Building Web Observatories for Health Web Science

Total Page:16

File Type:pdf, Size:1020Kb

Building Web Observatories for Health Web Science Building Web Observatories for Health Web Science Dominic DiFranzo, John S. Erickson, Marie Joan Kristine T. Gloria, Deborah L. McGuinness, Joanne S. Luciano Tetherless World Constellation Rensselaer Polytechnic Institute Troy, NY 12180difrad, erickj4, [email protected] dlm, [email protected] Abstract. As the World Wide Web continues to grow and change, the need to study and understand it grows. Web Science is an effort to do just this. Due to the multidisciplinary nature of Web Science, and the wide variety of data on the web it studies and produces, Web Observatories are needed to help foster colla- boration and provide archiving of work and studies for future generations of researchers. In this paper, we use health data on the Web, and Health Web Sci- ence as a use case in showing how and why we need to build Web Observato- ries. We characterize the unique challenges that exist in building Web Observa- tories and present a methodology that accommodates these challenges. 1 Introduction As the World Wide Web continues to evolve and impact our lives on a daily basis, researchers from a range of disciplines have turned their attention to its study. The field of Web Science, created as an approach for a coherent and connected study of the Web as an entity unto itself, faces several unique challenges ranging from conflict- ing methodological philosophies to the development of a suitable infrastructure for its scientists to collaborate and share resources. Web scientists, therefore, are looking to mixed methodology practices, new computational infrastructure and large-scale ana- lytics in order to better make sense of these complex phenomena. 1.1 Web Observatories As a means for managing this research complexity, the Web Science community has undertaken the development of a new distributed platform to facilitate the collection, analysis and sharing of data about the Web. Whether viewed as individual observato- ries or as a federation, the web observatory will be a distributed archive of data on the Web and its activity. Additionally, it will expose mechanisms and tools that will enab- le the exploration of the Web's past development, to examine its present condition and to establish potential developments in the future [1]. Web observatories promise to be a vast improvement over the resources currently in use by Web scientists, which are centralized, ad hoc in their composition, and often proprietary. With these challenges in mind, the Web Science Trust's Web Observatory Project has three main objectives [1]: 1. Create a global data resource that moves beyond the traditional understanding of a centralized data warehouse to that of a more distributed environment for inter- disciplinary analysis and knowledge sharing. 2. Provide Web scientists a space to foster the development and sharing of tool- sets, frameworks and workflows. This can only be accomplished by adopting a bottom-up approach that aggregates individual repositories into a virtual infrastructure. 3. Promote and empower researchers to use not just quantitative correlation me- thods on datasets, but to explore and incorporate qualitative analyses that may help provide a more comprehensive understanding of the socio-technical evolution of the Web. 2 Health Web Science and the Health Web Observatory Imperative One sub-domain of particular interest to web scientists is the interplay between health, health sciences, and the Web. It is in this intersection that we are challenged with multi-level, multi-disciplined questions about not just the impact on users of the Web, but the evolution of the Web's infrastructure and related public policies. Thus, Health Web Science (HWS) is an emerging discipline from which its practitioners aim to "describe how the Web shapes, and is shaped by, medicine and health care ecosys- tems. Through this information, HWS will help engineer the Web and Web-related technologies to facilitate health-related endeavors and empower health professionals, patients, health researchers and lay communities. For example, HWS-based research may focus on developing and/or evaluating user responses to Web-based applications that seek to promote the formation of communi- ties and the sharing experience [5]. Unique to this discipline, HWS researchers would not just examine the social practices of such experiences; but also raise questions re- garding the role of the data platform itself in ensuring the proper anonymization of data and user privacy. Furthermore, HWS, in general, includes the examination and understanding of “citizen science”, discovery of new questions and answers in the Web’s metadata, and representation and use of health knowledge by patients, medical professionals, and their machines [8]. 2.1 From Health Data to a Health Web Observatory Given the copious amounts of richly heterogeneous data, provided in many file for- mats; both unstructured and structured; and highly sensitive, the HWS community would benefit greatly from the development of a distributed network of Health Web observatories. This would allow for better gathering, quantifying, connecting, sharing, and searching over health and related data on the web (both quantitative and qualita- tive in nature); This federated HWO would focus on: “the synthesis, curation, and discovery of Web pages containing health informa- tion; the structure and utilization of interactive social media sites relevant to pa- tient support groups; and semantic annotation and linking of health records and data to facilitate mechanized exploration and analysis [8]. “ We advocate that the health-domain, in particular Health Web observatories, may serve as an exemplar for all future Web observatories given its technical, social and political complexity. In general, a HWO must be a materialization of the Web Obser- vatory information model as represented by the Web Observatory schema1. This model allows Web scientists to leverage the vast scale of commercial search engines to uncover properly described and published resources. Using the Web Observatory model, certain data characteristics of interest to health web science investigators must be clearly expressed: • Data identification and description: What is this data? In particular, is it statisti- cal in nature? Does it describe a scientific or medical result? • Origination: What is the source of this data? Did it originate with physicians, or patients, or researchers, or governments? Was the data scraped, or submitted, or generated through some study? • Usage: How has this data been used previously, and by whom? Has it been used in research, or advocacy, or treatment, or for decision making? • Citation: How is the data related to specific publications in the scientific and medical literature? • Provenance: How has this data been aggregated and shared? Was (for example) the data made available through a built-for-purpose data repository? Is it an ad hoc source? Has it been provided through a public "data hubs" such as datahub.io? • Policy: What policies and restrictions govern the collection and use of the data? This applies to both data submitted (collection terms) and data provided by a parti- cular web observatory. For any given dataset, what policies affect it? 1 http://logd.tw.rpi.edu/web_observatory 3 Building a Web Observatory Outlined previously, the goals of the Web Observatory Project are to create a distrib- uted data resource which enables collaboration among Web scientists across multiple domains and from around the world. It also aims to promote exploration and incorpo- ration of both qualitative and quantitative methodologies. It is, therefore, unsurprising that one of the biggest obstacles in designing and building a WO is in anticipating the variety of innovative and interesting uses by others, which are not explicitly built into the WO. To minimize this uncertainty, we present a process that prioritizes internal purposes first; while promoting the use of technologies and systems that enable the duplication, understanding and reuse of your Web observatory by others and for alter- native purposes. This general process draws its inspiration from the Semantic eScience methodology [6] Due to the unique challenges and nature of Web Observatories [1] the Semantic eScience methodology doesn't completely address some of the issues that arise in building one. In the following section, we use many parts of the Semantic eScience methodology as a basis to build a new methodology for building Web Observatories. 3.1 Forming Your Purpose, Questions, Ideas and Users We propose the first step to be: define the purpose of your specific Web observatory. In this, one should define the audience of the WO as well as its initial or alpha users. We recommend asking questions such as: What research domain do we want to ex- plore?; What types of questions would we like to answer?; and, What do will this WO contribute to the greater Web Science community? This phase differs from the "use case" step provided in the eScience methodology as we focus on identifying a "user story" rather than formal, specific use case. The intent is to prevent restricting the observatory to only serve alpha users at the cost of alienating new users and applications. 3.2 Small Core Team, Mixed Skills The next step is: to create a small team with a diverse skill set. Similar to the second step of the eScience methodology, this team is necessary for researching and discov- ering datasets and tools to be used in the Web observatory. This has yet to be formal- ized within our own current Web observatory process; however, we recognize that this lends a great advantage in ensuring your WO encompasses relevant and authoritative data. 3.3 Gather Data Sources and Data Sets The third step is one of the most difficult. Gathering data sources and data sets may seem an insurmountable task as the Web is a vast source of information. Identifying which datasets and data sources exist is only one part of the puzzle. Additionally, one must also consider whether the data collected is trustworthy, non-proprietary, privacy- sensitive, etc.
Recommended publications
  • The 8Th ACM Web Science Conference 2016
    This is a repository copy of The 8th ACM Web Science Conference 2016. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103102/ Version: Accepted Version Article: Jäschke, R. (2016) The 8th ACM Web Science Conference 2016. ACM SIGWEB Newsletter (Summer). pp. 1-7. ISSN 1931-1745 https://doi.org/10.1145/2956573.2956574 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ pdfauthor The 8th ACM Web Science Conference 2016 Robert Jaschke¨ L3S Research Center Hannover, Germany This article provides an overview of this year’s ACM Web Science Conference (WebSci’16). It was located in Hannover, Germany, and organized by L3S Research Center and the Web Science Trust. WebSci’16 attracted more than 160 researchers from very different disciplines – ranging from computer science to anthropology.
    [Show full text]
  • The Web Observatory Extension: Facilitating Web Science Collaboration Through Semantic Markup
    The Web Observatory Extension: Facilitating Web Science Collaboration through Semantic Markup Dominic DiFranzo John S. Erickson Marie Joan Kristine T. Gloria Tetherless World Constellation, Tetherless World Constellation, Tetherless World Constellation, Rensselaer Polytechnic Institute, Rensselaer Polytechnic Rensselaer Polytechnic Institute, Troy, NY USA Institute, Troy, NY USA Troy, NY USA [email protected] [email protected] [email protected] Joanne S. Luciano Deborah L. McGuinness James Hendler Tetherless World Constellation, Tetherless World Constellation, Tetherles World Constellation, Rensselaer Polytechnic Institute, Rensselaer Polytechnic Rensselaer Polytechnic Institute, Troy, NY USA Institute, Troy, NY USA Troy, NY USA [email protected] [email protected] [email protected] ABSTRACT Still in its infancy, the field of Web Science now faces several The multi-disciplinary nature of Web Science and the large size unique challenges from conflicting methodological philosophies and diversity of data collected and studied by its practitioners has to developing a suitable infrastructure for its scientists to inspired a new type of Web resource known as the Web collaborate and share resources. More importantly, the scale and Observatory. Web observatories are platforms that enable scope of the data produced by users of the Web and studied by researchers to collect, analyze and share data about the Web and Web Scientists is unprecedented for any modern field of study. to share tools for Web research. At the Boston Web Observatory Web Scientists are thus looking to mixed methodology practices, Workshop 2013 [3], a semantic model for describing Web new computational infrastructure and large scale analytics in order Observatories was drafted and an extension to the schema.org to better make sense of this complex phenomena.
    [Show full text]
  • A Celebration of 10 Years of the Science of the Web WEB SCIENCE TRUST BOARD Board Members
    2006-2016 A celebration of 10 Years of the Science of the Web WEB SCIENCE TRUST BOARD Board Members Professor Dame Wendy Hall JP Rangaswami Professor Sir Nigel Shadbolt Professor George Metakides Professor James Hendler John Taysom Professor Noshir Contractor Daniel J Weitzner Fellows and Advisors Professor Bebo White Web Science Champion Sir John Taylor Professor Sir Tim Berners-Lee Senior Fellow Senior Fellow Anni Rowland-Campbell Baroness Rennie Fritchie Advisor Patron We also wish to acknowledge the contribution of colleagues who acted as supporters and research fellows for the fore- runner to the Web Science Trust, the Web Science Research Initiative (WSRI). CELEBRATING 10 YEARS OF WEB SCIENCE 2016 marks the tenth anniversary of the academic discipline of Web Science. It was in 2006 that the paper ‘Creating a Science of the Web’ appeared in the journal Science. The paper’s authors: Tim Berners-Lee, Wendy Hall, James Hendler, Nigel Shadbolt, and Daniel Weitzner, set out their concerns about the future direction of the Web, and emphasized the need to establish a clear research agenda ‘aimed at understanding the current, evolving, and potential Web’: “If we want to model the Web; if we want to understand the architectural principles that have provided for its growth; and if we want to be sure that it supports the basic social values of trustworthiness, privacy, and respect for social boundaries, then we must chart out a research agenda that targets the Web as a primary focus of attention.” The authors called for the new discipline of Web Science role in shaping appropriate policy directives, as well as to be inherently interdisciplinary, to tackle research enabling a better understanding of the central importance challenges around ownership and access to data, and to of the Web in all our lives.
    [Show full text]
  • Network Science
    review articles DOI:10.1145/2699416 Jacob Moreno’s25 efforts to develop Exploring three interdisciplinary areas and the “sociometry.” Soon thereafter, the mathematical framework offered by extent they overlap. Are they all part of the graph theory was also picked up by same larger domain? psychologists,2 anthropologists,23 and other social scientists to create an in- BY THANASSIS TIROPANIS, WENDY HALL, JON CROWCROFT, terdiscipline called Social Networks. NOSHIR CONTRACTOR, AND LEANDROS TASSIULAS The interdiscipline of Social Networks expanded even further toward the end of the 20th century with an explosion of interest in exploring networks in biological, physical, and technologi- Network cal systems. The term Network Sci- ence emerged as an interdisciplinary area that draws on disciplines such as physics, mathematics, computer sci- Science, ence, biology, economics, and sociol- ogy to encompass networks that were not necessarily social.1,26,35 The study of networks involves developing ex- planatory models to understand the Web Science, emergence of networks, building predictive models to anticipate the evolution of networks, and construct- ing prescriptive models to optimize and Internet the outcomes of networks. One of the main tenets of Network Science is to identify common underpinning principles and laws that apply across Science very different networks and explore why in some cases those patterns vary. The Internet and the Web, given their spectacular growth and impact, are networks that have captured the imagination of many network scien- THE OBSERVATION OF patterns that characterize key insights networks, from biological to technological and social, ˽ Web Science and Internet Science aim to understand the evolution of the Web and the impact of the Web and the Internet on society and the Internet respectively and to inform debates about their future.
    [Show full text]
  • Navigational Efficiency of Broad Vs. Narrow Folksonomies
    Navigational Efficiency of Broad vs. Narrow Folksonomies Denis Helic Christian Körner Michael Granitzer Knowledge Management Knowledge Management Chair of Media Informatics Institute Institute University of Passau Graz University of Technology Graz University of Technology Passau, Germany Graz, Austria Graz, Austria Michael.Granitzer@uni- [email protected] [email protected] passau.de Markus Strohmaier Christoph Trattner Knowledge Management Institute for Information Institute and Know-Center Systems and Computer Media Graz University of Technology Graz University of Technology Graz, Austria Graz, Austria [email protected] [email protected] ABSTRACT Keywords Although many social tagging systems share a common tri- Navigation, Folksonomy, Keywords, Tags partite graph structure, the collaborative processes that are generating these structures can di ffer significantly. For ex- 1. INTRODUCTION ample, while resources on Delicious are usually tagged by all In social tagging systems, users organize information us- users who bookmark the web page cnn.com , photos on Flickr ing so-called tags – a set of freely chosen words or concepts are usually tagged just by a single user who uploads the – to annotate various resources such as web pages on Deli- photo. In the literature, this distinction has been described cious, photos on Flickr, or scientific articles on BibSonomy. as a distinction between broad vs. narrow folksonomies . In addition to using tagging systems for personal organiza- This paper sets out to explore navigational di fferences be- tion of information, users can also socially share their an- tween broad and narrow folksonomies in social hypertextual notations with each other. The information structure that systems. We study both kinds of folksonomies on a dataset emerges through such processes has been typically described provided by Mendeley - a collaborative platform where users 1 as “folksonomies ” ( fol k-generated ta xonomies ).
    [Show full text]
  • Download PDF 137.79 KB
    KI Special Issue Social Media (version as of Oct 29, 2012) Interview with Jim Hendler on Social Media and Collective Intelligence Panagiotis Takis Metaxas James A. Hendler ((**max 180 words)) James Hendler is the Tetherless World Professor of Computer and Cognitive Science and the Head of the Computer Science Department at RPI. He also serves as a Director of the UK’s charitable Web Science Trust and is a visiting Professor at DeMontfort University in Leicester, UK. Hendler has authored about 200 technical papers in the areas of Semantic Web, artificial intelligence, agent-based computing and high performance processing. One of the early “Semantic Web” innovators, Hendler is a Fellow of the American Association for Artificial Intelligence, the British Computer Society, the IEEE and the AAAS. In 2010, Hendler was named one of the 20 most innovative professors in America by Playboy magazine and was selected as an “Internet Web Expert” by the US government. He is the Editor-in-Chief emeritus of IEEE Intelligent Systems and is the first computer scientist to serve on the Board of Reviewing Editors for Science. Hendler was the recipient of a 2012 Strata Conference Data Innovation Award for his work in Open Government Data. KI: We see a very broad interpretation of Social Media these days. How do you define Social Media? In the real world people form communities of various kinds that are bound together by social relationships – those relationships are the real-world “social networks” that social-networking sites rely on. Personally, I see social media as the online means for realizing, extending, maintaining, etc.
    [Show full text]
  • 8 November 2016 Programme
    Programme 8 November 2016 BAFTA, London Huxley Summit Agenda 2016 3 Contents Agenda Agenda page 3 08:30 Registration Chapters page 4 09:00 Chapter 1: State of the nation Trust in the 21st Century page 6 Why trust matters page 8 10:30 Coffee and networking Speakers page 12 11:10 Chapter 2: Who do we trust? Partners page 18 12:20 Lunch and networking Attendees page 19 Round table on corporate sponsored research Round table on reasons for failure 13:50 Chapter 3: Who will we trust? 15:20 Coffee and networking 16:00 Chapter 4: Who should we trust? 17:45 Closing remarks 18:00 Drinks reception A film crew and photographer will be present at the Huxley Summit. If you do not wish to be filmed or photographed, please speak to a member of the team at British Science Association. We encourage attendees to use Twitter during the Summit, and we recommend you use the hashtag #HuxleySummit to follow the conversations. 4 Huxley Summit 2016 Chapters 5 Chapter 1: Chapter 2: Chapter 3: Chapter 4: State of the nation Who do we trust? Who will we trust? Who should we trust? The global events of 2016 have caused Many sections of business, politics and The public need to be engaged and Trust and good reputations are hard many people to question who they trust. public life have had a crisis of public informed on innovations in science won but easily lost. What drives How is this affecting the role of experts trust in recent years, but who do we trust and technology that are set to have consumers’ decision making and how and institutions? How can leaders from with science? And what can we learn a big impact on their lives and the can we drive trust in our businesses across politics, business, science and from the handling of different areas of world around them.
    [Show full text]
  • Flipping the Narrative
    FLIPPING THE NARRATIVE Essays on transformation from the sector’s boldest voices Featuring Alex Fox, Anni Rowland-Campbell, Charlie Leadbeater, Clare Thomas, Danny Kruger, Darren Murinas, Debbie Pippard, Javed Khan, Jill Halford & Neil Sherlock, Kevin Carey, Maff Potts & Charlie Howard, Mark Atkinson, Neil McInroy, Pat McArdle, Peter Kellner, Sue Bent. NPC – Transforming the charity sector Flipping the narrative | Contents CONTENTS Foreword from Patrick Murray, NPC ................................................................................................................... 3 Setting the scene: Why we need boldness and bravery in these times of change Charles Leadbeater, independent writer, advisor and speaker ...................................................................... 4 Strategy and governance ................................................................................................................................. 7 How we’re building a greater scope for greater impact Mark Atkinson, CEO, Scope ........................................................................................................................... 8 Our work must be person-led, not systems-led Pat McArdle, CEO, Mayday Trust ................................................................................................................ 12 We need brave, in-your-face, hard-headed governance Kevin Carey, Chair, RNIB ............................................................................................................................. 16 Relationship
    [Show full text]
  • The Semantic
    The Fate of the Semantic Web Technology experts and stakeholders who participated in a recent survey believe online information will continue to be organized and made accessible in smarter and more useful ways in coming years, but there is stark dispute about whether the improvements will match the visionary ideals of those who are working to build the semantic web. Janna Quitney Anderson, Elon University Lee Rainie, Pew Research Center’s Internet & American Life Project May 4, 2010 Pew Research Center’s Internet & American Life Project An initiative of the Pew Research Center 1615 L St., NW – Suite 700 Washington, D.C. 20036 202‐419‐4500 | pewInternet.org This publication is part of a Pew Research Center series that captures people’s expectations for the future of the Internet, in the process presenting a snapshot of current attitudes. Find out more at: http://www.pewInternet.org/topics/Future‐of‐the‐Internet.aspx and http://www.imaginingtheinternet.org. 1 Overview Sir Tim Berners‐Lee, the inventor of the World Wide Web, has worked along with many others in the Internet community for more than a decade to achieve his next big dream: the semantic web. His vision is a web that allows software agents to carry out sophisticated tasks for users, making meaningful connections between bits of information so “computers can perform more of the tedious work involved in finding, combining, and acting upon information on the web.”1 The concept of the semantic web has been fluid and evolving and never quite found a concrete expression and easily‐understood application that could be grasped readily by ordinary Internet users.
    [Show full text]
  • Educational Curriculum for the Usage of Linked Data Project URL Document URL EU Project Officer
    Deliverable 3.4.2 Exploitation and dissemination plan Coordinator: Elena Simperl With contributions from: John Domingue, Peter Haase, Maria Maleshkova, Marin Dimitrov Quality Assessor: Maria Maleshkova Editor: Elena Simperl, STI-R Deliverable nature: R Dissemination level: PU Contractual delivery date: 30.04.2014 Actual delivery date: 16.05.2014 Version: 1.0 Total number of pages: 29 Keywords: Exploitation, commercialization, dissemination, communication, community building, sustainability EUCLID 296229 Executive summary Following the strategy laid out in D3.4.1 this document analyses the impact of the dissemination and exploitation activities performed throughout the duration of the project and gives an outline of the plans the consortium has defined to continue such activities after the project’s end in order to ensure the sustainability and full uptake of EUCLID’s major achievements. Most importantly, this deliverable is concerned with the way the consortium will make use of the results of the project, be that for educational purposes in academia, or as part of commercial products and services offered by the core and associate industry partners. In EUCLID dissemination and community engagement activities are implemented in WP2. As such, three deliverables in that work package (D2.2.3, D2.3.3, and D2.1.5), all due M24, provide a comprehensive overview and analysis of the activities the project has pursued online and offline to ensure that its outcomes, most importantly the suite of learning materials produced in the last two years, are promoted to the right audiences and widely used throughout Europe and worldwide in higher education and commercial training offerings. From a dissemination and community engagement point of view the focus of this deliverable will be on providing an executive summary of the strategy and plans of the project vs.
    [Show full text]
  • Network Science, Web Science and Internet Science: Comparing Interdisciplinary Areas
    Network Science, Web Science and Internet Science: comparing interdisciplinary areas Thanassis Tiropanis1, Wendy Hall1, Jon Crowcroft2, Noshir Contractor3, Leandros Tassiulas4 1 University of Southampton 2 University of Cambridge 3 Northwestern University 4 University of Thessaly ABSTRACT In this paper, we examine the fields of Network Science, Web Science and Internet Science. All three areas are interdisciplinary, and since the Web is based on the Internet, and both the Web and the Internet are networks, there is perhaps confusion about the relationship between them. We study the extent of overlap and ask whether one includes the others, or whether they are all part of the same larger domain. This paper provides an account of the emergence of each of these areas and outlines a framework for comparison. Based on this framework, we discuss these overlaps and propose directions for harmonization of research activities. INTRODUCTION The observation of patterns that characterise networks, from biological to technological and social, and the impact of the Web and the Internet on society and business have motivated interdisciplinary research to advance our understanding of these systems. Their study has been the subject of Network Science research for a number of years. However, more recently we have witnessed the emergence of two new interdisciplinary areas: Web Science and Internet Science. Network Science Network science can be traced to its mathematical origins dating back to Leonard Euler’s seminal work on graph theory (Euler, 1741) in the 18th century and to its social scientific origins two centuries later by the psychiatrist Jacob Moreno’s (1953) efforts to develop “sociometry.” Soon thereafter, the mathematical framework offered by graph theory was also picked up by psychologists (Bavelas, 1950), anthropologists (Mitchell, 1956), and other social scientists to create an interdiscipline called Social Networks.
    [Show full text]
  • The Web Observatory Extension: Facilitating Web Science Collaboration Through Semantic Markup
    The Web Observatory Extension: Facilitating Web Science Collaboration through Semantic Markup Dominic DiFranzo John S. Erickson Marie Joan Kristine T. Gloria Tetherless World Constellation, Tetherless World Constellation, Tetherless World Constellation, Rensselaer Polytechnic Institute, Rensselaer Polytechnic Rensselaer Polytechnic Institute, Troy, NY USA Institute, Troy, NY USA Troy, NY USA [email protected] [email protected] [email protected] Joanne S. Luciano Deborah L. McGuinness James Hendler Tetherless World Constellation, Tetherless World Constellation, Tetherles World Constellation, Rensselaer Polytechnic Institute, Rensselaer Polytechnic Rensselaer Polytechnic Institute, Troy, NY USA Institute, Troy, NY USA Troy, NY USA [email protected] [email protected] [email protected] ABSTRACT 1.INTRODUCTION The multi-disciplinary nature of Web Science and the large size As the World Wide Web continues to evolve and greatly impact and diversity of data collected and studied by its practitioners has our everyday lives, researchers from a wide array of perspectives inspired a new type of Web resource known as the Web and disciplines have turned their attention to its study. However, Observatory. Web observatories are platforms that enable while the research, analysis and data are plentiful, those who researchers to collect, analyze and share data about the Web and study the Web lack a more united understanding of the Web’s to share tools for Web research. At the Boston Web Observatory influence. The field of Web Science was developed in response to Workshop 2013 [3], a semantic model for describing Web this, to help create a coherent and connected study of the Web [1]. Observatories was drafted and an extension to the schema.org Still in its infancy, the field of Web Science now faces several microdata vocabulary collection was proposed.
    [Show full text]