An Introduction to the Theory of Quantum Groups Ryan W

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Theory of Quantum Groups Ryan W Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2012 An introduction to the theory of quantum groups Ryan W. Downie Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Downie, Ryan W., "An introduction to the theory of quantum groups" (2012). EWU Masters Thesis Collection. 36. http://dc.ewu.edu/theses/36 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. EASTERN WASHINGTON UNIVERSITY An Introduction to the Theory of Quantum Groups by Ryan W. Downie A thesis submitted in partial fulfillment for the degree of Master of Science in Mathematics in the Department of Mathematics June 2012 THESIS OF RYAN W. DOWNIE APPROVED BY DATE: RON GENTLE, GRADUATE STUDY COMMITTEE DATE: DALE GARRAWAY, GRADUATE STUDY COMMITTEE EASTERN WASHINGTON UNIVERSITY Abstract Department of Mathematics Master of Science in Mathematics by Ryan W. Downie This thesis is meant to be an introduction to the theory of quantum groups, a new and exciting field having deep relevance to both pure and applied mathematics. Throughout the thesis, basic theory of requisite background material is developed within an overar- ching categorical framework. This background material includes vector spaces, algebras and coalgebras, bialgebras, Hopf algebras, and Lie algebras. The understanding gained from these subjects is then used to explore some of the more basic, albeit important, quantum groups. The thesis ends with an indication of how to proceed into the deeper areas of the theory. Acknowledgements First, and foremost, I would like to thank my wife, for her patience and encouragement throughout this process. A very deep and special thanks goes to Dr. Ron Gentle, my thesis advisor, for all his help, suggestions and insight. Similarly, I would like to thank Dr. Dale Garraway for his input and for serving, with Dr. Achin Sen, on my thesis committee. iii Contents Abstract ii Acknowledgements iii List of Figures vii 1 The Advent of Quantum Groups1 1.1 Introduction...................................1 1.1.1 Basic Description............................2 1.2 Background...................................3 1.2.1 The Mathematical Structure of Classical Mechanics........4 1.2.2 The Mathematical Structure of Quantum Mechanics........4 1.2.3 Quantum Groups Emerge.......................5 1.3 Overview of Approach.............................6 2 The Basics: Vector Spaces and Modules9 2.1 Vector Spaces..................................9 2.1.1 Direct Sums............................... 12 2.1.2 Quotient Spaces............................ 14 2.1.3 Tensor Products............................ 15 2.1.4 Duality................................. 30 2.2 Modules..................................... 32 2.2.1 Noetherian Rings and Noetherian Modules............. 34 2.2.2 Artinian Rings............................. 35 3 Algebras and Coalgebras 37 3.1 Algebras..................................... 37 3.1.1 Common Examples of Algebras.................... 39 3.1.2 Setting The Stage: A Preliminary Result.............. 41 3.1.3 Free Algebras.............................. 46 3.1.4 Tensor Products of Algebras..................... 48 3.1.4.1 Multilinear Maps and Iterated Tensor Products..... 52 3.1.4.2 Important Multilinear Maps................ 53 3.1.5 Graded Algebras............................ 55 3.1.6 The Tensor Algebra.......................... 56 iv Contents v 3.2 Coalgebras................................... 60 3.2.1 Sweedler's sigma notation....................... 69 3.2.2 Some Basic Coalgebra Theory..................... 71 3.2.3 The Tensor Product of Coalgebras.................. 79 3.2.4 The Algebra/Coalgebra Connection................. 81 3.2.5 Co-Semi-Simple Coalgebras...................... 97 4 Bialgebras and Hopf Algebras 100 4.1 Bialgebras.................................... 100 4.1.1 The Tensor Product of Bialgebras.................. 106 4.2 Hopf Algebras.................................. 108 4.2.1 The Tensor Product of Hopf Algebras................ 125 4.3 Comodules and Hopf Modules......................... 125 4.4 Actions and Coactions............................. 130 4.4.1 Actions................................. 131 4.5 The Group Algebra............................... 133 4.5.1 Grouplike Elements.......................... 140 4.6 M(2), GL(2) and SL(2)............................ 153 5 Lie Algebras 161 5.1 Background and Importance to the Theory of Quantum Groups...... 161 5.2 The Basics................................... 162 5.2.1 Introducing Lie Algebras....................... 162 5.2.2 Adjoints and the Commutator.................... 164 5.2.3 The General Linear Group and The General Linear Algebra.... 168 5.2.4 New Lie Algebras............................ 171 5.3 Enveloping Algebras.............................. 175 5.3.1 Representations of Lie Algebras.................... 176 5.3.2 The Universal Enveloping Algebra.................. 179 5.4 The Lie Algebra sl(2)............................. 188 5.5 Representations of sl(2)............................ 193 5.5.1 Weight Space.............................. 194 5.5.1.1 Constructing Irreducible sl(2)-modules.......... 199 5.5.2 The Universal Enveloping Algebra of sl(2).............. 202 5.5.3 Duality................................. 206 6 Deformation Quantization: The Quantum Plane and Other Deformed Spaces 220 6.1 Introduction................................... 220 6.2 The Affine Line and Plane........................... 220 6.2.1 The Affine Line............................. 221 6.2.2 The Affine Plane............................ 222 6.3 The Quantum Plane.............................. 233 6.3.1 Ore Extensions............................. 236 6.3.2 q-Analysis................................ 245 6.4 The Quantum Groups GLq(2) and SLq(2).................. 251 6.4.1 Mq(2).................................. 251 Contents vi 6.4.2 Quantum Determinant......................... 254 6.4.3 The Quantum Groups GLq(2) and SLq(2).............. 266 7 The Quantum Enveloping Algebra Uq(sl(2)) 270 7.1 Introduction................................... 270 7.2 Some Basic Properties of Uq(sl(2))...................... 270 7.2.1 q-Analysis Revisited.......................... 270 7.3 Motivating Uq(sl(2)).............................. 273 7.4 An Alternative Presentation of Uq(sl(2))................... 290 7.5 Representations of Uq(sl(2)).......................... 296 7.5.1 When q is not a Root of Unity.................... 297 7.5.1.1 Verma Modules....................... 301 7.5.2 When q is a Root of Unity...................... 304 7.5.3 Action on the Quantum Plane.................... 309 7.5.4 Duality between Uq(sl(2)) and SLq(2)................ 315 Bibliography 319 List of Figures 1.1..........................................8 3.1.......................................... 70 4.1 Revised diagram for f ? η" = f......................... 110 4.2 This diagram encodes the antipode axiom for a Hopf algebra........ 112 4.3 Hopf morphism diagram combined with antipode diagram.......... 113 4.4 Algebra diagram for κ[G]............................ 134 4.5 Unit diagram for κ[G]............................. 134 4.6 The coalgebra diagram for κ[G]........................ 139 4.7 The counit diagram for κ[G].......................... 139 vii For my wife Tara viii Chapter 1 The Advent of Quantum Groups 1.1 Introduction At the writing of this thesis the theory of quantum groups is a young and burgeoning area of study. The excitement surrounding the theory is due to its implications for both pure and applied mathematics. My particular interest in the subject was aroused on both accounts. I was actually introduced to the concept while reading a book on the mathematical structure of quantum mechanics. Given my affinity for both pure mathematics and mathematical physics, quantum groups was a very clear choice for me. And what aspiring mathematician wouldn't be thrilled to participate in a new and exciting area of research? This, however, is a double edged sword since although there is a lot of potential for one to contribute, brand new mathematical ideas are generally very involved, complicated, abstract and just plain difficult. They are built on and blossom from deep, as well as broad, mathematical ideas. One cannot hope to simply dive in, but needs a diverse wealth of mathematical background just to get started. Suffice it to say, this is what I very clearly discovered while writing this thesis and, to a large extent, is why it turned out so long. Even despite the length, I was only able to address the very basics of the theory. Nevertheless, the study was most worthwhile and enlightening, giving me occasion to greatly expand my mathematical knowledge and understanding as well as deepen my understanding of what I was taught in my course work. It is my hope that the reader will gain a similar benefit from exploring this thesis and will appreciate the beauty of this most fascinating subject. 1 Chapter 1. The Advent of Quantum Groups 2 1.1.1 Basic Description To some extent, quantum groups almost sound like science fiction, especially given the weirdness surrounding the discoveries of quantum physics. So, just what are these exciting new structures called quantum groups? It's always good to
Recommended publications
  • Quantum Groups and Algebraic Geometry in Conformal Field Theory
    QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY DlU'KKERU EI.INKWIJK BV - UTRECHT QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY QUANTUMGROEPEN EN ALGEBRAISCHE MEETKUNDE IN CONFORME VELDENTHEORIE (mrt em samcnrattint] in hit Stdirlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE RIJKSUNIVERSITEIT TE UTRECHT. OP GEZAG VAN DE RECTOR MAGNIFICUS. TROF. DR. J.A. VAN GINKEI., INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DE- CANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 19 SEPTEMBER 1989 DES NAMIDDAGS TE 2.30 UUR DOOR Theodericus Johannes Henrichs Smit GEBOREN OP 8 APRIL 1962 TE DEN HAAG PROMOTORES: PROF. DR. B. DE WIT PROF. DR. M. HAZEWINKEL "-*1 Dit proefschrift kwam tot stand met "•••; financiele hulp van de stichting voor Fundamenteel Onderzoek der Materie (F.O.M.) Aan mijn ouders Aan Saskia Contents Introduction and summary 3 1.1 Conformal invariance and the conformal bootstrap 11 1.1.1 Conformal symmetry and correlation functions 11 1.1.2 The conformal bootstrap program 23 1.2 Axiomatic conformal field theory 31 1.3 The emergence of a Hopf algebra 4G The modular geometry of string theory 56 2.1 The partition function on moduli space 06 2.2 Determinant line bundles 63 2.2.1 Complex line bundles and divisors on a Riemann surface . (i3 2.2.2 Cauchy-Riemann operators (iT 2.2.3 Metrical properties of determinants of Cauchy-Ricmann oper- ators 6!) 2.3 The Mumford form on moduli space 77 2.3.1 The Quillen metric on determinant line bundles 77 2.3.2 The Grothendieck-Riemann-Roch theorem and the Mumford
    [Show full text]
  • EVERY ABELIAN GROUP IS the CLASS GROUP of a SIMPLE DEDEKIND DOMAIN 2 Class Group
    EVERY ABELIAN GROUP IS THE CLASS GROUP OF A SIMPLE DEDEKIND DOMAIN DANIEL SMERTNIG Abstract. A classical result of Claborn states that every abelian group is the class group of a commutative Dedekind domain. Among noncommutative Dedekind prime rings, apart from PI rings, the simple Dedekind domains form a second important class. We show that every abelian group is the class group of a noncommutative simple Dedekind domain. This solves an open problem stated by Levy and Robson in their recent monograph on hereditary Noetherian prime rings. 1. Introduction Throughout the paper, a domain is a not necessarily commutative unital ring in which the zero element is the unique zero divisor. In [Cla66], Claborn showed that every abelian group G is the class group of a commutative Dedekind domain. An exposition is contained in [Fos73, Chapter III §14]. Similar existence results, yield- ing commutative Dedekind domains which are more geometric, respectively num- ber theoretic, in nature, were obtained by Leedham-Green in [LG72] and Rosen in [Ros73, Ros76]. Recently, Clark in [Cla09] showed that every abelian group is the class group of an elliptic commutative Dedekind domain, and that this domain can be chosen to be the integral closure of a PID in a quadratic field extension. See Clark’s article for an overview of his and earlier results. In commutative mul- tiplicative ideal theory also the distribution of nonzero prime ideals within the ideal classes plays an important role. For an overview of realization results in this direction see [GHK06, Chapter 3.7c]. A ring R is a Dedekind prime ring if every nonzero submodule of a (left or right) progenerator is a progenerator (see [MR01, Chapter 5]).
    [Show full text]
  • Quantum Group and Quantum Symmetry
    QUANTUM GROUP AND QUANTUM SYMMETRY Zhe Chang International Centre for Theoretical Physics, Trieste, Italy INFN, Sezione di Trieste, Trieste, Italy and Institute of High Energy Physics, Academia Sinica, Beijing, China Contents 1 Introduction 3 2 Yang-Baxter equation 5 2.1 Integrable quantum field theory ...................... 5 2.2 Lattice statistical physics .......................... 8 2.3 Yang-Baxter equation ............................ 11 2.4 Classical Yang-Baxter equation ...................... 13 3 Quantum group theory 16 3.1 Hopf algebra ................................. 16 3.2 Quantization of Lie bi-algebra ....................... 19 3.3 Quantum double .............................. 22 3.3.1 SUq(2) as the quantum double ................... 23 3.3.2 Uq (g) as the quantum double ................... 27 3.3.3 Universal R-matrix ......................... 30 4Representationtheory 33 4.1 Representations for generic q........................ 34 4.1.1 Representations of SUq(2) ..................... 34 4.1.2 Representations of Uq(g), the general case ............ 41 4.2 Representations for q being a root of unity ................ 43 4.2.1 Representations of SUq(2) ..................... 44 4.2.2 Representations of Uq(g), the general case ............ 55 1 5 Hamiltonian system 58 5.1 Classical symmetric top system ...................... 60 5.2 Quantum symmetric top system ...................... 66 6 Integrable lattice model 70 6.1 Vertex model ................................ 71 6.2 S.O.S model ................................. 79 6.3 Configuration
    [Show full text]
  • Non-Commutative Phase and the Unitarization of GL {P, Q}(2)
    Non–commutative phase and the unitarization of GLp,q (2) M. Arık and B.T. Kaynak Department of Physics, Bo˘gazi¸ci University, 80815 Bebek, Istanbul, Turkey Abstract In this paper, imposing hermitian conjugate relations on the two– parameter deformed quantum group GLp,q (2) is studied. This results in a non-commutative phase associated with the unitarization of the quantum group. After the achievement of the quantum group Up,q (2) with pq real via a non–commutative phase, the representation of the algebra is built by means of the action of the operators constituting the Up,q (2) matrix on states. 1 Introduction The mathematical construction of a quantum group Gq pertaining to a given Lie group G is simply a deformation of a commutative Poisson-Hopf algebra defined over G. The structure of a deformation is not only a Hopf algebra arXiv:hep-th/0208089v2 18 Oct 2002 but characteristically a non-commutative algebra as well. The notion of quantum groups in physics is widely known to be the generalization of the symmetry properties of both classical Lie groups and Lie algebras, where two different mathematical blocks, namely deformation and co–multiplication, are simultaneously imposed either on the related Lie group or on the related Lie algebra. A quantum group is defined algebraically as a quasi–triangular Hopf alge- bra. It can be either non-commutative or commutative. It is fundamentally a bi–algebra with an antipode so as to consist of either the q–deformed uni- versal enveloping algebra of the classical Lie algebra or its dual, called the matrix quantum group, which can be understood as the q–analog of a classi- cal matrix group [1].
    [Show full text]
  • Finite Domination and Novikov Rings (Two Variables)
    Finite domination and Novikov rings: Laurent polynomial rings in two variables Huttemann, T., & Quinn, D. (2014). Finite domination and Novikov rings: Laurent polynomial rings in two variables. Journal of Algebra and its Applications, 14(4), [1550055]. https://doi.org/10.1142/S0219498815500553 Published in: Journal of Algebra and its Applications Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Electronic version of an article published as Journal of Algebra and Its Applications, Volume 14 , Issue 4, Year 2015. [DOI: 10.1142/S0219498815500553] © 2015 copyright World Scientific Publishing Company http://www.worldscientific.com/worldscinet/jaa] General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:27. Sep. 2021 FINITE DOMINATION AND NOVIKOV RINGS. LAURENT POLYNOMIAL RINGS IN TWO VARIABLES THOMAS HUTTEMANN¨ AND DAVID QUINN Abstract. Let C be a bounded cochain complex of finitely generated free modules over the Laurent polynomial ring L = R[x; x−1; y; y−1].
    [Show full text]
  • Non-Commutative Dual Representation for Quantum Systems on Lie Groups
    Loops 11: Non-Perturbative / Background Independent Quantum Gravity IOP Publishing Journal of Physics: Conference Series 360 (2012) 012052 doi:10.1088/1742-6596/360/1/012052 Non-commutative dual representation for quantum systems on Lie groups Matti Raasakka Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am M¨uhlenberg 1, 14476 Potsdam, Germany, EU E-mail: [email protected] Abstract. We provide a short overview of some recent results on the application of group Fourier transform to quantum mechanics and quantum gravity. We close by pointing out some future research directions. 1. Introduction The group Fourier transform is an integral transform from functions on a Lie group to functions on a non-commutative dual space. It was first formulated for functions on SO(3) [1, 2], later generalized to SU(2) [2–4] and other Lie groups [5, 6], and is based on the quantum group structure of Drinfel’d double of the group [7, 8]. The transform provides a unitarily equivalent representation of quantum systems with a Lie group configuration space in terms of non- commutative algebra of functions on the classical dual space, the dual of the Lie algebra. As such, it has proven useful in several different ways. Most importantly, it provides a clear connection between the quantum system and the corresponding classical one, allowing for a better physical insight into the system. In the case of quantum gravity models this has turned out to be particularly helpful in unraveling the geometrical content of the models, because the dual variables have an intuitive interpretation as classical geometrical quantities.
    [Show full text]
  • 1.25. the Quantum Group Uq (Sl2). Let Us Consider the Lie Algebra Sl2
    55 1.25. The Quantum Group Uq (sl2). Let us consider the Lie algebra sl2. Recall that there is a basis h; e; f 2 sl2 such that [h; e] = 2e; [h; f] = −2f; [e; f] = h. This motivates the following definition. Definition 1.25.1. Let q 2 k; q =6 ±1. The quantum group Uq(sl2) is generated by elements E; F and an invertible element K with defining relations K − K−1 KEK−1 = q2E; KFK−1 = q−2F; [E; F] = : −1 q − q Theorem 1.25.2. There exists a unique Hopf algebra structure on Uq (sl2), given by • Δ(K) = K ⊗ K (thus K is a grouplike element); • Δ(E) = E ⊗ K + 1 ⊗ E; • Δ(F) = F ⊗ 1 + K−1 ⊗ F (thus E; F are skew-primitive ele­ ments). Exercise 1.25.3. Prove Theorem 1.25.2. Remark 1.25.4. Heuristically, K = qh, and thus K − K−1 lim = h: −1 q!1 q − q So in the limit q ! 1, the relations of Uq (sl2) degenerate into the relations of U(sl2), and thus Uq (sl2) should be viewed as a Hopf algebra deformation of the enveloping algebra U(sl2). In fact, one can make this heuristic idea into a precise statement, see e.g. [K]. If q is a root of unity, one can also define a finite dimensional version of Uq (sl2). Namely, assume that the order of q is an odd number `. Let uq (sl2) be the quotient of Uq (sl2) by the additional relations ` ` ` E = F = K − 1 = 0: Then it is easy to show that uq (sl2) is a Hopf algebra (with the co­ product inherited from Uq (sl2)).
    [Show full text]
  • KRULL DIMENSION and MONOMIAL ORDERS Introduction Let R Be An
    KRULL DIMENSION AND MONOMIAL ORDERS GREGOR KEMPER AND NGO VIET TRUNG Abstract. We introduce the notion of independent sequences with respect to a mono- mial order by using the least terms of polynomials vanishing at the sequence. Our main result shows that the Krull dimension of a Noetherian ring is equal to the supremum of the length of independent sequences. The proof has led to other notions of indepen- dent sequences, which have interesting applications. For example, we can show that dim R=0 : J 1 is the maximum number of analytically independent elements in an arbi- trary ideal J of a local ring R and that dim B ≤ dim A if B ⊂ A are (not necessarily finitely generated) subalgebras of a finitely generated algebra over a Noetherian Jacobson ring. Introduction Let R be an arbitrary Noetherian ring, where a ring is always assumed to be commu- tative with identity. The aim of this paper is to characterize the Krull dimension dim R by means of a monomial order on polynomial rings over R. We are inspired of a result of Lombardi in [13] (see also Coquand and Lombardi [4], [5]) which says that for a positive integer s, dim R < s if and only if for every sequence of elements a1; : : : ; as in R, there exist nonnegative integers m1; : : : ; ms and elements c1; : : : ; cs 2 R such that m1 ms m1+1 m1 m2+1 m1 ms−1 ms+1 a1 ··· as + c1a1 + c2a1 a2 + ··· + csa1 ··· as−1 as = 0: This result has helped to develop a constructive theory for the Krull dimension [6], [7], [8].
    [Show full text]
  • Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz
    FUNDAMENTALS OF PHYSICS – Vol. I - Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz QUANTUM MECHANICAL LAWS Bogdan Mielnik and Oscar Rosas-Ortiz Departamento de Física, Centro de Investigación y de Estudios Avanzados, México Keywords: Indeterminism, Quantum Observables, Probabilistic Interpretation, Schrödinger’s cat, Quantum Control, Entangled States, Einstein-Podolski-Rosen Paradox, Canonical Quantization, Bell Inequalities, Path integral, Quantum Cryptography, Quantum Teleportation, Quantum Computing. Contents: 1. Introduction 2. Black body radiation: the lateral problem becomes fundamental. 3. The discovery of photons 4. Compton’s effect: collisions confirm the existence of photons 5. Atoms: the contradictions of the planetary model 6. The mystery of the allowed energy levels 7. Luis de Broglie: particles or waves? 8. Schrödinger’s wave mechanics: wave vibrations explain the energy levels 9. The statistical interpretation 10. The Schrödinger’s picture of quantum theory 11. The uncertainty principle: instrumental and mathematical aspects. 12. Typical states and spectra 13. Unitary evolution 14. Canonical quantization: scientific or magic algorithm? 15. The mixed states 16. Quantum control: how to manipulate the particle? 17. Measurement theory and its conceptual consequences 18. Interpretational polemics and paradoxes 19. Entangled states 20. Dirac’s theory of the electron as the square root of the Klein-Gordon law 21. Feynman: the interference of virtual histories 22. Locality problems 23. The idea UNESCOof quantum computing and future – perspectives EOLSS 24. Open questions Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary The present day quantum laws unify simple empirical facts and fundamental principles describing the behavior of micro-systems. A parallel but different component is the symbolic language adequate to express the ‘logic’ of quantum phenomena.
    [Show full text]
  • Quantum Supergroups and Canonical Bases
    Quantum supergroups and canonical bases Sean Clark University of Virginia Dissertation Defense April 4, 2014 Let g be a semisimple Lie algebra (e.g. sl(n); so(2n + 1)). Π = fαi : i 2 Ig the simple roots. ±1 Uq(g) is the Q(q) algebra with generators Ei, Fi, Ki for i 2 I, Various relations; for example, hi −1 hhi,αji I Ki ≈ q , e.g. KiEjKi = q Ej 2 2 I quantum Serre, e.g. Fi Fj − [2]FiFjFi + FjFi = 0 (here [2] = q + q−1 is a quantum integer) Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g). WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. ±1 Uq(g) is the Q(q) algebra with generators Ei, Fi, Ki for i 2 I, Various relations; for example, hi −1 hhi,αji I Ki ≈ q , e.g. KiEjKi = q Ej 2 2 I quantum Serre, e.g. Fi Fj − [2]FiFjFi + FjFi = 0 (here [2] = q + q−1 is a quantum integer) Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g). WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. Let g be a semisimple Lie algebra (e.g. sl(n); so(2n + 1)). Π = fαi : i 2 Ig the simple roots. Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g).
    [Show full text]
  • An Algorithm for Unimodular Completion Over Laurent Polynomial Rings
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Linear Algebra and its Applications 429 (2008) 1687–1698 www.elsevier.com/locate/laa An algorithm for unimodular completion over Laurent polynomial rings Morou Amidou a, Ihsen Yengui b,∗ a Département de Mathématiques, Faculté des Sciences de Niamey, B.P. 10662 Niamey, Niger b Département de Mathématiques, Faculté des Sciences de Sfax, 3000 Sfax, Tunisia Received 8 June 2006; accepted 6 May 2008 Available online 24 June 2008 Submitted by R.A. Brualdi Abstract We present a new and simple algorithm for completion of unimodular vectors with entries in a multivariate = [ ± ±] Laurent polynomial ring R K X1 ,...,Xk over an infinite field K. More precisely, given n 3 and a t n unimodular vector V = (v1,...,vn) ∈ R (that is, such that v1,...,vn=R), the algorithm computes t −1 a matrix M in Mn(R) whose determinant is a monomial such that MV = (1, 0,...,0), and thus M is a completion of V to an invertible matrix. © 2008 Elsevier Inc. All rights reserved. AMS classification: 13C10; 19A13; 14Q20; 03F65 Keywords: Quillen–Suslin theorem; Multivariate Laurent polynomial matrices; Computer algebra 0. Introduction In 1955, Serre remarked [15] that it was not known whether there exist finitely generated projective modules over A = K[X1,...,Xk], K a field, which are not free. This remark turned into the “Serre conjecture”, stating that indeed there were no such modules. Proven independently by Quillen [14] and Suslin [16], it became subsequently known as the Quillen–Suslin theorem.
    [Show full text]
  • A Brief History of Hidden Quantum Symmetries in Conformal Field
    A brief history of hidden quantum symmetries in Conformal Field Theories∗ C´esar G´omez and Germ´an Sierra Instituto de Matem´aticas y F´ısica Fundamental, CSIC Serrano 123. Madrid, SPAIN Abstract We review briefly a stream of ideas concerning the role of quantum groups as hidden symmetries in Conformal Field Theories, paying particular attention to the field theo- retical representation of quantum groups based on Coulomb gas methods. An extensive bibliography is also included. arXiv:hep-th/9211068v1 16 Nov 1992 ∗Lecture presented in the XXI DGMTP-Conference (Tianjin ,1992) and in the NATO-Seminar (Salamanca,1992). 0 Integrability, Yang-Baxter equation and Quantum Groups In the last few years it has become clear the close relationship between conformal field theories (CFT’s), specially the rational theories , and the theory of quantum groups.From a more general point of view this is just one aspect of the connection between integrable systems and quantum groups. In fact if one recalls the history, quantum groups originated from the study of integrable models and more precisely from the quantum inverse scattering approach to integrability. The basic relation: R(u − v) T1(u) T2(v)= T2(v) T1(u) R(u − v) (1) which is at the core of this approach may also be taken as a starting point in the definition of quantum groups [FRT]. In statistical mechanics the operator T (u) is nothing but the monodromy matrix which depends on the spectral parameter u and whose trace gives the transfer matrix of a vertex model. Meanwhile the matrix R(u) stands for the Boltzmann weights of this vertex model.
    [Show full text]