Modeling Predation Across Spatial Scales

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Predation Across Spatial Scales Delphastus catalinae and the silverleaf whitefly, Bemisia tabaci biotype B, on tomato: modeling predation across spatial scales DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Diego Fernando Rincon Rueda Graduate Program in Entomology The Ohio State University 2015 Dissertation Committee: Luis A. Cañas, Advisor Casey W. Hoy, Co-advisor P. Larry Phelan Laurence V. Madden Robin A. J. Taylor Copyright by Diego F. Rincon 2015 Abstract Ecological models are developed to gain understanding and generate predictions about ecosystems. Predator-prey models, for example, are used to integrate information on the biology and ecology of predators and prey with the aim of predicting the dynamics of the system over time. Model predictions are often used to guide the management of production systems, such as the application of biological control of pests in agriculture. One important component of the theory on predator-prey interactions is the predator functional response, which is a mathematical description of predation rates based on the number of prey available. Functional responses are important components of predator- prey models because they are often used as a link between predator and prey population sub-models. Thus, the accuracy of predictions derived from predator-prey models depend upon the accuracy and precision of estimates derived from functional responses. However, functional responses are often estimated through small-scale laboratory experiments, which are then used to model dynamics of larger natural systems, leading to biased estimations of the predation capabilities of natural enemies. Understanding behavioral traits that determine the ability of predators to suppress pest populations at spatial scales larger than those evaluated in the laboratory may help in selecting the right species and release rates for biological control programs. My thesis is ii that predation rates within whole plants are driven by the interaction between prey distribution, individual predator patch-to-patch behavior and consumption rates within patch units. I propose that results derived from simple laboratory settings can be useful to predict predation rates within whole plants, if they are combined with spatially explicit descriptions of prey distribution and predator movement patterns. I assume that the leaflet is a spatial scale at which predators and prey behave as in laboratory settings, at least in experiments without replacement of consumed prey. My study extended from the leaflet to the plant scale, encompassing both the relatively homogeneous prey patch unit, leaflet, and the more structurally complex combination of leaflets, leaves, branches and main stem. My study system consisted of the silverleaf whitefly (SWF), Bemisia tabaci biotype B and the coccinellid predator Delphastus catalinae inhabiting tomato plants in a greenhouse environment. The SWF is a significant worldwide pest of a variety of production systems including field and greenhouse tomato. Because of persistent application of chemical insecticides, the SWF has developed resistance to an array of chemical pesticides. For this reason, alternative control methods, such as the use the beneficial insects, have been encouraged but few have shown success. The predator D. catalinae is currently the only coccinellid predator that is commercialized in the USA for whitefly control. However, the use of D. catalinae as biological control agent has been limited because of its variable degree of success suppressing SWF populations. Despite the relatively high predation rates that have been reported for D. catalinae in laboratory iii settings, its consumption capacity in more realistic scenarios, whole plants or fields, remains largely unknown. To support my thesis, I reviewed the functional response theory emphasizing the most accepted methods to scale up laboratory results. I also explored what is known about the biology of the tomato-SWF-D. catalinae system (Chapter 1). I then evaluated key predator behavioral patterns by modeling the interaction between the spatial distribution of the SWF and the search behavior of D. catalinae. First, I developed an algorithm to generate within-plant spatial distributions of the SWF, based on aggregation patterns observed within and among tomato leaves (Chapter 2). Second, I described the spatial interaction between the SWF and D. catalinae at the within-plant scale and examined its effects on D. catalinae predation rates and functional response. I found that prey and predator prefer different regions within plants and that predation rates and the functional response at the scale of a leaflet are comparable to what have been observed in the laboratory. In contrast, I observed that predation rates are lower and that the functional response changes qualitatively when the scale of observation is increased from the leaflet to the plant (Chapter 3). To gain understanding of the processes that drive such a change in predation rates and functional response with scale transition, I developed an individual-based model that incorporates the observed behavioral patterns of D. catalinae individuals when preying on SWF nymphs within tomato plants (Chapter 4). I found that the number of leaflets visited per plant by predators and the degree of spatial alignment between predator and prey distributions impact predation rates significantly at the spatial scale of the whole plant. Also, I demonstrated that simple measures of prey distribution iv and predator foraging patterns can be used to scale up functional responses estimated through small, homogeneous laboratory settings. Altogether, my research shows that non- random distributions and movement patterns of prey and predators can be predicted, at least within plant structures, and that simple measures of such patterns can be used to accurately model predation rates within plants using observations from laboratory settings. My thesis can be applied to overcome current limitations in the extrapolation of data collected in the laboratory to the field, which ultimately will help fine-tune release procedures of biological control programs. v Dedicated to Said, Stella, Andrea, Ana Maria and Emilia vi Acknowledgments I would like to thank my advisors, Dr. Luis Canas and Dr. Casey Hoy, who knew how to make the perfect fit with my expectations and guided me patiently through this long process. I appreciate the tons of things they have taught me but, especially, that they always made me feel in family. I thank my committee members, Dr. Larry Phelan, Dr. Larry Madden and Dr. Robin Taylor who stimulated my critical thinking and with whom I enjoyed sharing my thoughts and receiving their always refreshing points of view. Especial thanks to Dr. Larry Phelan for his enthusiasm teaching science and for being such a great instructor in the journal clubs. I enjoyed the company of excellent lab mates during my first years. Claudia Kuniyoshi and Karla Medina made my life easier during my years in Wooster (OH). Especially, I would like to thank Alfredo Rios who became my friend and who taught me a great portion of what I have learnt. I served as a Teaching Associate for several years, and was lucky enough to have worked with Dr. Carol Anelli with whom I learn to love education. Not only is she an outstanding instructor, but also a wonderful human being. vii I want to thank Aristóbulo López, my first research advisor at Corpoica, who introduced me to science and showed me the value of knowledge and creativity. Funding for my dissertation project was received from Corpoica, Colciencias, The Fulbright Program, the development fund contributed by K. W. Zellers and Sons Farms, and the Department of Entomology at The Ohio State University. Research support was also provided by state and federal funds appropriated to the Ohio Agricultural Research and Development Center, through SEEDS Research Enhancement Competitive Grants Program (Grant OHOA1006). The result of this work would not have been possible without the company and support of friends that knew how to keep me sane and healthy. I am thankful for the great memories I share with Santiago Sanchez, Constanza Echaiz, Wilmer Rodriguez, Ben Phillips, Silvia Duarte and Agus Muñoz. I am fortunate to have met Carolina Camargo a long time ago because she has repeatedly made me understand how valuable a true friendship is. viii Vita 2005 ...............................................................B.S. Biology, Pontificia Universidad Javeriana (Colombia) 2008 to present ..............................................Research Scientist, Corpoica (Colombia) 2009 to 2012 .................................................Fulbright fellow, Department of Entomology, The Ohio State University. 2012 to present ..............................................Graduate Teaching Associate, Department of Entomology, The Ohio State University. Publications Rincon, D. F., C. W. Hoy, and L. Canas. 2015. Generating within-plant spatial distributions of an insect herbivore based on aggregation patterns and per-node infestation probabilities. Environmental Entomology. DOI: 10.1093/ee/nvu022 Rincon, D. F.; C. Camargo, E. Valencia, and A. López-Avila. 2010. Localización de hospedero por larvas neonatas de Tecia solanivora (Lepidoptera: Gelechiidae). Corpoica Ciencia y Tecnologia Agropecuaria 11: 5 -10. ix Rincon, D. F., and J. Garcia. 2007. Frecuencia de cópula de la polilla guatemalteca de la papa Tecia
Recommended publications
  • Ficus Whitefly Management in the Landscape
    Ficus Whitefly Management in the Landscape Introduction: In 2007, a whitefly [Singhiella simplex (Singh) (Hemiptera: Aleyrodidae)], new to this continent, was reported attacking ficus trees and hedges in Miami-Dade County. Currently, this pest can be found in 16 Florida counties (Brevard, Broward, Collier, Hillsborough, Indian River, Lee, Manatee, Martin, Miami- Dade, Monroe, Okeechobee, Orange, Palm Beach, Pinnellas, Sarasota, and St. Lucie). What are whiteflies? First, they are not flies or related to flies. They are small, winged insects that belong to the Order Hemiptera which also includes aphids, scales, and mealybugs. These insects typically feed on the underside of leaves with their “needle-like” mouthparts. Whiteflies can seriously injure host plants by sucking nutrients from the plant causing wilting, yellowing, stunting, leaf drop, or even death. There are more than 75 different whiteflies reported in Florida. Biology: The life cycle of the ficus whitefly is approximately one month. Eggs, which are usually laid on the underside of leaves, hatch into a crawler stage. The crawler which is very small wanders around the leaf until it begins to feed. From this point until it emerges as an adult, it remains in the same place on the plant. These Eggs feeding, non-mobile stages (nymphs) are usually oval, flat, and initially transparent. The early nymph stages can be very difficult to see. As the nymphs mature, they become more yellow in color, more convex, and their red eyes become more visible, Nymphs making them easier to see. Nymph and adult Plant Damage: The leaves of ficus trees infested with whiteflies begin to turn yellow before the leaves are dropped from the plant.
    [Show full text]
  • A Stink Bug Euschistus Quadrator Rolston (Insecta: Hemiptera: Pentatomidae)1 Sara A
    EENY-523 A Stink Bug Euschistus quadrator Rolston (Insecta: Hemiptera: Pentatomidae)1 Sara A. Brennan, Joseph Eger, and Oscar E. Liburd2 Introduction in the membranous area of the hemelytra, a characteristic present in other Euschistus species. Euschistus quadrator Rolston was described in 1974, with specimens from Mexico, Texas, and Louisiana. Euschistus quadrator was not found in Florida until 1992. It has since spread throughout the state as well as becoming an agricultural pest of many fruit, vegetable, and nut crops in the southeastern United States. It has a wide host range, but is most commonly found in cotton, soybean and corn. Euschistus quadrator has recently become a more promi- nent pest with the introduction of crops such as Bt cotton and an increase in the usage of biorational or reduced-risk pesticides. Distribution Euschistus quadrator is originally from Texas and Mexico, and has since been reported in Louisiana, Georgia, and Florida. Description Figure 1. Dorsal view of Euschistus quadrator Rolston; adult male (left) Adults and female (right), a stink bug. Credits: Lyle Buss, University of Florida The adults are shield-shaped and light to dark brown in color. They are smaller than many other members of the ge- Eggs nus, generally less than 11 mm in length and approximately Euschistus quadrator eggs are initially semi-translucent and 5 mm wide across the abdomen. They are similar in size to light yellow, and change color to red as the eggs mature. The Euschistus obscurus. Euschistus quadrator lacks dark spots micropylar processes (fan-like projections around the top 1. This document is EENY-523, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension.
    [Show full text]
  • Silverleaf Whitefly Alert for Soybean Growers
    Silverleaf whitefl y alert for soybean growers March 2003 Natalie Moore1, Robin Gunning2, Hugh Brier3, Which whitefly is it? and oval in shape with red ‘eyes’. Most SLW Bernie Franzman4, Greg Mills3, Don McCaffery5. nymph stages are immobile and pupate in situ on the leaf. 1 NSW Agriculture, Grafton, NSW, Australia; Silverleaf whitefl y (SLW) is the B-biotype of the whitefl y Bemisia tabaci. The B-biotype is a 2 NSW Agriculture, Tamworth, NSW, Australia; pesticide-resistant strain of B. tabaci that has Why is the B-biotype of SLW so gained entry into Australia, most likely from 3 Department of Primary Industries, Kingaroy, the United States of America. SLW is a major difficult to manage? Qld, Australia; global pest of horticultural and agricultural SLW has resistance to many common 4 Department of Primary Industries, crops and is highly resistant to most current pesticides. SLW can occur in uncontrollable pesticides, including organophosphates, Toowoomba, Qld, Australia; plagues with billions of individuals per carbamates and synthetic pyrethroids. 5 NSW Agriculture, Orange, NSW, Australia hectare of crop. Australian experience and research shows SLW can develop resistance to pesticides extremely rapidly, due in part to its short What do SLW look like? generation time (egg to adult in as little as 12 days in summer) and to the huge populations Silverleaf whitefl ies are small, fragile sap- that can develop (billions/ha). It generates sucking insects in the same bug sub-order resistance to chemicals much faster than as aphids and scale insects. Adults have Helicoverpa armigera. powdery white wings and are only 1.5 mm long (see Fig.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • Arthropod Pest Management in Greenhouses and Interiorscapes E
    Arthropod Pest Management in Greenhouses and Interiorscapes E-1011E-1011 OklahomaOklahoma CooperativeCooperative ExtensionExtension ServiceService DivisionDivision ofof AgriculturalAgricultural SciencesSciences andand NaturalNatural ResourcesResources OklahomaOklahoma StateState UniversityUniversity Arthropod Pest Management in Greenhouses and Interiorscapes E-1011 Eric J. Rebek Extension Entomologist/ Ornamentals and Turfgrass Specialist Michael A. Schnelle Extension Ornamentals/ Floriculture Specialist ArthropodArthropod PestPest ManagementManagement inin GreenhousesGreenhouses andand InteriorscapesInteriorscapes Insects and their relatives cause major plant ing a hand lens. damage in commercial greenhouses and interi- Aphids feed on buds, leaves, stems, and roots orscapes. Identification of key pests and an un- by inserting their long, straw-like, piercing-suck- derstanding of appropriate control measures are ing mouthparts (stylets) and withdrawing plant essential to guard against costly crop losses. With sap. Expanding leaves from damaged buds may be tightening regulations on conventional insecti- curled or twisted and attacked leaves often display cides and increasing consumer sensitivity to their chlorotic (yellow-white) speckles where cell con- use in public spaces, growers must seek effective tents have been removed. A secondary problem pest management alternatives to conventional arises from sugary honeydew excreted by aphids. chemical control. Management strategies cen- Leaves may appear shiny and become sticky from tered around
    [Show full text]
  • Managing Silverleaf Whiteflies in Cotton Phillip Roberts and Mike Toews University of Georgia
    Managing Silverleaf Whiteflies in Cotton Phillip Roberts and Mike Toews University of Georgia Following these guidelines, especially on a community Insecticide Use: basis, should result in better management of SLWF locally and areawide. The goal of SLWF management is to initiate control measures just prior to the period of most rapid SLWF • Destroy host crops immediately after harvest; this population development. It is critically important that includes vegetable and melon crops in the spring and initial insecticide applications are well timed. If you are cotton (timely defoliation and harvest) and other host late with the initial application control will be very crops in the fall. difficult and expensive in the long run. It is nearly impossible to regain control once the population reaches • Scout cotton on a regular basis for SLWF adults and outbreak proportions! immatures. • SLWF Threshold: Treat when 50 percent of sampled • The presence of SLWF should influence insecticide leaves (sample 5th expanded leaf below the terminal) selection and the decision to treat other pests. are infested with multiple immatures (≥5 per leaf). • Conserve beneficial insects; do not apply insecticides • Insect Growth Regulators (Knack and Courier): use of for ANY pests unless thresholds are exceeded. IGRs are the backbone of SLWF management • Avoid use of insecticides for other pests which are programs in cotton. Effects on SLWF populations are prone to flare SLWF. generally slow due to the life stages targeted by IGRs, however these products have long residual activity • Risk for SLWF problems: and perform very well when applied on a timely basis. • Hairy leaf > smooth leaf cotton.
    [Show full text]
  • The Use and Exchange of Biological Control Agents for Food and Agriculture
    BACKGROUND STUDY PAPER NO. 47 October 2009 E COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE THE USE AND EXCHANGE OF BIOLOGICAL CONTROL AGENTS FOR FOOD AND AGRICULTURE by Matthew J.W. Cock, Joop C. van Lenteren, Jacques Brodeur, Barbara I.P.Barratt, Franz Bigler, Karel Bolckmans, Fernando L. Cônsoli, Fabian Haas, Peter G. Mason, José Roberto P. Parra 1 This document has been prepared at the request of the Secretariat of the Commission on Genetic Resources for Food and Agriculture by the Global Commission on Biological Control and Access and Benefit-Sharing of the International Organisation for Biological Control of Noxious Animals and Plants (IOBC), as a contribution to the cross-sectoral theme, Consideration of policies and arrangements for access and benefit-sharing for genetic resources for food and agriculture , which the Commission will consider at its Twelfth Regular Session. The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO, or its Members. 1 For affiliation of the authors see Annex 2. BACKGROUND STUDY PAPER NO. 47 i TABLE OF CONTENTS ABOUT THIS PUBLICATION .................................................................................................................1 LIST OF ABBREVIATIONS ....................................................................................................................2 EXECUTIVE SUMMARY ........................................................................................................................4
    [Show full text]
  • Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States
    Journal of Integrated Pest Management (2017) 8(1):11; 1–14 doi: 10.1093/jipm/pmx004 Profile Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States Robert L. Koch,1,2 Daniela T. Pezzini,1 Andrew P. Michel,3 and Thomas E. Hunt4 1 Department of Entomology, University of Minnesota, 1980 Folwell Ave., Saint Paul, MN 55108 ([email protected]; Downloaded from https://academic.oup.com/jipm/article-abstract/8/1/11/3745633 by guest on 08 January 2019 [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 210 Thorne, 1680 Madison Ave. Wooster, OH 44691 ([email protected]), and 4Department of Entomology, University of Nebraska, Haskell Agricultural Laboratory, 57905 866 Rd., Concord, NE 68728 ([email protected]) Subject Editor: Jeffrey Davis Received 12 December 2016; Editorial decision 22 March 2017 Abstract Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are an emerging threat to soybean and corn production in the midwestern United States. An invasive species, the brown marmorated stink bug, Halyomorpha halys (Sta˚ l), is spreading through the region. However, little is known about the complex of stink bug species associ- ated with corn and soybean in the midwestern United States. In this region, particularly in the more northern states, stink bugs have historically caused only infrequent impacts to these crops. To prepare growers and agri- cultural professionals to contend with this new threat, we provide a review of stink bugs associated with soybean and corn in the midwestern United States.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Zoysiagrass for Florida Lawns Ready Or Not, Fleas Are Back
    JULY/AUGUST 2015 PESTPredators in the Landscape | PlantPRO Magnesium Deficiency Zoysiagrass For From University of Florida Entomology to Landscape and Pest Managers Florida Lawns Ready or Not, Fleas are Back July/August 2015 | PestPro 1 2 PestPro | July/August 2015 VOL. 11, NO. 4 July–August 2015 PESTPRO CONTENTS magazine is a publication of FEATURES Pest Management Education, Inc. 5814 Nob Hill Blvd. Fleas are Back ... Port Orange, FL 32127 8 Are You Ready? A nonprofit corporation working to help UF Urban Entomology. Technical information provided by the University of Florida. Zoysiagrass For Florida Lawns Board of Directors 12 Lisa Ashley, Fusion Communications Tim Brock, Brock Lawn & Pest Control Student Profile: John Cooksey, McCall Service 16 Casey Parker Dr. Phil Koehler, University of Florida Marie Knox, Control Solutions, Inc. Predators in the Landscape: Jane Medley, University of Florida John Paige III, Bayer 18 Meet the Beetles — and More Dr. Roberto Pereira, University of Florida Dr. Clay Scherer, Syngenta Exciting Changes To 23 The FDACS Website Managing Director Philip Koehler (352) 392-2484 Magnesium Deficiency [email protected] 25 In Turf and Ornamentals Managing Editor Roberto Pereira (352) 392-2485 Florida’s Got a Brand New Bug: [email protected] 29 Pale-Bordered Field Cockroach Production Editor Jane Medley (352) 871-1809 [email protected] DEPARTMENTS Advertising Manager 6 Founders List Lisa Ashley (850) 832-2101 [email protected] 7 Editorial: PestPro is Your Proud Partner In Advancing the Pest Control Industry PESTPRO (ISSN 1553-4693) is published Jan.–Feb., March–April, May–June, July–Aug., Sept.–Oct., and 15 Pest Detective: Thorn Bug Nov.–Dec.
    [Show full text]
  • Introductions for Biological Control in Hawaii: 1979 and 1980
    Vol. 24, No. 1, September 15, 1982 109 Introductions for Biological Control in Hawaii: 1979 and 1980 PY. LAI, G.Y. FUNASAKI, S Y. HIGA1 The Plant Pest Control Branch (formerly Entomology Branch) of the Hawaii Department of Agriculture has maintained a beneficial organism introduction program for many years. This paper provides notes on the status of some pests and their purposely introduced natural enemies and a list of insects introduced and released for biological control during 1979 and 1980 (Table 1). All benefi cial introductions are thoroughly screened and studied in a quarantine facility and must go through a clearance process prior to being released. WEED PEST CONTROL Ageratina riparia (Regel) K. & R. (Hamakua pamakani) Three organisms contributing to the control of Hamakua pamakani are the stem galling tephritid, Procecidochares alani Steyskal, the leaf defoliating ptero- phorid, Oidaematophorus sp., and the leaf spotting fungus, Cercosporella sp. (introduced by Dr. E.E. Trujillo, Univeristy of Hawaii Plant Pathologist). P. alani was initially released on Hawaii Island in 1974, Oidaematophorus sp. in 1973 andC. sp.in 1975. The combined activities of these purposely introduced beneficial organisms have contributed by severely reducing thickets of Hamakua pamakani on the island of Hawaii. Desirable forage grasses have replaced pamakani in 16,000 to 20,000 ha of pasture lands. Many of these previously heavily infested lands have been restored to productive use. Salsola pestifer A. Nelson (Russian thistle) Through the cooperation of the USDA Biological Control of Weeds Labora tory, Albany, California, two beneficial coleophorids, Coleophora parthenica Meyrick and C. klimeschiella Toll, were introduced to aid in the control of Rus sian thistle, a noxious weed that infests about 320 ha of rangelands on Hawaii.
    [Show full text]
  • Delphastus Pusillus Raymond A
    Floriculture Indiana Vol. 8 No. 4 Fall 1994 Page 4 Delphastus pusillus Raymond A. Cloyd Entomology Department, Purdue University Whiteflies are major greenhouse pests, are longer than they are wide. The fourth instar and the two most commonly encountered are: the eventually crawls down a plant stalk and pupates greenhouse whitefly, Trialeurodes vaporariorum, inside driedup leaves. Newly emerged adults are and the silver-leaf whitefly, Bemisia argentifolii pale-brown to almost white, but they eventually (formerly known as strain 'B' ofthe sweet potato turn black. Development from egg to adult takes whitefly, Bemisia tabaci). One method ofwhite about 3 weeks at 80° F. Females live for about 50 fly control is reliance on chemical insecticides. daysandcanlay approximately3to4 eggs perday. Though chemical insecticides have been some Bothlarvaeand adults areactive predators that can what effective in controlling whiteflies they are consume over 300 eggs or 100nymphsofsilverleaf becoming more difficult to use because of strin whitefly per day. Adults and larvae feed by gent rules and regulations. An alternative control piercingthe insect integument (covering) and ex method is the use ofbeneficial organisms or bio tractingout the contents. Release ofD. pusillus is logical control. Control of greenhouse whitefly compatible with other biological control organ has been very successful with the parasitoid, isms becauseitavoidsparasitizedwhiteflies. Some Encarsia formosa. This parasitoid,however, is not thing to be aware ofwhen using D. pusillus is that as effective in controlling silverleaf whitefly. In trichomes (hairs)on plantleaves can deter feeding contrast, Delphastus pusillus, a predatory beetle and egg laying. shows more potential for controlling this pest. Considerations for Use Biology Releases must be concentrated near areas Delphastus pusillus is a native lady bird ofhighwhitefly populations.
    [Show full text]