Detecting Early Worm Propagation Through Packet Matching
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A the Hacker
A The Hacker Madame Curie once said “En science, nous devons nous int´eresser aux choses, non aux personnes [In science, we should be interested in things, not in people].” Things, however, have since changed, and today we have to be interested not just in the facts of computer security and crime, but in the people who perpetrate these acts. Hence this discussion of hackers. Over the centuries, the term “hacker” has referred to various activities. We are familiar with usages such as “a carpenter hacking wood with an ax” and “a butcher hacking meat with a cleaver,” but it seems that the modern, computer-related form of this term originated in the many pranks and practi- cal jokes perpetrated by students at MIT in the 1960s. As an example of the many meanings assigned to this term, see [Schneier 04] which, among much other information, explains why Galileo was a hacker but Aristotle wasn’t. A hack is a person lacking talent or ability, as in a “hack writer.” Hack as a verb is used in contexts such as “hack the media,” “hack your brain,” and “hack your reputation.” Recently, it has also come to mean either a kludge, or the opposite of a kludge, as in a clever or elegant solution to a difficult problem. A hack also means a simple but often inelegant solution or technique. The following tentative definitions are quoted from the jargon file ([jargon 04], edited by Eric S. Raymond): 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary. -
Undergraduate Report
UNDERGRADUATE REPORT Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks by MaryTheresa Monahan-Pendergast Advisor: UG 2006-6 IINSTITUTE FOR SYSTEMSR RESEARCH ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol- ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu Attack Evolution 1 Attack Evolution: Identifying Attack Evolution Characteristics To Predict Future Attacks MaryTheresa Monahan-Pendergast Dr. Michel Cukier Dr. Linda C. Schmidt Dr. Paige Smith Institute of Systems Research University of Maryland Attack Evolution 2 ABSTRACT Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and “Red Teams.” This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually -
Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone
Flow-Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks in an Internet Backbone Thomas Dübendorfer, Arno Wagner, Theus Hossmann, Bernhard Plattner ETH Zurich, Switzerland [email protected] DIMVA 2005, Wien, Austria Agenda 1) Introduction 2) Flow-Level Backbone Traffic 3) Network Worm Blaster.A 4) E-Mail Worm Sobig.F 5) Conclusions and Outlook © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -2- 1) Introduction Authors Prof. Dr. Bernhard Plattner Professor, ETH Zurich (since 1988) Head of the Communication Systems Group at the Computer Engineering and Networks Laboratory TIK Prorector of education at ETH Zurich (since 2005) Thomas Dübendorfer Dipl. Informatik-Ing., ETH Zurich, Switzerland (2001) ISC2 CISSP (Certified Information System Security Professional) (2003) PhD student at TIK, ETH Zurich (since 2001) Network security research in the context of the DDoSVax project at ETH Further authors: Arno Wagner, Theus Hossmann © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -3- 1) Introduction Worm Analysis Why analyse Internet worms? • basis for research and development of: • worm detection methods • effective countermeasures • understand network impact of worms Wasn‘t this already done by anti-virus software vendors? • Anti-virus software works with host-centric signatures Research method used 1. Execute worm code in an Internet-like testbed and observe infections 2. Measure packet-level traffic and determine network-centric worm signatures on flow-level 3. Extensive analysis of flow-level traffic of the actual worm outbreaks captured in a Swiss backbone © T. Dübendorfer (2005), TIK/CSG, ETH Zurich -4- 1) Introduction Related Work Internet backbone worm analyses: • Many theoretical worm spreading models and simulations exist (e.g. -
Wannacry Ransomware
KNOW THE UNKNOWN® Success Story: WannaCry Ransomware WHITE PAPER Challenge Stopping a Worm & Saving Millions Worms like WannaCry and Petya operate as essentially Even the most recent of these attacks like WannaCry and zero-day attacks: they can lie dormant on our networks Petya still echo the basic principles of past-worms, and as and then rapidly spread between devices upon waking up. such, they are both preventable and stoppable. During The consequences of being hit by one is dramatic: precious the Code Red, Nimda, and ILOVEYOU attacks of the early- data is either ransom-locked or wiped and thus often 2000s, businesses that had invested in a NIKSUN-like irrecoverable. This means millions in lost data, restoration solution were able to run a rapid report to get a list of fees, public relations, and stock-holder confidence. all infected devices and cut them off from their network. Instead of thousands of machines being affected, they When FedEx was hit by Petya, for example, their subsidiary were able to resolve the incident with minor losses of TNT Express experienced “widespread service delays” and hundreds or less. This process takes a mere few minutes were unable to “fully restore all of the affected systems and thus could have saved Reckitt Benckiser from their and recover all of the critical business data that was hour-long attack. encrypted by the virus.”1 Shares in the company dropped 3.4% in the wake of the attack.2 Total, 100% visibility is simply the only way to stop these worms from becoming too damaging. -
Nimda Worm Shows You Can't Always Patch Fast Enough
Research Publication Date: 19 September 2001 ID Number: FT-14-5524 Nimda Worm Shows You Can't Always Patch Fast Enough John Pescatore Nimda bundles several known exploits against Internet Information Server and other Microsoft software. Enterprises with Web applications should start to investigate less- vulnerable Web server products. © 2001 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Reproduction of this publication in any form without prior written permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Gartner shall have no liability for errors, omissions or inadequacies in the information contained herein or for interpretations thereof. The reader assumes sole responsibility for the selection of these materials to achieve its intended results. The opinions expressed herein are subject to change without notice. NEWS ANALYSIS Event On 18 September 2001, a new mass-mailing computer worm began infecting computers worldwide, damaging local files as well as remote network files. The w32.Nimda.A @ mm worm can spread through e-mail, file sharing and Web site downloads. For more information, visit: http://www.microsoft.com/technet/security/topics/Nimda.asp or http://www.sarc.com/avcenter/venc/data/[email protected]. Analysis As a "rollup worm," Nimda bundles several known exploits against Microsoft's Internet Information Server (IIS), Internet Explorer (IE) browser, and operating systems such as Windows 2000 and Windows XP, which have IIS and IE embedded in their code. To protect against Nimda, Microsoft recommends installing numerous patches and service packs on virtually every PC and server running IE, IIS Web servers or the Outlook Express e-mail client. -
Computer Viruses, in Order to Detect Them
Behaviour-based Virus Analysis and Detection PhD Thesis Sulaiman Amro Al amro This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Software Technology Research Laboratory Faculty of Technology De Montfort University May 2013 DEDICATION To my beloved parents This thesis is dedicated to my Father who has been my supportive, motivated, inspired guide throughout my life, and who has spent every minute of his life teaching and guiding me and my brothers and sisters how to live and be successful. To my Mother for her support and endless love, daily prayers, and for her encouragement and everything she has sacrificed for us. To my Sisters and Brothers for their support, prayers and encouragements throughout my entire life. To my beloved Family, My Wife for her support and patience throughout my PhD, and my little boy Amro who has changed my life and relieves my tiredness and stress every single day. I | P a g e ABSTRACT Every day, the growing number of viruses causes major damage to computer systems, which many antivirus products have been developed to protect. Regrettably, existing antivirus products do not provide a full solution to the problems associated with viruses. One of the main reasons for this is that these products typically use signature-based detection, so that the rapid growth in the number of viruses means that many signatures have to be added to their signature databases each day. These signatures then have to be stored in the computer system, where they consume increasing memory space. Moreover, the large database will also affect the speed of searching for signatures, and, hence, affect the performance of the system. -
Code Red Worm Propagation Modeling and Analysis ∗
Code Red Worm Propagation Modeling and Analysis ∗ Cliff Changchun Zou Weibo Gong Don Towsley Dept. Electrical & Dept. Electrical & Dept. Computer Science Computer Engineering Computer Engineering Univ. Massachusetts Univ. Massachusetts Univ. Massachusetts Amherst, MA Amherst, MA Amherst, MA [email protected] [email protected] [email protected] ABSTRACT the Internet has become a powerful mechanism for propa- The Code Red worm incident of July 2001 has stimulated gating malicious software programs. Worms, defined as au- activities to model and analyze Internet worm propagation. tonomous programs that spread through computer networks In this paper we provide a careful analysis of Code Red prop- by searching, attacking, and infecting remote computers au- agation by accounting for two factors: one is the dynamic tomatically, have been developed for more than 10 years countermeasures taken by ISPs and users; the other is the since the first Morris worm [30]. Today, our computing in- slowed down worm infection rate because Code Red rampant frastructure is more vulnerable than ever before [28]. The propagation caused congestion and troubles to some routers. Code Red worm and Nimda worm incidents of 2001 have Based on the classical epidemic Kermack-Mckendrick model, shown us how vulnerable our networks are and how fast we derive a general Internet worm model called the two- a virulent worm can spread; furthermore, Weaver presented factor worm model. Simulations and numerical solutions some design principles for worms such that they could spread of the two-factor worm model match the observed data of even faster [34]. In order to defend against future worms, we Code Red worm better than previous models do. -
Chapter 3: Viruses, Worms, and Blended Threats
Chapter 3 Chapter 3: Viruses, Worms, and Blended Threats.........................................................................46 Evolution of Viruses and Countermeasures...................................................................................46 The Early Days of Viruses.................................................................................................47 Beyond Annoyance: The Proliferation of Destructive Viruses .........................................48 Wiping Out Hard Drives—CIH Virus ...................................................................48 Virus Programming for the Masses 1: Macro Viruses...........................................48 Virus Programming for the Masses 2: Virus Generators.......................................50 Evolving Threats, Evolving Countermeasures ..................................................................51 Detecting Viruses...................................................................................................51 Radical Evolution—Polymorphic and Metamorphic Viruses ...............................53 Detecting Complex Viruses ...................................................................................55 State of Virus Detection.........................................................................................55 Trends in Virus Evolution..................................................................................................56 Worms and Vulnerabilities ............................................................................................................57 -
Combating Spyware in the Enterprise.Pdf
www.dbebooks.com - Free Books & magazines Visit us at www.syngress.com Syngress is committed to publishing high-quality books for IT Professionals and delivering those books in media and formats that fit the demands of our cus- tomers. We are also committed to extending the utility of the book you purchase via additional materials available from our Web site. SOLUTIONS WEB SITE To register your book, visit www.syngress.com/solutions. Once registered, you can access our [email protected] Web pages. There you will find an assortment of value-added features such as free e-booklets related to the topic of this book, URLs of related Web site, FAQs from the book, corrections, and any updates from the author(s). ULTIMATE CDs Our Ultimate CD product line offers our readers budget-conscious compilations of some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to extend your reference library on key topics pertaining to your area of exper- tise, including Cisco Engineering, Microsoft Windows System Administration, CyberCrime Investigation, Open Source Security, and Firewall Configuration, to name a few. DOWNLOADABLE EBOOKS For readers who can’t wait for hard copy, we offer most of our titles in download- able Adobe PDF form. These eBooks are often available weeks before hard copies, and are priced affordably. SYNGRESS OUTLET Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt books at significant savings. SITE LICENSING Syngress has a well-established program for site licensing our ebooks onto servers in corporations, educational institutions, and large organizations. -
Symantec Internet Security Threat Report
Symantec Internet EXECUTIVE SUMMARY Symantec Internet Security Threat Report September 2003 EXECUTIVE EDITOR Executive Summary Linda McCarthy Symantec Office of the CTO The Symantec Internet Security Threat Report provides a six-month update about Internet threat MANAGER, DEVELOPMENT activity1. It includes analysis of network-based attacks, a review of known vulnerabilities, and David Ahmad Symantec Security Response highlights of malicious code. This summary of that report can alert executives to impending threats and current trends. SENIOR THREAT ANALYST Cori Lynn Arnold Symantec Managed Security With over 20,000 sensors monitoring network activity in over 180 countries, Symantec has Services established one of the most comprehensive sources of Internet threat data in the world, giving SENIOR MANAGER, ANALYSIS Symantec's analysts a superior source of attack data from which to spot important trends. OPERATIONS These trends educate executives about potential threats and exposures, and using the data Brian Dunphy Symantec Managed Security can help them identify weaknesses in their own security architecture or policies. Services In August 2003, the Win32.Blaster blended threat rapidly spread worldwide, and several other SENIOR MANAGER, DEVELOPMENT Oliver Friedrichs highly severe worms followed. In only eight days the pace and frequency of these threats created Symantec Security Response havoc for systems administrators as well as for PC home users, with an estimated cost of damages 2 RESEARCH FELLOW running up to $2 billion . This report -
Ethical Hacking
Official Certified Ethical Hacker Review Guide Steven DeFino Intense School, Senior Security Instructor and Consultant Contributing Authors Barry Kaufman, Director of Intense School Nick Valenteen, Intense School, Senior Security Instructor Larry Greenblatt, Intense School, Senior Security Instructor Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Official Certified Ethical Hacker © 2010 Course Technology, Cengage Learning Review Guide ALL RIGHTS RESERVED. No part of this work covered by the copyright herein Steven DeFino may be reproduced, transmitted, stored or used in any form or by any means Barry Kaufman graphic, electronic, or mechanical, including but not limited to photocopying, Nick Valenteen recording, scanning, digitizing, taping, Web distribution, information networks, Larry Greenblatt or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior Vice President, Career and written permission of the publisher. Professional Editorial: Dave Garza Executive Editor: Stephen Helba For product information and technology assistance, contact us at Managing Editor: Marah Bellegarde Cengage Learning Customer & Sales Support, 1-800-354-9706 For permission to use material from this text or product, Senior Product Manager: submit all requests online at www.cengage.com/permissions Michelle Ruelos Cannistraci Further permissions questions can be e-mailed to Editorial Assistant: Meghan Orvis [email protected] -
Email Worm Modeling and Defense
Email Worm Modeling and Defense CliffC.Zou∗,DonTowsley†, Weibo Gong∗ ∗Department of Electrical & Computer Engineering †Department of Computer Science University of Massachusetts, Amherst, MA 01003 {czou, gong}@ecs.umass.edu, [email protected] Abstract— Email worms constitute one of the major Internet little differences in terms of the propagation dynamics of email security problems. In this paper, we present an email worm worms. model that accounts for the behaviors of email users by con- Based on the above email worm model, we study the ef- sidering email checking time and the probability of opening email attachments. Email worms spread over a logical network fectiveness of “selective immunization defense”, i.e., selecting defined by email address relationship, which plays an important some most connected email users’ computers to make them role in determining the spreading dynamics of an email worm. immune to an email worm. The results explain why selective Our observations suggest that the node degrees of an email immunization defense against email worm propagation is quite network are heavy-tailed distributed. We compare email worm effective for a power law topology but not so good for the other propagation on three topologies: power law, small world and random graph topologies; and then study how the topology two topologies. affects immunization defense on email worms. The impact of The rest of the paper is organized as follows. Section II the power law topology on the spread of email worms is mixed: surveys related work. Section III presents the email worm email worms spread more quickly on a power law topology than propagation model.