Lectures on Quantum Mechanics Leon A. Takhtajan

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Quantum Mechanics Leon A. Takhtajan Lectures on Quantum Mechanics Leon A. Takhtajan Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651, USA E-mail address: [email protected] Contents Chapter 1. Classical Mechanics . 1 1. Lagrangian Mechanics . 2 1.1. Generalized coordinates . 2 1.2. The principle of the least action . 2 1.3. Examples of Lagrangian systems . 6 1.4. Symmetries and Noether theorem . 11 1.5. One-dimensional motion . 15 1.6. The motion in a central field and the Kepler problem . 17 1.7. Legendre transformation . 20 2. Hamiltonian Mechanics . 24 2.1. Hamilton’s equations . 24 2.2. The action functional in the phase space . 26 2.3. The action as a function of coordinates . 28 2.4. Classical observables and Poisson bracket . 30 2.5. Canonical transformations and generating functions . 32 2.6. Symplectic manifolds . 34 2.7. Poisson manifolds . 41 2.8. Hamilton’s and Liouville’s representations . 45 3. Notes and references . 48 Chapter 2. Foundations of Quantum Mechanics . 49 1. Observables and States . 51 1.1. Physical principles . 51 1.2. Basic axioms . 51 1.3. Heisenberg’s uncertainty relations . 58 1.4. Dynamics . 59 2. Quantization . 61 2.1. Heisenberg’s commutation relations . 62 2.2. Coordinate and momentum representations . 66 2.3. Free quantum particle . 71 2.4. Examples of quantum systems . 76 2.5. Harmonic oscillator . 78 2.6. Holomorphic representation and Wick symbols . 85 3. Weyl relations . 92 3.1. Stone-von Neumann theorem . 92 3.2. Invariant formulation . 98 iii iv CONTENTS 3.3. Weyl quantization . 101 3.4. The ?-product . 107 3.5. Deformation quantization . 110 4. Notes and references . 116 Chapter 3. Schr¨odinger Equation . 119 1. General properties . 119 1.1. Self-adjointness . 120 1.2. Characterization of the spectrum . 121 2. One-dimensional Schr¨odinger equation . 122 3. Angular momentum and SO(3) . 122 4. Two-body problem . 122 5. Hydrogen atom and S0(4) . 122 6. Semi-classical asymptotics . 122 Chapter 4. Path Integral Formulation of Quantum Mechanics . 123 1. Feynman path integral for the evolution operator . 123 1.1. Free particle . 124 1.2. Path integral in the phase space . 125 1.3. Path integral in the configuration space . 127 1.4. Harmonic oscillator . 128 1.5. Several degrees of freedom . 130 1.6. Path integral in the holomorphic representation . 131 2. Gaussian path integrals and determinants . 131 2.1. Free particle and harmonic osicllator revisited . 131 2.2. Determinants . 136 2.3. Semi-classical asymptotics . 146 Chapter 5. Integration in Functional Spaces . 155 1. Gaussian measures . 155 1.1. Finite-dimensional case . 155 1.2. Infinite-dimensional case . 156 2. Wiener measure and Wiener integral . 158 2.1. Definition of the Wiener measure . 158 2.2. Conditional Wiener measure and Feynman-Kac formula . 161 2.3. Relation between Wiener and Feynman integrals . 163 2.4. Gaussian Wiener integrals . 164 Chapter 6. Spin and Identical Particles . 169 1. Spin . 169 2. Charged spin particle in the magnetic field . 171 2.1. Pauli Hamiltonian . 171 2.2. Electron in a magnetic field . 171 3. System of Identical Particles . 172 Chapter 7. Fermion Systems and Supersymmetry . 173 1. Canonical Anticommutation Relations . 173 CONTENTS v 1.1. Motivation . 173 1.2. Clifford algebras . 175 2. Grassmann algebras . 178 2.1. Commutative superalgebras . 179 2.2. Differential calculus on Grassmann algebra . 180 2.3. Grassmann integration . 180 2.4. Functions with anticommuting values . 184 2.5. Supermanifolds . 184 3. Equivariant cohomology and localization . 185 3.1. Finite-dimensional case . 185 3.2. Infinite-dimensional case . 187 3.3. Classical mechanics on supermanifolds . 188 4. Quantization of classical systems on supermanifolds . 190 5. Path Integrals for Anticommuting Variables . 190 5.1. Matrix and Wick symbols of operators . 190 5.2. Path integral for the evolution operator . 194 5.3. Gaussian path integrals over Grassmann variables . 197 6. Supersymmetry . 199 6.1. The basic example . 199 7. Spinors and the Dirac operator . 205 8. Atiyah-Singer index formula . 206 Bibliography . 207 Index . 211 CHAPTER 1 Classical Mechanics We use standard notations and basic facts from differential geometry. All manifolds, maps and functions are smooth (that is, C∞) and real-valued, unless it is specified explicitly otherwise. Local coordinates q = (q1, . , qn) on a smooth n-dimensional manifold M at a point q ∈ M are Cartesian n coordinates on ϕ(U) ⊂ R , where (U, ϕ) is a coordinate chart on M centered n −1 at q ∈ U. For f : U → R we denote (f ◦ ϕ )(q1, . , qn) by f(q). If U is n a domain in R then for f : U → R we denote by ∂f ∂f ∂f = ,..., ∂q ∂q1 ∂qn n the gradient of a function f at a point q ∈ R with Cartesian coordinates (q1, . , qn). We denote by n M A•(M) = Ak(M) k=0 the graded algebra of smooth differential forms on M with respect to the wedge product, and by d the deRham differential — a graded derivation of A•(M) of degree 1 such that df is a differential of a function f ∈ A0(M) = C∞(M). Let Vect(M) be the Lie algebra of smooth vector fields on M with the bracket [ , ], given by a commutator of vector fields. For X ∈ Vect(M) we denote by LX and iX , respectively, the Lie derivative along X and the inner product with X. The Lie derivative is a degree 0 derivation of A•(M) 0 which commutes with d and satisfies LX (f) = X(f) for f ∈ A (M), and • the inner product is a degree −1 derivation of A (M) satisfying iX (f) = 0 0 and iX (df) = X(f) for f ∈ A (M). They satisfy Cartan formulas 2 LX =iX ◦ d + d ◦ iX = (d + iX ) , i[X,Y ] =LX ◦ iY − iY ◦ LX . For a smooth mapping of manifolds f : M → N we denote by f∗ : TM → TN and f ∗ : T ∗N → T ∗M, respectively, the induced mappings on tangent and cotangent bundles. Other notations, including those traditional for classical mechanics, will be introduced in the main text. 1 2 1. CLASSICAL MECHANICS 1. Lagrangian Mechanics 1.1. Generalized coordinates. Classical mechanics describes systems of finitely many interacting particles1. A system is called closed if its par- ticles do not interact with the outside material bodies. The position of a system in space is specified by positions of its particles and defines a point in a smooth, finite-dimensional manifold M, the configuration space of a system. Coordinates on M are called generalized coordinates of a system, and the dimension n = dim M is called the number of degrees of freedom2. The state of a system at any instant of time is described by a point q ∈ M and by a tangent vector v ∈ TqM at this point. The basic prin- ciple of classical mechanics is Newton-Laplace determinacy principle which asserts that a state of a system at a given instant completely determines its motion at all times t (in the future and in the past). The motion is described by the classical trajectory — a path γ(t) in the configuration space M. In generalized coordinates γ(t) is (q1(t), . , qn(t)) and corresponding deriva- dq tivesq ˙ = i are called generalized velocities. Newton-Laplace principle is i dt a fundamental experimental fact confirmed by our perception of everyday’s d2q experience. It implies that generalized accelerations q¨ = i are uniquely i dt2 defined by generalized coordinates qi and generalized velocitiesq ˙i, so that classical trajectories satisfy a system of second order ordinary differential equations, called equations of motion. In the next section we formulate the most general principle governing the motion of mechanical systems. 1.2. The principle of the least action. In Lagrangian mechanics, a mechanical system with a configuration space M is completely characterized by its Lagrangian L — a smooth, real-valued function on TM × R — the direct product of a tangent bundle TM of M and the time axis3. The motion of a Lagrangian system (M, L) is described by the principle of the least action (or Hamilton’s principle), formulated as follows. Let PM(q0, t0, q1, t1) = {γ :[t0, t1] → M, γ(t0) = q0, γ(t1) = q1} be the space of smooth parametrized paths in M connecting points q0 and q1. The path space PM = PM(q0, t0, q1, t1) is a infinite-dimensional real Fr´echet manifold, and the tangent space TγPM to PM at γ ∈ PM con- sists of all smooth vector fields along the path γ in M which vanish at the endpoints q0 and q1. A smooth path Γ in PM, passing through γ ∈ PM is 1A particle is a material body whose dimensions may be neglected in describing its motion. 2Systems with infinitely many degrees of freedom are described by classical field theory. 3It follows from Newton-Laplace principle that L could depend only on generalized coordinates and velocities, and on time. 1. LAGRANGIAN MECHANICS 3 called a variation with fixed ends of the path γ(t) in M. A variation Γ is a family γε(t) = Γ(t, ε) of paths in M given by a smooth map Γ:[t0, t1] × [−ε0, ε0] → M such that Γ(t, 0) = γ(t) for t0 ≤ t ≤ t1 and Γ(t0, ε) = q0, Γ(t1, ε) = q1 for −ε0 ≤ ε ≤ ε0. The tangent vector ∂Γ δγ = ∈ TγPM ∂ε ε=0 corresponding to a variation γε(t) is traditionally called an infinitesimal variation. Explicitly, ∂ δγ(t) = Γ∗( ∂ε )(t, 0) ∈ Tγ(t)M, t0 ≤ t ≤ t1, ∂ where ∂ε is a tangent vector to the interval [−ε0, ε0] at 0. Finally, a tangential lift of a path γ(t) in M is the path γ0(t) in TM defined by 0 ∂ ∂ γ (t) = γ∗( ∂t ) ∈ Tγ(t)M, t0 ≤ t ≤ t1, where ∂t is a tangent vector to 0 [t0, t1] at t.
Recommended publications
  • Quantum Groups and Algebraic Geometry in Conformal Field Theory
    QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY DlU'KKERU EI.INKWIJK BV - UTRECHT QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY QUANTUMGROEPEN EN ALGEBRAISCHE MEETKUNDE IN CONFORME VELDENTHEORIE (mrt em samcnrattint] in hit Stdirlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE RIJKSUNIVERSITEIT TE UTRECHT. OP GEZAG VAN DE RECTOR MAGNIFICUS. TROF. DR. J.A. VAN GINKEI., INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DE- CANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 19 SEPTEMBER 1989 DES NAMIDDAGS TE 2.30 UUR DOOR Theodericus Johannes Henrichs Smit GEBOREN OP 8 APRIL 1962 TE DEN HAAG PROMOTORES: PROF. DR. B. DE WIT PROF. DR. M. HAZEWINKEL "-*1 Dit proefschrift kwam tot stand met "•••; financiele hulp van de stichting voor Fundamenteel Onderzoek der Materie (F.O.M.) Aan mijn ouders Aan Saskia Contents Introduction and summary 3 1.1 Conformal invariance and the conformal bootstrap 11 1.1.1 Conformal symmetry and correlation functions 11 1.1.2 The conformal bootstrap program 23 1.2 Axiomatic conformal field theory 31 1.3 The emergence of a Hopf algebra 4G The modular geometry of string theory 56 2.1 The partition function on moduli space 06 2.2 Determinant line bundles 63 2.2.1 Complex line bundles and divisors on a Riemann surface . (i3 2.2.2 Cauchy-Riemann operators (iT 2.2.3 Metrical properties of determinants of Cauchy-Ricmann oper- ators 6!) 2.3 The Mumford form on moduli space 77 2.3.1 The Quillen metric on determinant line bundles 77 2.3.2 The Grothendieck-Riemann-Roch theorem and the Mumford
    [Show full text]
  • Quantum Group and Quantum Symmetry
    QUANTUM GROUP AND QUANTUM SYMMETRY Zhe Chang International Centre for Theoretical Physics, Trieste, Italy INFN, Sezione di Trieste, Trieste, Italy and Institute of High Energy Physics, Academia Sinica, Beijing, China Contents 1 Introduction 3 2 Yang-Baxter equation 5 2.1 Integrable quantum field theory ...................... 5 2.2 Lattice statistical physics .......................... 8 2.3 Yang-Baxter equation ............................ 11 2.4 Classical Yang-Baxter equation ...................... 13 3 Quantum group theory 16 3.1 Hopf algebra ................................. 16 3.2 Quantization of Lie bi-algebra ....................... 19 3.3 Quantum double .............................. 22 3.3.1 SUq(2) as the quantum double ................... 23 3.3.2 Uq (g) as the quantum double ................... 27 3.3.3 Universal R-matrix ......................... 30 4Representationtheory 33 4.1 Representations for generic q........................ 34 4.1.1 Representations of SUq(2) ..................... 34 4.1.2 Representations of Uq(g), the general case ............ 41 4.2 Representations for q being a root of unity ................ 43 4.2.1 Representations of SUq(2) ..................... 44 4.2.2 Representations of Uq(g), the general case ............ 55 1 5 Hamiltonian system 58 5.1 Classical symmetric top system ...................... 60 5.2 Quantum symmetric top system ...................... 66 6 Integrable lattice model 70 6.1 Vertex model ................................ 71 6.2 S.O.S model ................................. 79 6.3 Configuration
    [Show full text]
  • Non-Commutative Phase and the Unitarization of GL {P, Q}(2)
    Non–commutative phase and the unitarization of GLp,q (2) M. Arık and B.T. Kaynak Department of Physics, Bo˘gazi¸ci University, 80815 Bebek, Istanbul, Turkey Abstract In this paper, imposing hermitian conjugate relations on the two– parameter deformed quantum group GLp,q (2) is studied. This results in a non-commutative phase associated with the unitarization of the quantum group. After the achievement of the quantum group Up,q (2) with pq real via a non–commutative phase, the representation of the algebra is built by means of the action of the operators constituting the Up,q (2) matrix on states. 1 Introduction The mathematical construction of a quantum group Gq pertaining to a given Lie group G is simply a deformation of a commutative Poisson-Hopf algebra defined over G. The structure of a deformation is not only a Hopf algebra arXiv:hep-th/0208089v2 18 Oct 2002 but characteristically a non-commutative algebra as well. The notion of quantum groups in physics is widely known to be the generalization of the symmetry properties of both classical Lie groups and Lie algebras, where two different mathematical blocks, namely deformation and co–multiplication, are simultaneously imposed either on the related Lie group or on the related Lie algebra. A quantum group is defined algebraically as a quasi–triangular Hopf alge- bra. It can be either non-commutative or commutative. It is fundamentally a bi–algebra with an antipode so as to consist of either the q–deformed uni- versal enveloping algebra of the classical Lie algebra or its dual, called the matrix quantum group, which can be understood as the q–analog of a classi- cal matrix group [1].
    [Show full text]
  • Shaw' Preemia
    Shaw’ preemia 2002. a rajas Hongkongi ajakirjandusmagnaat ja tuntud filantroop sir Run Run Shaw (s 1907) omanimelise fondi, et anda v¨alja iga-aastast preemiat – Shaw’ preemiat. Preemiaga autasustatakse ”isikut, s˜oltumata rassist, rahvusest ja religioossest taustast, kes on saavutanud olulise l¨abimurde akadeemilises ja teaduslikus uuri- mist¨o¨os v˜oi rakendustes ning kelle t¨o¨o tulemuseks on positiivne ja sugav¨ m˜oju inimkonnale.” Preemiat antakse v¨alja kolmel alal – astronoomias, loodusteadustes ja meditsiinis ning matemaatikas. Preemia suurus 2009. a oli uks¨ miljon USA dollarit. Preemiaga kaas- neb ka medal (vt joonist). Esimesed preemiad omistati 2004. a. Ajakirjanikud on ristinud Shaw’ preemia Ida Nobeli preemiaks (the Nobel of the East). Shaw’ preemiaid aastail 2009–2011 matemaatika alal m¨a¨arab komisjon, kuhu kuuluvad: esimees: Sir Michael Atiyah (Edinburghi Ulikool,¨ UK) liikmed: David Kazhdan (Jeruusalemma Heebrea Ulikool,¨ Iisrael) Peter C. Sarnak (Princetoni Ulikool,¨ USA) Yum-Tong Siu (Harvardi Ulikool,¨ USA) Margaret H. Wright (New Yorgi Ulikool,¨ USA) 2009. a Shaw’ preemia matemaatika alal kuulutati v¨alja 16. juunil Hongkongis ja see anti v˜ordses osas kahele matemaatikule: 293 Eesti Matemaatika Selts Aastaraamat 2009 Autori~oigusEMS, 2010 294 Shaw’ preemia Simon K. Donaldsonile ja Clifford H. Taubesile s¨arava panuse eest kolme- ja neljam˜o˜otmeliste muutkondade geomeetria arengusse. Premeerimistseremoonia toimus 7. oktoobril 2009. Sellel osales ka sir Run Run Shaw. Siin pildil on sir Run Run Shaw 100-aastane. Simon K. Donaldson sundis¨ 1957. a Cambridge’is (UK) ja on Londonis Imperial College’i Puhta Matemaatika Instituudi direktor ja professor. Bakalaureusekraadi sai ta 1979. a Pembroke’i Kolled- ˇzistCambridge’s ja doktorikraadi 1983.
    [Show full text]
  • Alwyn C. Scott
    the frontiers collection the frontiers collection Series Editors: A.C. Elitzur M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles The Thermodynamic Machinery of Life By M. Kurzynski The Emerging Physics of Consciousness Edited by J. A. Tuszynski Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely Quantum Mechanics at the Crossroads New Perspectives from History, Philosophy and Physics Edited by J. Evans, A.S. Thorndike Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Asymmetry: The Foundation of Information By S.J. Muller Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-to-Classical Transition By M. Schlosshauer For a complete list of titles in The Frontiers Collection, see back of book Alwyn C.
    [Show full text]
  • Non-Commutative Dual Representation for Quantum Systems on Lie Groups
    Loops 11: Non-Perturbative / Background Independent Quantum Gravity IOP Publishing Journal of Physics: Conference Series 360 (2012) 012052 doi:10.1088/1742-6596/360/1/012052 Non-commutative dual representation for quantum systems on Lie groups Matti Raasakka Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am M¨uhlenberg 1, 14476 Potsdam, Germany, EU E-mail: [email protected] Abstract. We provide a short overview of some recent results on the application of group Fourier transform to quantum mechanics and quantum gravity. We close by pointing out some future research directions. 1. Introduction The group Fourier transform is an integral transform from functions on a Lie group to functions on a non-commutative dual space. It was first formulated for functions on SO(3) [1, 2], later generalized to SU(2) [2–4] and other Lie groups [5, 6], and is based on the quantum group structure of Drinfel’d double of the group [7, 8]. The transform provides a unitarily equivalent representation of quantum systems with a Lie group configuration space in terms of non- commutative algebra of functions on the classical dual space, the dual of the Lie algebra. As such, it has proven useful in several different ways. Most importantly, it provides a clear connection between the quantum system and the corresponding classical one, allowing for a better physical insight into the system. In the case of quantum gravity models this has turned out to be particularly helpful in unraveling the geometrical content of the models, because the dual variables have an intuitive interpretation as classical geometrical quantities.
    [Show full text]
  • 1.25. the Quantum Group Uq (Sl2). Let Us Consider the Lie Algebra Sl2
    55 1.25. The Quantum Group Uq (sl2). Let us consider the Lie algebra sl2. Recall that there is a basis h; e; f 2 sl2 such that [h; e] = 2e; [h; f] = −2f; [e; f] = h. This motivates the following definition. Definition 1.25.1. Let q 2 k; q =6 ±1. The quantum group Uq(sl2) is generated by elements E; F and an invertible element K with defining relations K − K−1 KEK−1 = q2E; KFK−1 = q−2F; [E; F] = : −1 q − q Theorem 1.25.2. There exists a unique Hopf algebra structure on Uq (sl2), given by • Δ(K) = K ⊗ K (thus K is a grouplike element); • Δ(E) = E ⊗ K + 1 ⊗ E; • Δ(F) = F ⊗ 1 + K−1 ⊗ F (thus E; F are skew-primitive ele­ ments). Exercise 1.25.3. Prove Theorem 1.25.2. Remark 1.25.4. Heuristically, K = qh, and thus K − K−1 lim = h: −1 q!1 q − q So in the limit q ! 1, the relations of Uq (sl2) degenerate into the relations of U(sl2), and thus Uq (sl2) should be viewed as a Hopf algebra deformation of the enveloping algebra U(sl2). In fact, one can make this heuristic idea into a precise statement, see e.g. [K]. If q is a root of unity, one can also define a finite dimensional version of Uq (sl2). Namely, assume that the order of q is an odd number `. Let uq (sl2) be the quotient of Uq (sl2) by the additional relations ` ` ` E = F = K − 1 = 0: Then it is easy to show that uq (sl2) is a Hopf algebra (with the co­ product inherited from Uq (sl2)).
    [Show full text]
  • An Introduction to the Theory of Quantum Groups Ryan W
    Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2012 An introduction to the theory of quantum groups Ryan W. Downie Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Downie, Ryan W., "An introduction to the theory of quantum groups" (2012). EWU Masters Thesis Collection. 36. http://dc.ewu.edu/theses/36 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. EASTERN WASHINGTON UNIVERSITY An Introduction to the Theory of Quantum Groups by Ryan W. Downie A thesis submitted in partial fulfillment for the degree of Master of Science in Mathematics in the Department of Mathematics June 2012 THESIS OF RYAN W. DOWNIE APPROVED BY DATE: RON GENTLE, GRADUATE STUDY COMMITTEE DATE: DALE GARRAWAY, GRADUATE STUDY COMMITTEE EASTERN WASHINGTON UNIVERSITY Abstract Department of Mathematics Master of Science in Mathematics by Ryan W. Downie This thesis is meant to be an introduction to the theory of quantum groups, a new and exciting field having deep relevance to both pure and applied mathematics. Throughout the thesis, basic theory of requisite background material is developed within an overar- ching categorical framework. This background material includes vector spaces, algebras and coalgebras, bialgebras, Hopf algebras, and Lie algebras. The understanding gained from these subjects is then used to explore some of the more basic, albeit important, quantum groups.
    [Show full text]
  • Notices of the AMS 595 Mathematics People NEWS
    NEWS Mathematics People contrast electrical impedance Takeda Awarded 2017–2018 tomography, as well as model Centennial Fellowship reduction techniques for para- bolic and hyperbolic partial The AMS has awarded its Cen- differential equations.” tennial Fellowship for 2017– Borcea received her PhD 2018 to Shuichiro Takeda. from Stanford University and Takeda’s research focuses on has since spent time at the Cal- automorphic forms and rep- ifornia Institute of Technology, resentations of p-adic groups, Rice University, the Mathemati- especially from the point of Liliana Borcea cal Sciences Research Institute, view of the Langlands program. Stanford University, and the He will use the Centennial Fel- École Normale Supérieure, Paris. Currently Peter Field lowship to visit the National Collegiate Professor of Mathematics at Michigan, she is Shuichiro Takeda University of Singapore and deeply involved in service to the applied and computa- work with Wee Teck Gan dur- tional mathematics community, in particular on editorial ing the academic year 2017–2018. boards and as an elected member of the SIAM Council. Takeda obtained a bachelor's degree in mechanical The Sonia Kovalevsky Lectureship honors significant engineering from Tokyo University of Science, master's de- contributions by women to applied or computational grees in philosophy and mathematics from San Francisco mathematics. State University, and a PhD in 2006 from the University —From an AWM announcement of Pennsylvania. After postdoctoral positions at the Uni- versity of California at San Diego, Ben-Gurion University in Israel, and Purdue University, since 2011 he has been Pardon Receives Waterman assistant and now associate professor at the University of Missouri at Columbia.
    [Show full text]
  • Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz
    FUNDAMENTALS OF PHYSICS – Vol. I - Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz QUANTUM MECHANICAL LAWS Bogdan Mielnik and Oscar Rosas-Ortiz Departamento de Física, Centro de Investigación y de Estudios Avanzados, México Keywords: Indeterminism, Quantum Observables, Probabilistic Interpretation, Schrödinger’s cat, Quantum Control, Entangled States, Einstein-Podolski-Rosen Paradox, Canonical Quantization, Bell Inequalities, Path integral, Quantum Cryptography, Quantum Teleportation, Quantum Computing. Contents: 1. Introduction 2. Black body radiation: the lateral problem becomes fundamental. 3. The discovery of photons 4. Compton’s effect: collisions confirm the existence of photons 5. Atoms: the contradictions of the planetary model 6. The mystery of the allowed energy levels 7. Luis de Broglie: particles or waves? 8. Schrödinger’s wave mechanics: wave vibrations explain the energy levels 9. The statistical interpretation 10. The Schrödinger’s picture of quantum theory 11. The uncertainty principle: instrumental and mathematical aspects. 12. Typical states and spectra 13. Unitary evolution 14. Canonical quantization: scientific or magic algorithm? 15. The mixed states 16. Quantum control: how to manipulate the particle? 17. Measurement theory and its conceptual consequences 18. Interpretational polemics and paradoxes 19. Entangled states 20. Dirac’s theory of the electron as the square root of the Klein-Gordon law 21. Feynman: the interference of virtual histories 22. Locality problems 23. The idea UNESCOof quantum computing and future – perspectives EOLSS 24. Open questions Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary The present day quantum laws unify simple empirical facts and fundamental principles describing the behavior of micro-systems. A parallel but different component is the symbolic language adequate to express the ‘logic’ of quantum phenomena.
    [Show full text]
  • Quantum Supergroups and Canonical Bases
    Quantum supergroups and canonical bases Sean Clark University of Virginia Dissertation Defense April 4, 2014 Let g be a semisimple Lie algebra (e.g. sl(n); so(2n + 1)). Π = fαi : i 2 Ig the simple roots. ±1 Uq(g) is the Q(q) algebra with generators Ei, Fi, Ki for i 2 I, Various relations; for example, hi −1 hhi,αji I Ki ≈ q , e.g. KiEjKi = q Ej 2 2 I quantum Serre, e.g. Fi Fj − [2]FiFjFi + FjFi = 0 (here [2] = q + q−1 is a quantum integer) Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g). WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. ±1 Uq(g) is the Q(q) algebra with generators Ei, Fi, Ki for i 2 I, Various relations; for example, hi −1 hhi,αji I Ki ≈ q , e.g. KiEjKi = q Ej 2 2 I quantum Serre, e.g. Fi Fj − [2]FiFjFi + FjFi = 0 (here [2] = q + q−1 is a quantum integer) Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g). WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. Let g be a semisimple Lie algebra (e.g. sl(n); so(2n + 1)). Π = fαi : i 2 Ig the simple roots. Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g).
    [Show full text]
  • Συνέντευξη Του Βλαντιμίρ Ιγκορέβιτς Άρνολντ (Vladimir Igorevich Arnold)
    Ιώ Λυγάτσικα Βαρβάκειο Γυμνάσιο Αύγουστος - Οκτώβριος 2010 Συνέντευξη του Βλαντιμίρ Ιγκορέβιτς Άρνολντ (Vladimir Igorevich Arnold) Από τους Michèle Audin και Patrick Iglesias 1 Συνέντευξη του Βλαντιμίρ Ιγκορέβιτς Άρνολντ Οι πληροφορίες αντλήθηκαν από τις εξής πηγές: http://en.wikipedia.org/ http://fr.wikipedia.org/ Περιεχόμενα Τα παρακάτω πρόσωπα παρουσιάζονται με αλφαβητική σειρά Πέιβελ Αλεξαντρόφ Μάικλ Γκρόμοβ Ιβάν Πετρόβσκι Ντίμιτρι Βίκτοροβιτς Άνοσοφ Καρλ Άξελ Χάρνακ Ανρί Πουανκαρέ Μάικλ Άτιγια Μάικλ Ρόμπερτ Χέρμαν Λέβ Ποντριάγκιν Μαρσέλ Μπερζέ Ντέιβιντ Χίλμπερτ Βλαντιμίρ Ρόκχλιν Ενρίκο Μπέτι Χεϊσούκ Χιρονάκα Νταβίντ Πιέρ Ρούελ Ζεν - Μισέλ Μπιζμού Νάιτζελ Χίτσιν Τακιούρο Σιτάνι Αντρέι Μπόλιμπρουκ Λουκ Ιλουζί K αρλ Λάντβιγκ Σίτζελ Ραούλ Μπότ Αλεξάντρ Κίριλοβ Γιάκοβ Σίναϊ Νικολά Μπουρμπακί Φίλιξ Κλάιν Ιζαντόρ Σίνγκερ Ενρί Πόλ Καρτάν Αντρέι Κολμόγκοροφ Στέφεν Σμέιλ Ογκουστίν – Λούις Κοσί Μαξίμ Κόντσεβιτς Α ντρέι Σόσλιν Νικολάι Κωνσταντίνοφ Πίτερ Κρόνχειμερ Τζόρτζ Στόουκς Ρίτσαρντ Ντέντεκαϊντ Έντμουντ Λάνταου Ζακ Στέρμ Λεζέν Ντιριζλέ Μπερνάρντ Μαλγκράνζ Ντένις Σουλιβάν Αντριέν Ντουαντί Τζόν Γουίλαρντ Μίλνορ Ρότζερ Μέιερ Τέμαμ Γιουτζίν Ντένκεν Σόλομ Μάντελμπροτζτ Ρενέ Τομ Λούντβιχ Φάντιβ Γιούρι Μάνιν Νικολάι Βασίλιεφ Μαικλ Φρίντμαν Ισαάκ Νέυτων Aνατόλι Βέρσικ Γουόλφανγκ Φάξς Βαϊοτσέσλαβ Νίκιουλιν Έρνεστ Βίνγκμπεργκ Ισραήλ Τζέλφαντ Σέργκεϊ Πέτροβιτς Νόβικοφ Ανατόλι Βιτούσκιν Χέρμαν Γκράσμαν Όλγα Όλεϊνικ Ζαν – Κριστόφ Γιόκοζ 2 Συνέντευξη του Βλαντιμίρ Ιγκορέβιτς Άρνολντ ► Βλαντιμίρ Ιγκορέβιτς Άρνολντ Vladimir Igorevich Arnold Ο Άρνολντ ήταν σπουδαίος μαθηματικός ρωσικής καταγωγής. Γεννήθηκε στις 12 Ιουνίου του 1937 στην Οδυσσό της Ουκρανίας και πέθανε στις 3 Ιουνίου του 2010, σε ηλικία 72 ετών, στο Παρίσι της Γαλλίας. Ο Άρνολντ αποφοίτησε από το Πανεπιστήμιο της Μόσχας το 1959, όπου ήταν μαθητής του Αντρέι Κολμογκόροφ. Στη συνέχεια εργάστηκε εκεί μέχρι το 1986 (ως καθηγητής από το 1965) και μετά εργάστηκε στο Ινστιντούτο Στέκλοβ (Steklov) της Μόσχας.
    [Show full text]