Quantum Groups and Algebraic Geometry in Conformal Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Groups and Algebraic Geometry in Conformal Field Theory QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY DlU'KKERU EI.INKWIJK BV - UTRECHT QUANTUM GROUPS AND ALGEBRAIC GEOMETRY IN CONFORMAL FIELD THEORY QUANTUMGROEPEN EN ALGEBRAISCHE MEETKUNDE IN CONFORME VELDENTHEORIE (mrt em samcnrattint] in hit Stdirlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE RIJKSUNIVERSITEIT TE UTRECHT. OP GEZAG VAN DE RECTOR MAGNIFICUS. TROF. DR. J.A. VAN GINKEI., INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DE- CANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 19 SEPTEMBER 1989 DES NAMIDDAGS TE 2.30 UUR DOOR Theodericus Johannes Henrichs Smit GEBOREN OP 8 APRIL 1962 TE DEN HAAG PROMOTORES: PROF. DR. B. DE WIT PROF. DR. M. HAZEWINKEL "-*1 Dit proefschrift kwam tot stand met "•••; financiele hulp van de stichting voor Fundamenteel Onderzoek der Materie (F.O.M.) Aan mijn ouders Aan Saskia Contents Introduction and summary 3 1.1 Conformal invariance and the conformal bootstrap 11 1.1.1 Conformal symmetry and correlation functions 11 1.1.2 The conformal bootstrap program 23 1.2 Axiomatic conformal field theory 31 1.3 The emergence of a Hopf algebra 4G The modular geometry of string theory 56 2.1 The partition function on moduli space 06 2.2 Determinant line bundles 63 2.2.1 Complex line bundles and divisors on a Riemann surface . (i3 2.2.2 Cauchy-Riemann operators (iT 2.2.3 Metrical properties of determinants of Cauchy-Ricmann oper- ators 6!) 2.3 The Mumford form on moduli space 77 2.3.1 The Quillen metric on determinant line bundles 77 2.3.2 The Grothendieck-Riemann-Roch theorem and the Mumford form 82 2.3.3 An algebraic formula for the partition function 87 2.3.4 The partition function on compactified moduli space 91 2.4 The Quillen metric as a modular geometry 95 The quantum group structure of W algebras 103 3.1 Introduction 103 3.2 Classical W algebras 106 3.2.1 The bi-Poisson structure for the Virasoro algebra 107 3.2.2 The geometrical construction of W algebras 113 3.2.3 The relation with Toda field theory and the classical Yang- Baxter equation 121 3.3 Quantization of the Poisson brackets of W algebras 124 3.3.1 The Hilbert space completion of a quantum group 125 3.3.2 Quantization of the Poisson brackets for IV algebras 136 il Contents 4 A Hopf algebra structure in orbifold models 147 4.1 Introduction 117 4.2 Orbifold partition functions are Thompson-series 152 4.2.1 Partition functions in genus-one 152 4.2.2 Thompson-series and Heckc operators 1.55 4.2.3 Generalized Thompson-series and orbifold partition functions . lfil -1.3 The Hopf algebra associated with the fusion algebra 168 4.3.1 The Hopf algebra structure of A 169 4.3.2 Outlook 178 4.4 Appendix ISO Bibliography 184 Samenvatting 192 Dankwoord 196 Curriculum Vitae 197 Chapter 1 Introduction and Summary of Results During the past few years, two-dimensional confonnally invariant quantum field theory has become of importance in string theory and statistical mechanics. Aside from its physical applications, this theory revealed interesting connections between mathematics and physics, which lead to a formulation of quantum field theory based on algebraic geometrical principles. Conformal field theory turned out to be relevant in models in two-dimensional statistical mechanics exhibiting a second order phase transition [26]. At such a phase transition the typical configurations have fluctuations on all length scales, so that the field theory describing the model at a critical point is expected to be invariant under scale transformations. In fact, it turns out that the field theory is invariant under a larger set of symmetry transformations which form the so-called conformal group. Unlike in three or higher dimensions the conformal group is infinite dimensional in two dimensions. This fact imposes significant restrictions on two-dimensional conformally invariant theories. Ultimately, one might hope that these restrictions are strong enough to obtain a complete classification of two-dimensional critical systems. Two-dimensional conformally invariant field theories are also central to string theory. This is a theory in which it is assumed that elementary particles are not point-like but rather behave as one dimensional objects, called strings. Strings can propagate in different vibration modes, and interact by joining and splitting. In one of these possible modes the string behaves as a massless spin-two state, so that one concludes that string theory is in fact a theory of gravity. In perturbation theory, the amplitudes of a string theory can be expressed as sums over all possible two-dimensional world-sheets of various topology, swept out by a string in space-time. In a Euclidean formulation the world-sheet is described as a Riemann surface of a given genus. The terms in the perturbation series only depend on the conformal equivalence class of the two-dimensional metric on the Riemann surface. These classes are labelled by the so-called moduli of the surface. Let us make this more precise. The metrics that can be realized on a two dimensional Eurlidean compact surface fall into equivalence classes of the diffeomorphism group Chapter I. Introduction and summary and the group of scale transformations acting on the infinite dimensional space of all metrics. These two groups arc the symmetry groups in string theory, so it seems natural to require that the perturbation series have the same symmetries. This can bo conveniently achieved by a so-called gauge fixing procedure. Ideally, one would like to gauge fix both groups simultaneously. However, this is impossible as there does not exist a measure on the space of metrics that is invariant under the both scale transformations and the diffeomorphism group. One way to deal with this problem is to choose the measure to be invariant under the diffeomorphism group. One then tries to compute the dependence on the conformal factor of the metric, which describes scale transformations. This tan be done easily on a Riemann surface of genus zero, for a given conformal factor, in which case all metrics are equivalent, i.e. they are pure gauge. The condition of scale in variance is then expressed as a differential equation for the conformal factor. For a generic Riemann surface this analysis is much more complicated. One now has to distinguish between metrics that can be identified by an infinitesimal diffeomorphism, and metrics that are only equivalent under a global diffeomorphism which cannot be continuously deformed to the identity. Consequently, one now has to consider the space of equivalence classes of diffeomorphisms, which is called the Teichmuller space. On this space we have the action of the mapping class group. which is formed by the global diffeomorphisms of a Riemann surface. As we will show in detail in chapter two, the condition of scale invariance is equivalent to the requirement that the theory be invariant under the action of the mapping class group. The scale invariant theory is thus defined on the orbit space obtained from the Teichmuller space by dividing out the mapping class group. This orbit space is known as the moduli space of the Riemann surface. For compact Riemann surfaces it is a finite dimensional space. In this way the condition of scale invariance reduces to the problem of finding a real valued measure on the moduli space. We will compute such a measure, which we refer to as the Polyakov measure, using elements of algebraic geometry. Its existence was first proven by Belavin and Kniznik [17]. The formulation of string theory in terms of algebraic geometry allows one to discuss in detail the relation between this theory and conformal field theory. For ex- ample, it follows that the amplitudes of a consistent string theory can be expressed in terms of correlation functions of a conformal field theory. Some conformal field theories describe the propagation of a string on compactified space-time. Others do not have such an obvious space-time interpretation. However, as we will ex- plain later, the property of conformal invariance allows one to interpret arbitrary combinations of conformal field theories as a space-time, so that one concludes that a conformally invariant two-dimensional quantum field theory describes the prop- agation of a string in a static background. The Ward identities of the conformal field theory guarantee the unitarity of the string scattering amplitudes. We thus 9 conclude that it is relevant for both string theory and statistical systems to study the classification of two-dimensional conformal field theories. In this thesis we will study the classification of two-dimensional conformal field theories in terms of algebraic principles. The first attempts to formulate a classifica- tion program for conformal field theories are described in [18,55,52]. As we will sec below the properties of a conformal field theory are conveniently described by means of the representation theory of its symmetry algebra. The most familiar example of such an algebra is the Virasoro Lie algebra. The Hilbert space of a conformal field theory with the Virasoro algebra as its symmetry algebra, can be decomposed into highest weight representations of this algebra. An important property of the symmetry algebra is the existence of so-called degenerate representations which are highest weight representations that contain invariant subspaces, spanned by null- vectors, which vectors othogonal to every other vector inducing themselves. In the physical Hilbert space these subspaces have to be excluded. This amounts to con- sidering the 'irreducible quotient', by simply putting these vectors to zero, which results ,n a smaller representation of the symmetry algebra. (This is similar to the situation in quantum electrodynamics where one uses the Gupta-Bleuler method to construct the physical Hilbcrt space.) All these representations are specified by two parameters.
Recommended publications
  • Structure, Classification, and Conformal Symmetry, of Elementary
    Lett Math Phys (2009) 89:171–182 DOI 10.1007/s11005-009-0351-2 Structure, Classification, and Conformal Symmetry, of Elementary Particles over Non-Archimedean Space–Time V. S. VARADARAJAN and JUKKA VIRTANEN Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA. e-mail: [email protected]; [email protected] Received: 3 April 2009 / Revised: 12 September 2009 / Accepted: 12 September 2009 Publishedonline:23September2009–©TheAuthor(s)2009. This article is published with open access at Springerlink.com Abstract. It is known that no length or time measurements are possible in sub-Planckian regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of space- time may therefore be assumed to be non-archimedean. In this letter, the consequences of this hypothesis for the structure, classification, and conformal symmetry of elementary particles, when spacetime is a flat space over a non-archimedean field such as the p-adic numbers, is explored. Both the Poincare´ and Galilean groups are treated. The results are based on a new variant of the Mackey machine for projective unitary representations of semidirect product groups which are locally compact and second countable. Conformal spacetime is constructed over p-adic fields and the impossibility of conformal symmetry of massive and eventually massive particles is proved. Mathematics Subject Classification (2000). 22E50, 22E70, 20C35, 81R05. Keywords. Volovich hypothesis, non-archimedean fields, Poincare´ group, Galilean group, semidirect product, cocycles, affine action, conformal spacetime, conformal symmetry, massive, eventually massive, massless particles. 1. Introduction In the 1970s many physicists, concerned about the divergences in quantum field theories, started exploring the micro-structure of space–time itself as a possible source of these problems.
    [Show full text]
  • Quantum Group and Quantum Symmetry
    QUANTUM GROUP AND QUANTUM SYMMETRY Zhe Chang International Centre for Theoretical Physics, Trieste, Italy INFN, Sezione di Trieste, Trieste, Italy and Institute of High Energy Physics, Academia Sinica, Beijing, China Contents 1 Introduction 3 2 Yang-Baxter equation 5 2.1 Integrable quantum field theory ...................... 5 2.2 Lattice statistical physics .......................... 8 2.3 Yang-Baxter equation ............................ 11 2.4 Classical Yang-Baxter equation ...................... 13 3 Quantum group theory 16 3.1 Hopf algebra ................................. 16 3.2 Quantization of Lie bi-algebra ....................... 19 3.3 Quantum double .............................. 22 3.3.1 SUq(2) as the quantum double ................... 23 3.3.2 Uq (g) as the quantum double ................... 27 3.3.3 Universal R-matrix ......................... 30 4Representationtheory 33 4.1 Representations for generic q........................ 34 4.1.1 Representations of SUq(2) ..................... 34 4.1.2 Representations of Uq(g), the general case ............ 41 4.2 Representations for q being a root of unity ................ 43 4.2.1 Representations of SUq(2) ..................... 44 4.2.2 Representations of Uq(g), the general case ............ 55 1 5 Hamiltonian system 58 5.1 Classical symmetric top system ...................... 60 5.2 Quantum symmetric top system ...................... 66 6 Integrable lattice model 70 6.1 Vertex model ................................ 71 6.2 S.O.S model ................................. 79 6.3 Configuration
    [Show full text]
  • Remarks on A2 Toda Field Theory 1 Introduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Remarks on A2 Toda Field Theory S. A. Apikyan1 Department of Theoretical Physics Yerevan State University Al. Manoogian 1, Yerevan 375049, Armenia C. Efthimiou2 Department of Physics University of Central Florida Orlando, FL 32816, USA Abstract We study the Toda field theory with finite Lie algebras using an extension of the Goulian-Li technique. In this way, we show that, af- ter integrating over the zero mode in the correlation functions of the exponential fields, the resulting correlation function resembles that of a free theory. Furthermore, it is shown that for some ratios of the charges of the exponential fields the four-point correlation functions which contain a degenerate field satisfy the Riemann ordinary differ- ential equation. Using this fact and the crossing symmetry, we derive a set of functional equations for the structure constants of the A2 Toda field theory. 1 Introduction The Toda field theory (TFT) provides an extremely useful description of a large class of two-dimensional integrable quantum field theories. For this reason these models have attracted a considerable interest in recent years and many outstanding results in various directions have been established. TFTs are divided in three broad categories: finite Toda theories (FTFTs) for which the underlying Kac-Moody algebra [1, 2] is a finite Lie algebra, affine Toda theories (ATFTs) for which the underlying Kac-Moody algebra [email protected] [email protected] 1 is an affine algebra and indefinite Toda theories (ITFTs) for which the under- lying Kac-Moody algebra is an indefinite Kac-Moody algebra.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Non-Commutative Phase and the Unitarization of GL {P, Q}(2)
    Non–commutative phase and the unitarization of GLp,q (2) M. Arık and B.T. Kaynak Department of Physics, Bo˘gazi¸ci University, 80815 Bebek, Istanbul, Turkey Abstract In this paper, imposing hermitian conjugate relations on the two– parameter deformed quantum group GLp,q (2) is studied. This results in a non-commutative phase associated with the unitarization of the quantum group. After the achievement of the quantum group Up,q (2) with pq real via a non–commutative phase, the representation of the algebra is built by means of the action of the operators constituting the Up,q (2) matrix on states. 1 Introduction The mathematical construction of a quantum group Gq pertaining to a given Lie group G is simply a deformation of a commutative Poisson-Hopf algebra defined over G. The structure of a deformation is not only a Hopf algebra arXiv:hep-th/0208089v2 18 Oct 2002 but characteristically a non-commutative algebra as well. The notion of quantum groups in physics is widely known to be the generalization of the symmetry properties of both classical Lie groups and Lie algebras, where two different mathematical blocks, namely deformation and co–multiplication, are simultaneously imposed either on the related Lie group or on the related Lie algebra. A quantum group is defined algebraically as a quasi–triangular Hopf alge- bra. It can be either non-commutative or commutative. It is fundamentally a bi–algebra with an antipode so as to consist of either the q–deformed uni- versal enveloping algebra of the classical Lie algebra or its dual, called the matrix quantum group, which can be understood as the q–analog of a classi- cal matrix group [1].
    [Show full text]
  • Non-Commutative Dual Representation for Quantum Systems on Lie Groups
    Loops 11: Non-Perturbative / Background Independent Quantum Gravity IOP Publishing Journal of Physics: Conference Series 360 (2012) 012052 doi:10.1088/1742-6596/360/1/012052 Non-commutative dual representation for quantum systems on Lie groups Matti Raasakka Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am M¨uhlenberg 1, 14476 Potsdam, Germany, EU E-mail: [email protected] Abstract. We provide a short overview of some recent results on the application of group Fourier transform to quantum mechanics and quantum gravity. We close by pointing out some future research directions. 1. Introduction The group Fourier transform is an integral transform from functions on a Lie group to functions on a non-commutative dual space. It was first formulated for functions on SO(3) [1, 2], later generalized to SU(2) [2–4] and other Lie groups [5, 6], and is based on the quantum group structure of Drinfel’d double of the group [7, 8]. The transform provides a unitarily equivalent representation of quantum systems with a Lie group configuration space in terms of non- commutative algebra of functions on the classical dual space, the dual of the Lie algebra. As such, it has proven useful in several different ways. Most importantly, it provides a clear connection between the quantum system and the corresponding classical one, allowing for a better physical insight into the system. In the case of quantum gravity models this has turned out to be particularly helpful in unraveling the geometrical content of the models, because the dual variables have an intuitive interpretation as classical geometrical quantities.
    [Show full text]
  • 1.25. the Quantum Group Uq (Sl2). Let Us Consider the Lie Algebra Sl2
    55 1.25. The Quantum Group Uq (sl2). Let us consider the Lie algebra sl2. Recall that there is a basis h; e; f 2 sl2 such that [h; e] = 2e; [h; f] = −2f; [e; f] = h. This motivates the following definition. Definition 1.25.1. Let q 2 k; q =6 ±1. The quantum group Uq(sl2) is generated by elements E; F and an invertible element K with defining relations K − K−1 KEK−1 = q2E; KFK−1 = q−2F; [E; F] = : −1 q − q Theorem 1.25.2. There exists a unique Hopf algebra structure on Uq (sl2), given by • Δ(K) = K ⊗ K (thus K is a grouplike element); • Δ(E) = E ⊗ K + 1 ⊗ E; • Δ(F) = F ⊗ 1 + K−1 ⊗ F (thus E; F are skew-primitive ele­ ments). Exercise 1.25.3. Prove Theorem 1.25.2. Remark 1.25.4. Heuristically, K = qh, and thus K − K−1 lim = h: −1 q!1 q − q So in the limit q ! 1, the relations of Uq (sl2) degenerate into the relations of U(sl2), and thus Uq (sl2) should be viewed as a Hopf algebra deformation of the enveloping algebra U(sl2). In fact, one can make this heuristic idea into a precise statement, see e.g. [K]. If q is a root of unity, one can also define a finite dimensional version of Uq (sl2). Namely, assume that the order of q is an odd number `. Let uq (sl2) be the quotient of Uq (sl2) by the additional relations ` ` ` E = F = K − 1 = 0: Then it is easy to show that uq (sl2) is a Hopf algebra (with the co­ product inherited from Uq (sl2)).
    [Show full text]
  • An Introduction to the Theory of Quantum Groups Ryan W
    Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2012 An introduction to the theory of quantum groups Ryan W. Downie Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Downie, Ryan W., "An introduction to the theory of quantum groups" (2012). EWU Masters Thesis Collection. 36. http://dc.ewu.edu/theses/36 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. EASTERN WASHINGTON UNIVERSITY An Introduction to the Theory of Quantum Groups by Ryan W. Downie A thesis submitted in partial fulfillment for the degree of Master of Science in Mathematics in the Department of Mathematics June 2012 THESIS OF RYAN W. DOWNIE APPROVED BY DATE: RON GENTLE, GRADUATE STUDY COMMITTEE DATE: DALE GARRAWAY, GRADUATE STUDY COMMITTEE EASTERN WASHINGTON UNIVERSITY Abstract Department of Mathematics Master of Science in Mathematics by Ryan W. Downie This thesis is meant to be an introduction to the theory of quantum groups, a new and exciting field having deep relevance to both pure and applied mathematics. Throughout the thesis, basic theory of requisite background material is developed within an overar- ching categorical framework. This background material includes vector spaces, algebras and coalgebras, bialgebras, Hopf algebras, and Lie algebras. The understanding gained from these subjects is then used to explore some of the more basic, albeit important, quantum groups.
    [Show full text]
  • An Toda Pmatcd.Pdf
    Kent Academic Repository Full text document (pdf) Citation for published version Adamopoulou, Panagiota and Dunning, Clare (2014) Bethe Ansatz equations for the classical A^(1)_n affine Toda field theories. Journal of Physics A: Mathematical and Theoretical, 47 (20). p. 205205. ISSN 1751-8113. DOI https://doi.org/10.1088/1751-8113/47/20/205205 Link to record in KAR https://kar.kent.ac.uk/40992/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html (1) Bethe Ansatz equations for the classical An affine Toda field theories Panagiota Adamopoulou and Clare Dunning SMSAS, University of Kent, Canterbury, CT2 7NF, United Kingdom E-mails: [email protected], [email protected] Abstract (1) We establish a correspondence between classical An affine Toda field theories and An Bethe Ansatz systems.
    [Show full text]
  • Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz
    FUNDAMENTALS OF PHYSICS – Vol. I - Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz QUANTUM MECHANICAL LAWS Bogdan Mielnik and Oscar Rosas-Ortiz Departamento de Física, Centro de Investigación y de Estudios Avanzados, México Keywords: Indeterminism, Quantum Observables, Probabilistic Interpretation, Schrödinger’s cat, Quantum Control, Entangled States, Einstein-Podolski-Rosen Paradox, Canonical Quantization, Bell Inequalities, Path integral, Quantum Cryptography, Quantum Teleportation, Quantum Computing. Contents: 1. Introduction 2. Black body radiation: the lateral problem becomes fundamental. 3. The discovery of photons 4. Compton’s effect: collisions confirm the existence of photons 5. Atoms: the contradictions of the planetary model 6. The mystery of the allowed energy levels 7. Luis de Broglie: particles or waves? 8. Schrödinger’s wave mechanics: wave vibrations explain the energy levels 9. The statistical interpretation 10. The Schrödinger’s picture of quantum theory 11. The uncertainty principle: instrumental and mathematical aspects. 12. Typical states and spectra 13. Unitary evolution 14. Canonical quantization: scientific or magic algorithm? 15. The mixed states 16. Quantum control: how to manipulate the particle? 17. Measurement theory and its conceptual consequences 18. Interpretational polemics and paradoxes 19. Entangled states 20. Dirac’s theory of the electron as the square root of the Klein-Gordon law 21. Feynman: the interference of virtual histories 22. Locality problems 23. The idea UNESCOof quantum computing and future – perspectives EOLSS 24. Open questions Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary The present day quantum laws unify simple empirical facts and fundamental principles describing the behavior of micro-systems. A parallel but different component is the symbolic language adequate to express the ‘logic’ of quantum phenomena.
    [Show full text]
  • Quantum Supergroups and Canonical Bases
    Quantum supergroups and canonical bases Sean Clark University of Virginia Dissertation Defense April 4, 2014 Let g be a semisimple Lie algebra (e.g. sl(n); so(2n + 1)). Π = fαi : i 2 Ig the simple roots. ±1 Uq(g) is the Q(q) algebra with generators Ei, Fi, Ki for i 2 I, Various relations; for example, hi −1 hhi,αji I Ki ≈ q , e.g. KiEjKi = q Ej 2 2 I quantum Serre, e.g. Fi Fj − [2]FiFjFi + FjFi = 0 (here [2] = q + q−1 is a quantum integer) Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g). WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. ±1 Uq(g) is the Q(q) algebra with generators Ei, Fi, Ki for i 2 I, Various relations; for example, hi −1 hhi,αji I Ki ≈ q , e.g. KiEjKi = q Ej 2 2 I quantum Serre, e.g. Fi Fj − [2]FiFjFi + FjFi = 0 (here [2] = q + q−1 is a quantum integer) Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g). WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. Let g be a semisimple Lie algebra (e.g. sl(n); so(2n + 1)). Π = fαi : i 2 Ig the simple roots. Some important features are: −1 −1 I an involution q = q , Ki = Ki , Ei = Ei, Fi = Fi; −1 I a bar invariant integral Z[q; q ]-form of Uq(g).
    [Show full text]
  • Superconformal Theories in Six Dimensions
    Thesis for the degree of Doctor of Philosophy Superconformal Theories in Six Dimensions P¨ar Arvidsson arXiv:hep-th/0608014v1 2 Aug 2006 Department of Fundamental Physics CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2006 Superconformal Theories in Six Dimensions P¨ar Arvidsson Department of Fundamental Physics Chalmers University of Technology SE-412 96 G¨oteborg, Sweden Abstract This thesis consists of an introductory text, which is divided into two parts, and six appended research papers. The first part contains a general discussion on conformal and super- conformal symmetry in six dimensions, and treats how the corresponding transformations act on space-time and superspace fields. We specialize to the case with chiral (2, 0) supersymmetry. A formalism is presented for incorporating these symmetries in a manifest way. The second part of the thesis concerns the so called (2, 0) theory in six dimensions. The different origins of this theory in terms of higher- dimensional theories (Type IIB string theory and M-theory) are treated, as well as compactifications of the six-dimensional theory to supersym- metric Yang-Mills theories in five and four space-time dimensions. The free (2, 0) tensor multiplet field theory is introduced and discussed, and we present a formalism in which its superconformal covariance is made manifest. We also introduce a tensile self-dual string and discuss how to couple this string to the tensor multiplet fields in a way that respects superconformal invariance. Keywords Superconformal symmetry, Field theories in higher dimensions, String theory. This thesis consists of an introductory text and the following six ap- pended research papers, henceforth referred to as Paper I-VI: I.
    [Show full text]