Filarial Nematodes Infecting Malagasy 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 Bats. PLoS ONE 11(1): e0145709. doi:10.1371/ species currently recognized on the island. Samples were screened for the presence of journal.pone.0145709 micro- and macro-parasites through both molecular and morphological approaches. Phylo- Editor: Karen E. Samonds, Northern Illinois genetic analyses showed that filarial diversity in Malagasy bats formed three main groups, University, UNITED STATES the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); Received: April 30, 2015 a second group infecting Pipistrellus cf.
    [Show full text]
  • Miniopterus Inflatus – Greater Long-Fingered Bat
    Miniopterus inflatus – Greater Long-fingered Bat Assessment Rationale This species occurs widely but sparsely in northeastern South Africa with an extent of occurrence of 64,798 km2. It is often sympatric at roost sites with other Miniopterus species, yet occurs in lower densities (typically only 5% the abundance of Miniopterus natalensis). Thus, it may be overlooked and occur more widely than thought. There are no major identified threats but as it occurs predominantly outside protected areas, disturbance to cave roosts (which makes it vulnerable to local extinctions) and agricultural transformation depleting its insect prey base may be causing localised declines. Ara Monadjem Additionally, although its current known distribution does not overlap with planned wind farm developments, the discovery of new subpopulations may reveal wind farms Regional Red List status (2016) Near Threatened as an emerging threat. This species would qualify as C2a(i)+D1*† Vulnerable C2a(i) but subpopulations are not significantly National Red List status (2004) Not Evaluated fragmented as they have relatively high wing-loading. As subpopulations typically comprise c. 50 individuals and Reasons for change Non-genuine: this species is known from only five localities, there is an New information inferred minimum population size of 250 individuals. Global Red List status (2016) Least Concern However, this is an underestimate and field surveys are required to identify as yet undetected subpopulations. TOPS listing (NEMBA) (2007) None Total mature population size is unlikely to be significantly CITES listing None more than 1,000 individuals. Thus, we list as Near Threatened C2a(i) and D1. Additionally, since it is almost Endemic No certainly a species complex and may thus be revealed to *Watch-list Data †Watch-list Threat be a South African or southern African endemic, we do not know the true range of the species.
    [Show full text]
  • Molecular Characterization of Polychromophilus Parasites of Scotophilus Kuhlii Bats in Thailand Cambridge.Org/Par
    Parasitology Molecular characterization of Polychromophilus parasites of Scotophilus kuhlii bats in Thailand cambridge.org/par Chatree Chumnandee1, Nawarat Pha-obnga1, Oskar Werb2, Kai Matuschewski2 and Juliane Schaer2 Research Article 1Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Cite this article: Chumnandee C, Pha-obnga Phanom 48000, Thailand and 2Department of Molecular Parasitology, Institute of Biology, Humboldt University, N, Werb O, Matuschewski K, Schaer J (2021). 10115 Berlin, Germany Molecular characterization of Polychromophilus parasites of Scotophilus kuhlii bats in Thailand. Parasitology 148, Abstract 495–499. https://doi.org/10.1017/ S003118202000222X Parasites of the haemosporidian genus Polychromophilus have exclusively been described in bats. These parasites belong to the diverse group of malaria parasites, and Polychromophilus Received: 21 July 2020 presents the only haemosporidian taxon that infects mammalian hosts in tropical as well as Revised: 29 October 2020 in temperate climate zones. This study provides the first information of Polychromophilus Accepted: 21 November 2020 parasites in the lesser Asiatic yellow bat (Scotophilus kuhlii) in Thailand, a common vesper- First published online: 1 December 2020 tilionid bat species distributed in South and Southeast Asia. The gametocyte blood stages of Key words: the parasites could not be assigned to a described morphospecies and molecular analysis Haemosporida; Polychromophilus; Scotophilus; revealed that these parasites might represent a distinct Polychromophilus species. In contrast Thailand to Plasmodium species, Polychromophilus parasites do not multiply in red blood cells Author for correspondence: and, thus, do not cause the clinical symptoms of malaria. Parasitological and molecular Juliane Schaer, investigation of haemosporidian parasites of wildlife, such as the neglected genus E-mail: [email protected] Polychromophilus, will contribute to a better understanding of the evolution of malaria parasites.
    [Show full text]
  • Myzopodidae: Chiroptera) from Western Madagascar
    ARTICLE IN PRESS www.elsevier.de/mambio Original investigation The description of a new species of Myzopoda (Myzopodidae: Chiroptera) from western Madagascar By S.M. Goodman, F. Rakotondraparany and A. Kofoky Field Museum of Natural History, Chicago, USA and WWF, Antananarivo, De´partement de Biologie Animale, Universite´ d’Antananarivo, Antananarivo, Madagasikara Voakajy, Antananarivo, Madagascar Receipt of Ms. 6.2.2006 Acceptance of Ms. 2.8.2006 Abstract A new species of Myzopoda (Myzopodidae), an endemic family to Madagascar that was previously considered to be monospecific, is described. This new species, M. schliemanni, occurs in the dry western forests of the island and is notably different in pelage coloration, external measurements and cranial characters from M. aurita, the previously described species, from the humid eastern forests. Aspects of the biogeography of Myzopoda and its apparent close association with the plant Ravenala madagascariensis (Family Strelitziaceae) are discussed in light of possible speciation mechanisms that gave rise to eastern and western species. r 2006 Deutsche Gesellschaft fu¨r Sa¨ugetierkunde. Published by Elsevier GmbH. All rights reserved. Key words: Myzopoda, Madagascar, new species, biogeography Introduction Recent research on the mammal fauna of speciation molecular studies have been very Madagascar has and continues to reveal informative to resolve questions of species remarkable discoveries. A considerable num- limits (e.g., Olson et al. 2004; Yoder et al. ber of new small mammal and primate 2005). The bat fauna of the island is no species have been described in recent years exception – until a decade ago these animals (Goodman et al. 2003), and numerous remained largely under studied and ongoing other mammals, known to taxonomists, surveys and taxonomic work have revealed await formal description.
    [Show full text]
  • 3. Family Vespertilionidae
    Acta Palaeontologica Polonica Vol. 32, No. 3-4 pp. 207-325; pl. 11-12 Warszawa, 1987 BRONISEAW W. WOLOSZYN PLIOCENE AND PLEISTOCENE BATS OF POLAND WOEOSZYN, B. W. Pliocene and Pleistocene bats of Poland. Acta Palaeont. Polonica, 32, 3-4, 207-325, 194W. The fwil remains of Pliocene and Pleistocene bats from central and southern Poland have been examined, belonging to three families: Rhinolophidae, Miniopte- ridae and Vespertilionidae. In the material examined, 15 species of bats have been found, six of which being new: Rhlnolophus kowalskif Topal, R. wenzensis sp. n., R. cf. macrorhtnus Topal, R. hanakt sp. n. R. cf., Variabilis Topal, R. neglectus Heller, Rhtnolophus sp. (mehelyil) (Rhinolophjdae); Miniopterus approximatus sp. n. (Miniopteridae); Eptesicus kowalskii sp. n., E. mossoczyi sp. n., E. cf. sero- tinus (Schreber), E. nilssont (Keyserling et Blasius), Barbastella cf. schadlert Wettstein-Westersheim, Plecotus rabederi sp. n., P. cf. abeli Wettstein-Westers- heim (Vespertilionidae). The material comes from then localities. The Pliocene faunas showed a high share of thermophilous species of the families Rhinolophidae and Miniopteridae. The deterioration of the climate towards the close of the Pliocene brought about a decfine in thermophilous forms. The faunas of the middle Pleistocene show a conlplete absence of thermophilous species, while the share of forest and boreal species increaser. It has been shown that from the early Pliocene onwards, changes which appear to be evolutionary trends have continued to take place in skull structure. Some of these trends were analysed, and they were found to consist mainly in the reduction of the splanchnocranium: shortening of the palate and of the premolar toothrows (both in the maxilla and the mandible).
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Ungulate Malaria Parasites Thomas J
    www.nature.com/scientificreports OPEN Ungulate malaria parasites Thomas J. Templeton1,2,*, Masahito Asada1,*, Montakan Jiratanh3, Sohta A. Ishikawa4,5, Sonthaya Tiawsirisup6, Thillaiampalam Sivakumar7, Boniface Namangala8, Mika Takeda1, Kingdao Mohkaew3, Supawan Ngamjituea3, Noboru Inoue7, Chihiro Sugimoto9, Yuji Inagaki5,10, Yasuhiko Suzuki9, Naoaki Yokoyama7, Morakot Kaewthamasorn11 & Osamu Kaneko1 Received: 14 December 2015 Accepted: 02 March 2016 Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In Published: 21 March 2016 order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found thatPlasmodium is readily detectable from water buffalo in these countries, indicating that buffaloPlasmodium is distributed in a wider region than India, which is the only area in which buffaloPlasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium.
    [Show full text]