Landslide Tsunami

Total Page:16

File Type:pdf, Size:1020Kb

Landslide Tsunami 1 Landslide Tsunami Steven N. Ward Institute of Geophysics and Planetary Physics University of California at Santa Cruz Santa Cruz, CA 95064 USA Abstract In the creation of “surprise tsunami”, submarine landslides head the suspect list. Moreover, improving technologies for seafloor mapping continue to sway perceptions on the number and size of surprises that may lay in wait offshore. At best, an entirely new distribution and mag- nitude of tsunami hazards has yet to be fully appreciated. At worst, landslides may pose seri- ous tsunami hazard to coastlines worldwide, including those regarded as immune. To raise the proper degree of awareness, without needless alarm, the potential and frequency of landslide tsunami have to be assessed quantitatively. This assessment requires gaining a solid under- standing of tsunami generation by landslides, and undertaking a census of the locations and extent of historical and potential submarine slides. This paper begins the process by offering models of landslide tsunami production, propagation and shoaling; and by exercising the the- ory on several real and hypothetical landslides offshore Hawaii, Norway and the United States eastern seaboard. I finish by broaching a line of attack for the hazard assessment by building on previous work that computed probabilistic tsunami hazard from asteroid impacts. 1. Introduction far larger than expected given the earthquake size. In contemplating the great number and im- Earthquakes generate most tsunami. Rightly so, mense extent of seabed failures known to have tsunami research has concentrated on the hazards frequented recent geological history, the biggest posed by seismic sources. The past decade how- surprise just may arrive without any precursory ever, has witnessed mounting evidence of tsu- seismic warning at all -- a tsunami sprung from a nami parented by submarine landslides. In fact, spontaneous submarine landslide. submarine landslides have become prime sus- pects in the creation of “surprise tsunami” from The geography of earthquakes only casually small or distant earthquakes. As exemplified by resembles the geography of submarine landslides. the wave that devastated New Guinea's north Tsunami excitation mechanisms between earth- coast in 1998 (Tappin, et. al., 1999; Geist, 2000), quakes and landslides differ substantially too. surprise tsunami can initiate far outside of the Accordingly, an entirely new distribution and epicentral area of an associated earthquake, or be magnitude of tsunami hazards has yet to be fully V1.8 11/20/00 Accepted for Publication, Journal of Geophysical Research. Ward: Landslide Tsunami 2 appreciated. Landslides may pose perceptible amplitude to wavelength is much less than one, tsunami hazards to areas regarded as immune – but it does not otherwise restrict tsunami wave- the Gulf of Mexico, the North Sea, or the eastern length. In particular, I do not make a long seaboard of the United States. Many of these ar- wave/shallow water assumption. eas, unaccustomed to earthquakes and earthquake tsunami, lie on flat and passive continental mar- Linear wave theory may not hold in every gins. A 5-meter sea wave striking there would situation, but in the application here, the assump- over-run far more territory than a similar wave tion of linearity presents far more advantages than hitting a rugged shore, such as California's north draw-backs. Foremost among the advantages is coast. superposition. Superposition means that complex tsunami waveforms can be spectrally decom- To raise a proper degree of awareness, without posed, independently propagated, and then recon- needless alarm, the potential and frequency of structed. Superposition also means that complex landslide tsunami must be assessed quantitatively. landslide sources can be synthesized from simple To make this assessment, geophysicists must first ones. For all but monster landslides, linear theory garner an understanding of tsunami generation by breaks down only during the final stage of tsu- landslides equal to what they know about tsunami nami shoaling and inundation when the wave generation by earthquakes. Second, geologists height exceeds the water depth (Synolakis, 1987). and oceanographers must undertake a census of Taking waves the last mile to the beach does re- the locations and sizes of historical and potential quire full hydrodynamic calculation; however, if submarine landslides, and estimate their occur- one is willing to stand off a bit in water no shal- rence rates. Setting the stage for a quantitative lower than the height of the incoming waves, then hazard analysis, this paper begins to tackle step linear theory should work fine. If nothing else, #1 above by offering elementary models of land- linear theory fixes a reference to compare predic- slide tsunami production, propagation and shoal- tions from various non-linear approaches. ing; and by exercising the theory on several real and hypothetical cases. In classical theory, the phase c(w), and group u(w) velocity of surface gravity waves on a flat 2. Tsunami characteristics under linear ocean of uniform depth h are theory. gh tanh[k( )h] c( ) = (1) The tsunami computed in this article derive k( )h from classical theory. Classical tsunami theory and envisions a rigid seafloor overlain by an incom- é 1 k( )h ù u( ) = c( ) + (2) pressible, homogeneous, and non-viscous ocean ëê 2 sinh[2k( )h]úû subjected to a constant gravitational field. Fur- thermore, I confine attention to linear theory. Here, g is the acceleration of gravity (9.8 m/s2) Linear theory presumes that the ratio of wave and k(w) is the wavenumber associated with a sea Ward: Landslide Tsunami 3 wave of frequency w. Wavenumber connects to the uplift. Tsunami trains (4a) are dominated by wavelength l (w) as l (w)=2p/k(w). Wavenumber wavenumbers in the span where F(k) is greatest. also satisfies the dispersion relation The peak of F(k) corresponds to the characteristic dimension of the uplift. Usually, large- 2 = gk( )tanh[k( )h] (3) dimensioned landslides produce longer wave- length, hence lower frequency tsunami than For surface gravity waves spanning 1 to 50,000 s small-dimensioned sources. period, Figure 1 plots c(w), u(w), and l (w). These quantities vary widely, both as a function of b) The 1/cosh(kh) term low-pass filters the ocean depth and wave period. source spectrum F(k). (1/cosh(kh)® 1 when kh® 0, and 1/cosh(kh)® 0 when kh®¥ , so the 3. Excitation of Tsunami by Sea Floor up- filter favors long waves.) Because of the low-pass lift filter effect of the ocean layer, only wavelengths of the uplift source that exceed three times the Suppose that the seafloor at points r0 uplift in- ocean depth (i.e. kh=2ph/l <»2) contribute much bot stantaneously at time t (r0) by amount u z (r0). to a tsunami. Under classical tsunami theory in a uniform ocean of depth h, this bottom disturbance stimu- c) The exponential term in (4a) contains all of lates surface tsunami waveforms (vertical com- the propagation information including travel time, ponent) at observation point r=xxˆ +yyˆ and time t geometrical spreading, and frequency dispersion. of (Ward, 2000) By rearranging equations (4a,b) as a Fourier- ei[ k· r- (k)t] u surf (r,t) = Re dk F(k) Bessel pair, vertical tsunami motions at r can also z ò 2 k 4 cosh(kh) be written as with (4a,b) - iw(k)t ¥ - i[ k· r0 - (k) ( r0 )] ¥ k dk e F(k) = dr ubot (r , (r ))e usurf (r,t)=Re J (kr)einq F (k) ò 0 z 0 0 z ò0 2pcosh(kh) å n n r0 n=-¥ with (5) 2 In (4), k=|k|, w (k) = gktanh(kh), dk=dk dk , bot i(w(k)t (r0 )- nq0 ) x y Fn (k) = òdr0 uz (r0) Jn (kr0 ) e dr0=dx0dy0, and the integrals cover all wavenum- r 0 ber space and locations r0 where the seafloor bot disturbance u z (r0)¹ 0. Here, q and q0 mark azimuth of the points r and Equation (4a) has three identifiable pieces: r0 from the xˆ axis, and the Jn(x) are cylindrical Bessel functions. Although (4) and (5) return a) The F(k) term is the wavenumber spectrum identical wavefields, for certain simply distrib- of the seafloor uplift. This number relates to the uted uplift sources (e.g. point dislocation models amplitude, spatial, and temporal distribution of of earthquakes), (5) might be easier to evaluate Ward: Landslide Tsunami 4 than (4). For instance, for radially symmetric up- W/2 L(t) lifts with t (r )=0, all of the terms in the sum save - iky y0 - i[k - (k)/v ]x 0 F(k) =u dy e dx e x r 0 (7) 0 ò 0 ò 0 F0(k) vanish, and (5) becomes -W/2 0 ¥ surf k dk cos[ (k)t] u (r,t) = J (kr)F (k) with kx = k · xˆ and ky = k · yˆ . The tsunami z ò0 2 cosh(kh) 0 0 waves from a simple slide at observation point r and time t are Fundamental formulas (4) and (5) presume in- stantaneous seafloor uplift at each point. This u L(t)W usurf (r,t)= 0 does not mean that landslides modeled by these z 4p2 i(k·r-w (k)t)- iX(k) formulas happen all at once. The function t (r0) e e sinX(k) sinY(k) ´ Re dk (8) that maps the spatial evolution of the slide is un- ò cosh(kh) X(k) Y(k) k restricted. Actually, the distinction between in- where stantaneous uplift and uplift over several, or sev- eral tens of seconds is not a big issue. Dominant kL(t) kW X(k) = kˆ · xˆ - c(k)/v ; Y(k) = kˆ · yˆ tsunami waves produced from landslides even in 2 ( r ) 2 ( ) fairly shallow water have periods exceeding 100 seconds.
Recommended publications
  • Propagation of the Storegga Tsunami Into Ice-Free Lakes Along the Southern Shores of the Barents Sea
    Propagation of the Storegga tsunami into ice-free lakes along the southern shores of the Barents Sea Anders Romundset a,* - [email protected] Stein Bondevik a,b – [email protected] a Department of Geology, University of Tromsø, Dramsvegen 201, NO-9037 Tromsø, Norway b Sogn og Fjordane University College, Postboks 133, NO-6851 Sogndal, Norway * Correspondence to: Anders Romundset, Department of Geology, University of Tromsø, Dramsvegen 201, NO-9037 Tromsø, Norway. Telephone: (47) 77 64 62 06, E-mail: [email protected] Abstract There is clear evidence that the Storegga tsunami, triggered by the giant Storegga slide offshore western Norway 8100-8200 years ago, propagated into the Barents Sea. Cores from five coastal lakes along the coast of Finnmark in northern Norway reveal major erosion and deposition from the inundation of the tsunami. The deposits rest on a distinct erosional unconformity and consist of graded sand layers and re-deposited organic remains. Some of the organic remains are rip-up clasts of lake mud, peat and soil and suggest strong erosion of the lake floor and neighbouring land. In this part of the Arctic coastal lakes are usually covered by > 1 m of solid lake ice in the winter season. The significant erosion and deposition of rip-up clasts indicate that the lakes were ice free and that the ground was probably not frozen. We suggest that the Storegga slide and tsunami event happened sometime in the summer season; between April and October. Minimum run-up has been reconstructed to 3-4 m. KEYWORDS: Storegga; Tsunami deposits; Finnmark; Barents Sea; Holocene; 1.
    [Show full text]
  • Landslide Generated Tsunamis : Numerical Modeling
    Sektion 2.5: Geodynamische Modellierung, GeoForschungsZentrum Potsdam Landslide generated tsunamis - Numerical modeling and real-time prediction Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Geophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vorgelegt von Sascha Brune Potsdam, den 29. Januar 2009 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3298/ URN urn:nbn:de:kobv:517-opus-32986 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-32986] Abstract Submarine landslides can generate local tsunamis posing a hazard to human lives and coastal facilities. Two major related problems are: (i) quantitative estimation of tsunami hazard and (ii) early detection of the most dangerous landslides. This thesis focuses on both those issues by providing numerical modeling of landslide- induced tsunamis and by suggesting and justifying a new method for fast detection of tsunamigenic landslides by means of tiltmeters. Due to the proximity to the Sunda subduction zone, Indonesian coasts are prone to earthquake, but also landslide tsunamis. The aim of the GITEWS-project (German- Indonesian Tsunami Early Warning System) is to provide fast and reliable tsunami warnings, but also to deepen the knowledge about tsunami hazards. New bathymetric data at the Sunda Arc provide the opportunity to evaluate the hazard potential of landslide tsunamis for the adjacent Indonesian islands.
    [Show full text]
  • Submarine Landslides in the Santa Barbara Channel As Potential Tsunami Sources H
    Submarine landslides in the Santa Barbara Channel as potential tsunami sources H. G. Greene, L. Y. Murai, P. Watts, N. A. Maher, M. A. Fisher, C. E. Paull, P. Eichhubl To cite this version: H. G. Greene, L. Y. Murai, P. Watts, N. A. Maher, M. A. Fisher, et al.. Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2006, 6 (1), pp.63-88. hal-00299251 HAL Id: hal-00299251 https://hal.archives-ouvertes.fr/hal-00299251 Submitted on 16 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Natural Hazards and Earth System Sciences, 6, 63–88, 2006 SRef-ID: 1684-9981/nhess/2006-6-63 Natural Hazards European Geosciences Union and Earth © 2006 Author(s). This work is licensed System Sciences under a Creative Commons License. Submarine landslides in the Santa Barbara Channel as potential tsunami sources H. G. Greene1, L. Y. Murai2, P. Watts3, N. A. Maher4, M. A. Fisher5, C. E. Paull1, and P. Eichhubl6 1Monterey Bay Aquarium Research Institute (MBARI), 7700 Sandholdt Road, Moss Landing, CA 95039; Moss Landing Marine Laboratories, 8272 Moss Landing Road Moss Landing, CA 95039, USA 2Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA 3Applied Fluids Engineering, Inc., 5710 E.
    [Show full text]
  • Geotechnical and Geologic Constraints on Tsunamigenic Submarine Landslides
    GEOTECHNICAL AND GEOLOGIC CONSTRAINTS ON TSUNAMIGENIC SUBMARINE LANDSLIDES H.J. LEE U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 USA Abstract Modeling submarine-landslide-induced tsunamis requires many simplifications of the landslide process, although the real world is much more complicated. Clearly tsunami modelers cannot consider all facets, but there is value in being aware of the complications. This paper describes the many environments in which submarine landslides can occur and the triggers that typically initiate them. Earthquakes acting on continental or canyon slopes comprise probably the most common scenario but many other combinations of environments and triggers are possible. Surprisingly, many sediment-covered slopes in highly seismically active areas have not failed. A possible explanation for this phenomenon is a process called “seismic strengthening.” The existence of such a process reduces somewhat the risk of landslide tsunamis along active margins while maintaining the risk along passive margins. Once a trigger has initiated a landslide in one of the vulnerable environments, failed masses begin to move downslope. Depending upon initial density state, the masses may convert into fluid-like sediment flows or even more dilute turbidity currents. A model for quantifying the tendency to flow is provided. Finally, a case study of the landslides and landslide tsunamis that occurred in Port Valdez, Alaska, during the 1964 Great Alaska Earthquake is provided. The excellent data base, including before and after bathymetry, shows that both large rigid block motion and mobilized sediment flows can occur near each other during the same event. The intact blocks are more efficient in producing tsunamis but the sediment flow can move farther and can erode and entrain considerable bottom sediment as they progress across the seafloor.
    [Show full text]
  • Submarine Slope Stability
    Submarine Slope Stability Based on M.S. Engineering Thesis Development of a Database and Assessment of Seafloor Slope Stability Based on Published Literature By James Johnathan Hance, B. S. The University of Texas at Austin Supervisor Dr. Stephen G. Wright The University of Texas at Austin Project Report Prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1435-01-99-CA-31003 Task Order 18217 MMS Project 421 August 2003 OTRC Library Number: 8/03B121 For more information contact: Offshore Technology Research Center Texas A&M University 1200 Mariner Drive College Station, Texas 77845-3400 (979) 845-6000 or Offshore Technology Research Center The University of Texas at Austin 1 University Station C3700 Austin, Texas 78712-0318 (512) 471-6989 A National Science Foundation Graduated Engineering Research Center Submarine Slope Stability Executive Summary Background and Context Oil and gas developments often require placing equipment, e.g., subsea wells, pipelines and flowlines, foundation systems for floating structures, in areas with sloping seafloors. Submarine slope failures can occur in such areas and create soil slides. Thus the stability of submarine slopes must be considered in selecting the site for installing and designing seafloor equipment. Assessing submarine slope stability requires estimating the likelihood, extent, and impact of a slide during the lifetime of the facility. This assessment is difficult due to the large difference in time scales between the project life (10’s of years) and the geologic processes and triggering mechanisms that cause the slides (10,000’s of years) Such an assessment is best approached through a probabilistic risk analysis that considers the risks to the equipment; the causes, likelihood, and behavior of submarine slides; and the uncertainties.
    [Show full text]
  • Methane Hydrate Stability and Anthropogenic Climate Change
    Biogeosciences, 4, 521–544, 2007 www.biogeosciences.net/4/521/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Methane hydrate stability and anthropogenic climate change D. Archer University of Chicago, Department of the Geophysical Sciences, USA Received: 20 March 2007 – Published in Biogeosciences Discuss.: 3 April 2007 Revised: 14 June 2007 – Accepted: 19 July 2007 – Published: 25 July 2007 Abstract. Methane frozen into hydrate makes up a large 1 Methane in the carbon cycle reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intu- 1.1 Sources of methane itively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir 1.1.1 Juvenile methane is so large that if 10% of the methane were released to the at- Methane, CH , is the most chemically reduced form of car- mosphere within a few years, it would have an impact on the 4 bon. In the atmosphere and in parts of the biosphere con- Earth’s radiation budget equivalent to a factor of 10 increase trolled by the atmosphere, oxidized forms of carbon, such as in atmospheric CO . 2 CO , the carbonate ions in seawater, and CaCO , are most Hydrates are releasing methane to the atmosphere today in 2 3 stable. Methane is therefore a transient species in our at- response to anthropogenic warming, for example along the mosphere; its concentration must be maintained by ongoing Arctic coastline of Siberia. However most of the hydrates release. One source of methane to the atmosphere is the re- are located at depths in soils and ocean sediments where an- duced interior of the Earth, via volcanic gases and hydrother- thropogenic warming and any possible methane release will mal vents.
    [Show full text]
  • Submarine Landslide Flows Simulation Through Centrifuge Modelling
    SUBMARINE LANDSLIDE FLOWS SIMULATION THROUGH CENTRIFUGE MODELLING by Chang Shin GUE A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge Churchill College January 2012 “Do not go where the path may lead, go instead where there is no path and leave a trail” - Ralph Waldo Emerson “If I have seen further than others, it is by standing upon the shoulders of giants” - Isaac Newton “Continuous effort – not strength or intelligence – is the key to unlocking our potential” - Winston Churchill ABSTRACT SUBMARINE LANDSLIDE FLOWS SIMULATION THROUGH CENTRIFUGE MODELLING Chang Shin GUE Landslides occur both onshore and offshore. However, little attention has been given to offshore landslides (submarine landslides). Submarine landslides have significant impacts and consequences on offshore and coastal facilities. The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. This thesis is concerned with developing centrifuge scaling laws for submarine landslide flows through the study of modelling submarine landslide flows in a mini-drum centrifuge. A series of tests are conducted at different gravity fields in order to understand the scaling laws involved in the simulation of submarine landslide flows. The model slope is instrumented with miniature sensors for measurements of pore pressures at different locations beneath the landslide flow. A series of digital cameras are used to capture the landslide flow in flight. Numerical studies are also carried out in order to compare the results obtained with the data from the centrifuge tests. The Depth Averaged Material Point Method (DAMPM) is used in the numerical simulations to deal with large deformation (such as the long runout of submarine landslide flows).
    [Show full text]
  • Chapter 2 Spatial Patterns for Landslide Ecology Lawrence R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2013 Chapter 2 Spatial patterns for Landslide Ecology Lawrence R. Walker University of Nevada, [email protected] Aaron B. Shiels USDA/APHIS/WS National Wildlife Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Walker, Lawrence R. and Shiels, Aaron B., "Chapter 2 Spatial patterns for Landslide Ecology" (2013). USDA National Wildlife Research Center - Staff Publications. 1641. https://digitalcommons.unl.edu/icwdm_usdanwrc/1641 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in LANDSLIDE ECOLOGY (New York: Cambridge University Press, 2013), by Lawrence R. Walker (University of Nevada, Las Vegas) and Aaron B. Shiels (USDA National Wildlife Research Center, Hila, Hawai’i). This document is a U.S. government work, not subject to copyright in the United States. 2 Spatial patterns Key points 1. Remote sensing tools have greatly improved the mapping of both terrestrial and submarine landslides, particularly at global scales. At regional and local scales, environmental correlates are being found that help interpret spatial patterns and related ecological processes on landslides. 2. Landslides are frequent on only 4% of the terrestrial landscape and coverage varies over time because new landslides do not occur at a constant rate.
    [Show full text]
  • Wave-Induced Seafloor Instability in the Yellow River Delta
    Journal of Marine Science and Engineering Article Wave-Induced Seafloor Instability in the Yellow River Delta: Flume Experiments Xiuhai Wang 1,2,3, Chaoqi Zhu 1,2,3,4,* and Hongjun Liu 1,2,3,* 1 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; [email protected] 2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266000, China 3 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China 4 Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation, Qingdao 266000, China * Correspondence: [email protected] (C.Z.); [email protected] (H.L.) Received: 11 August 2019; Accepted: 1 October 2019; Published: 6 October 2019 Abstract: Geological disasters of seabed instability are widely distributed in the Yellow River Delta, posing a serious threat to the safety of offshore oil platforms and submarine pipelines. Waves act as one of the main factors causing the frequent occurrence of instabilities in the region. In order to explore the soil failure mode and the law for pore pressure response of the subaqueous Yellow River Delta under wave actions, in-lab flume tank experiments were conducted in this paper. In the experiments, wave loads were applied with a duration of 1 hour each day for 7 consecutive days; pore water pressure data of the soil under wave action were acquired, and penetration strength data of the sediments were determined after wave action. The results showed that the fine-grained seabed presented an arc-shaped oscillation failure form under wave action.
    [Show full text]
  • Detectability of Seismic Waves from the Submarine Landslide That Caused the 1998 Papua New Guinea Tsunami
    Detectability of seismic waves from the submarine landslide that caused the 1998 Papua New Guinea tsunami Akio Katsumata1, Yasuhiro Yoshida2, Kenji Nakata1, Kenichi Fujita1, Masayuki Tanaka1, Koji Tamaribuchi1, Takahito Nishimiya1, and Akio Kobayashi1 1Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki Prefecture, Japan 2Meteorological College, Japan Meteorological Agency, 7-4-81 Asahi-cho, Kashiwa, Chiba Prefecture, Japan Correspondence: Akio Katsumata ([email protected]) Abstract. On 17 July 1998, a tsunami caused serious damage on the northern coast of Papua New Guinea about 20 min after the mainshock of an Mw 7.0 earthquake. The tsunami has been attributed to a submarine landslide that occurred about 13 min after the mainshock because its arrival at the coast was too late and its height too great to be the direct result of the fault slip of the earthquake. Bathymetric data recorded after the tsunami revealed an amphitheater-like structure that was consistent with a 5 recent submarine landslide. Most current tsunami warning systems are based on analysis of the early arrivals of seismic waves generated by an earthquake. In this study we investigated whether evidence of the landslide could be identified in the coda waves recorded after the mainshock. Based on previous studies of the tsunami source, we constructed synthetic seismograms to represent the submarine landslide and compared them to the observed coda waves of the preceding earthquake, with particular attention to the period around 13 min after the mainshock ::in ::::::::frequency::::::ranges::::close::to:::the::::::::landslide:::::::duration. We found phases 10 possibly corresponding to the landslide event.
    [Show full text]
  • Goals, Strategies, Priorities and Tasks
    GOALS, STRATEGIES, PRIORITIES AND TASKS OF A NATIONAL LANDSLIDE HAZARD-REDUCTION PROGRAM By U.S. Geological Survey U.S. Geological Survey Open-file Report 81-987 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey editorial standards and nomenclature CONTENTS Page Preface ............................................................. 1 Introduction •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3 Proposed National Program for Ground Failure Research ••••••••••••••••• 4 Role of the U.S. Geological Survey •••••••••••••••••••••••••••••••• 4 Goals of a National Program ••••••••••••••••••••••••••••••••••••••• 4 Strategies for U.S. Geological Survey Participation •••••••••••••• 4 De fini tions ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5 Goals for Landslide Hazard Mapping and Risk Evaluation •••••••••••••••• 6 Strategies for Mapping Hazards on Natural Slopes •••••••••••••••••• 1 Reconnaissance Approach--Simple Inventories •••••••••••••••••• 1 Intermediate Types of Landslide Inventories •••••••••••••••••• 9 Detailed Inventories ••••••••••••••••••••••••••••••••••••••••• 10 Terrain Analyses ••••••••••••••••••••••••••••••••••••••••••••• 12 Slope Stability Maps ••••••••••••••••••••••••••••••••••••••••• 14 Landslide Hazard Maps •••••••••••••••••••••••••••••••••••••••• 14 Risk Maps •••••••••••••••••••••••••••••••••••••••••••••••••••• 20 La nd -U se Maps •••••••••••••••••••••••••••••••••••••••••••••••• 20 Map Scales .................................................. 20 Present
    [Show full text]
  • Topographic Characteristics of the Submarine Taiwan Orogen L
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, F02009, doi:10.1029/2005JF000314, 2006 Topographic characteristics of the submarine Taiwan orogen L. A. Ramsey,1 N. Hovius,2 D. Lague,3 and C.-S. Liu4 Received 21 March 2005; revised 15 December 2005; accepted 6 January 2006; published 18 May 2006. [1] A complete digital elevation and bathymetry model of Taiwan provides the opportunity to characterize the topography of an emerging mountain belt. The orogen appears to form a continuous wedge of constant slope extending from the subaerial peaks to the submarine basin. We compare submarine channel systems from the east coast of Taiwan with their subaerial counterparts and document a number of fundamental similarities between the two environments. The submarine channel systems form a dendritic network with distinct hillslopes and channels. There is minimal sediment input from the subaerial landscape and sea level changes are insignificant, suggesting that the submarine topography is sculpted by offshore processes alone. We implement a range of geomorphic criteria, widely applied to subaerial digital elevation models, and explore the erosional processes responsible for sculpting the submarine and subaerial environments. The headwaters of the submarine channels have steep, straight slopes and a low slope-area scaling exponent, reminiscent of subaerial headwaters that are dominated by bedrock landslides. The main trunk streams offshore have concave-up longitudinal profiles, extensive knickpoints, and a slope-area scaling exponent similar in form to the onshore fluvial domain. We compare the driving mechanisms of the likely offshore erosional processes, primarily debris flows and turbidity currents, with subaerial fluvial incision. The results have important implications for reading the geomorphic signals of the submarine and subaerial landscapes, for understanding the links between the onshore and offshore environments, and, more widely, for focusing the future research of the submarine slope.
    [Show full text]