Solar Energy Technologies Office Cost Targets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ........................................................................... -
Loddon Mallee Renewable Energy Roadmap
Loddon Mallee Region Renewable Energy Roadmap Loddon Mallee Renewable Energy Roadmap Foreword On behalf of the Victorian Government, I am pleased to present the Victorian Regional Renewable Energy Roadmaps. As we transition to cleaner energy with new opportunities for jobs and greater security of supply, we are looking to empower communities, accelerate renewable energy and build a more sustainable and prosperous state. Victoria is leading the way to meet the challenges of climate change by enshrining our Victorian Renewable Energy Targets (VRET) into law: 25 per cent by 2020, rising to 40 per cent by 2025 and 50 per cent by 2030. Achieving the 2030 target is expected to boost the Victorian economy by $5.8 billion - driving metro, regional and rural industry and supply chain development. It will create around 4,000 full time jobs a year and cut power costs. It will also give the renewable energy sector the confidence it needs to invest in renewable projects and help Victorians take control of their energy needs. Communities across Barwon South West, Gippsland, Grampians and Loddon Mallee have been involved in discussions to help define how Victoria transitions to a renewable energy economy. These Roadmaps articulate our regional communities’ vision for a renewable energy future, identify opportunities to attract investment and better understand their community’s engagement and capacity to transition to renewable energy. Each Roadmap has developed individual regional renewable energy strategies to provide intelligence to business, industry and communities seeking to establish or expand new energy technology development, manufacturing or renewable energy generation in Victoria. The scale of change will be significant, but so will the opportunities. -
A Heliostat Field Control System
A Heliostat Field Control System by Karel Johan Malan Dissertation presented for the degree of Master of Engineering in the Faculty of Engineering at Stellenbosch University Supervisor: Mr Paul Gauché Co-supervisor: Mr Johann Treurnicht April 2014 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: ……………………………. Copyright © 2014 Stellenbosch University All rights reserved i Stellenbosch University http://scholar.sun.ac.za Abstract The ability of concentrating solar power (CSP) to efficiently store large amounts of energy sets it apart from other renewable energy technologies. However, cost reduction and improved efficiency is required for it to become more economically viable. Significant cost reduction opportunities exist, especially for central receiver system (CRS) technology where the heliostat field makes up 40 to 50 per cent of the total capital expenditure. CRS plants use heliostats to reflect sunlight onto a central receiver. Heliostats with high tracking accuracy are required to realize high solar concentration ratios. This enables high working temperatures for efficient energy conversion. Tracking errors occur mainly due to heliostat manufacturing-, installation- and alignment tolerances, but high tolerance requirements generally increase cost. A way is therefore needed to improve tracking accuracy without increasing tolerance requirements. The primary objective of this project is to develop a heliostat field control system within the context of a 5MWe CRS pilot plant. -
Optimal Design and Control of Heliostat for Solar Power Generation
IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012 Optimal Design and Control of Heliostat for Solar Power Generation Dong Il Lee, Woo Jin Jeon, Seung Wook Baek, and Nazar T. Ali transfer is changed by distance or angle between two surfaces. Abstract—The purpose of this research is to optimal design Consider two surfaces, 1 and 2, of an enclosure. Radiation and control of heliostat for solar power generation in real time. from A1 to A2 can be described by Eq. 1. B1A1 is the total Tracking the sun and calculating the position of the sun are possible by using illuminance sensor (CdS) and Simulink energy leaving the surface A1 as a constant and F1→2 indicates program. As heat transfer from heliostat to receiver is delivered its fraction arriving at A2. So, radiation flux reaching the by solar radiation, configuration factor commonly utilized in radiation is applied to control heliostat. Algorithms for surface A2 is maximized when F1→2 is maximal. Eq. 2 is the maximizing configuration factor between sun, heliostat and definition of the configuration factor. Fig. 1(a) represents the receiver in real time are programmed by Simulink. By applying fraction of total energy leaving surface 1 that is intercepted the optimized algorithms, the efficiency of the solar absorption by surface 2. in receiver can be maximized. Simulation was performed how to control azimuthal and elevation angles during the daytime with = respect to diverse distances. qBAF12→→ 1112. (1) Index Terms—Configuration factor, heliostat, CdS, simulink, solar tracking device. θθ 1 cos12 cos (2) Fd− = AdA. -
Calculations for a Grid-Connected Solar Energy System Dr
az1782 June 2019 Calculations for a Grid-Connected Solar Energy System Dr. Ed Franklin Introduction Power & Energy Whether you live on a farm or ranch, in an urban area, or A review of electrical terminology is useful when discussing somewhere in between, it is likely you and your family rely solar PV systems. There are two types of electrical current. on electricity. Most of us receive our electrical power from a In residential electrical systems, Alternating Current (AC) local utility. A growing trend has been to generate our own is used. The current reverses direction moving from 0 volts electrical power. Solar energy systems have grown in popularity to 120 volts in one direction, and immediately, reversing the are available for residential, agricultural, and commercial direction. Typical residential voltages are 120 and 240. applications. In solar photovoltaic systems, Direct Current (DC) electricity Of the various types of solar photovoltaic systems, grid- is produced. The current flows in one direction only, and the connected systems --- sending power to and taking power current remains constant. Batteries convert electrical energy from a local utility --- is the most common. According to the into chemical energy are used with direct current. Current is Solar Energy Industries Association (SEIA) (SEIA, 2017), the the movement of electrons along a conductor. The flow rate number of homes in Arizona powered by solar energy in 2016 of electrons is measured in amperage (A). The solar industry was 469,000. The grid-connected system consists of a solar uses the capital letter “I” to represent current. The force or photovoltaic array mounted on a racking system (such as a pressure to move the electrons through the circuit is measured roof-mount, pole mount, or ground mount), connected to a in voltage (V). -
Solar Energy Grid Integration Systems “Segis”
SOLAR ENERGY GRID INTEGRATION SYSTEMS “SEGIS” Program Concept Paper October, 2007 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................ 1 TABLE OF CONTENTS ................................................................................................................ 2 1) Executive Summary ............................................................................................................... 3 2) Vision ..................................................................................................................................... 3 3) Program Objective ................................................................................................................. 3 4) Program Scope ....................................................................................................................... 4 5) High PV Penetration and the Utility Distribution System ..................................................... 5 a) PV System Characteristics and Impacts 5 b) Implications for Utility Operations 6 c) Implications for Solar System Owners 9 6) Approaches to Enable High Penetration .............................................................................. 10 a) Today’s Distribution System 10 i) Mitigating Impact on Current Distribution Infrastructure: ...................................... 10 ii) Improving Value for the Solar Energy System Customer: ...................................... 11 b) Advanced Distribution Systems and -
Chapter 5 SOLAR PHOTOVOLTAICS
5‐1 Chapter 5 SOLAR PHOTOVOLTAICS Table of Contents Chapter 5 SOLAR RESOURCE ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐1 5 SOLAR RESOURCE‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐5 5.1 Photovoltaic Systems Overview ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐5 5.1.1 Introduction ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐5 5.1.2 Electricity Generation with Solar Cells‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐7 5.1.3 Photovoltaic Systems Total Costs Overview ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐7 5.1.4 Photovoltaic Energy Equipment: General Characteristics and Costs ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐13 5.1.5 PV Modules ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐22 5.1.6 Inverters ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐24 5.1.7 Energy Storage ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐41 5.1.8 Charge Controllers ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐44 5.2 Photovoltaic Generation Potential in Puerto Rico ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐47 5.3 Grid-Tied PV Economic Feasibility ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5‐61 5.4 Grid-Interconnection -
Potential Map for the Installation of Concentrated Solar Power Towers in Chile
energies Article Potential Map for the Installation of Concentrated Solar Power Towers in Chile Catalina Hernández 1,2, Rodrigo Barraza 1,*, Alejandro Saez 1, Mercedes Ibarra 2 and Danilo Estay 1 1 Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago 8320000, Chile; [email protected] (C.H.); [email protected] (A.S.); [email protected] (D.E.) 2 Fraunhofer Chile Research Foundation, General del Canto 421, of. 402, Providencia Santiago 7500588, Chile; [email protected] * Correspondence: [email protected]; Tel.: +56-22-303-7251 Received: 18 March 2020; Accepted: 23 April 2020; Published: 28 April 2020 Abstract: This study aims to build a potential map for the installation of a central receiver concentrated solar power plant in Chile under the terms of the average net present cost of electricity generation during its lifetime. This is also called the levelized cost of electricity, which is a function of electricity production, capital costs, operational costs and financial parameters. The electricity production, capital and operational costs were defined as a function of the location through the Chilean territory. Solar resources and atmospheric conditions for each site were determined. A 130 MWe concentrated solar power plant was modeled to estimate annual electricity production for each site. The capital and operational costs were identified as a function of location. The electricity supplied by the power plant was tested, quantifying the potential of the solar resources, as well as technical and economic variables. The results reveal areas with great potential for the development of large-scale central receiver concentrated solar power plants, therefore accomplishing a low levelized cost of energy. -
Evaluation of the Spot Shape on the Target for Flat Heliostats
energies Article Evaluation of the Spot Shape on the Target for Flat Heliostats David Jafrancesco, Daniela Fontani ID , Franco Francini and Paola Sansoni * CNR-INO National Institute of Optics, Largo E. Fermi, 6-50125-Firenze, Italy; [email protected] (D.J.); [email protected] (D.F.); [email protected] (F.F.) * Correspondence: [email protected]; Tel.: +39-055-23081 Received: 23 May 2018; Accepted: 18 June 2018; Published: 21 June 2018 Abstract: The aim of this study is to evaluate the changes of the spot shape on the target in dependence of the variations of size and faceting of a flat heliostat or an array of heliostats. The flat heliostat, or a flat heliostat array, is a layout common for Concentation Solar Power (CSP) plants. The spot shape is evaluated by means of a numerical integration of an appropriate function; in order to confirm the results, both an analysis based on the Lagrange invariance and some simulations are performed. The first one validates the power density value in the central part of the spot, while the simulations assess the spot shape, which in its central part differs less than 3% from the calculated result. The utilized numerical method does not require specialized software or complex calculation models; it determines an accurate spot shape but cannot take into account shading and blocking phenomena. Keywords: optical design; heliostat; solar; concentration 1. Introduction During the last years, many theoretical and experimental researches were carried out in order to increase the efficiency and the ratio benefits/costs of solar plants. -
Renewable Energy (Emphasizing Solar PV, Thermal & Small-Scale Wind) Kurt M
Colorado Energy Masters: Renewable Energy (Emphasizing Solar PV, Thermal & Small-Scale Wind) Kurt M. Jones County Extension Director Chaffee County Learning Objectives • Evaluating the Solar Resource – Technical feasibility, permitting & zoning considerations • How Solar Technology Works – Types of systems and equipment used • Sizing Solar Systems – Evaluating electric and hot water loads – Determining offset • Wind Energy Basics • Financial Feasibility – Financing options, incentives, calculators • Case Studies • Trends • Sources of Additional Information What to Expect from Today’s Class • Better understanding about solar energy technology • Understand how to calculate energy loads • Basic understanding of sizing solar systems • Determining small-scale wind capacity and applicability to local conditions • Understand costs/benefits from solar systems • Where to go for additional information What NOT to Expect from Today’s Class • Design or build a solar system for electric or domestic hot water applications • Provide advice on utility-scale solar or wind energy projects • Become solar or wind energy “experts” Evaluating the Solar Energy Resource • Colorado enjoys copious amounts of sunshine per year – 300 days per year • Unlike other renewable energy resources (example: wind), solar energy is relatively predictable • Can be used for thermal or electric applications Peak Sun Hours • Number of hours per day that the solar insolation equals 1,000 watts/square meter • For example: 5 ½ hours of peak sun = 5.5 kWh/m² • Amount of solar insolation -
High-Concentration Planar Microtracking Photovoltaic System Exceeding 30 Efficiency
ARTICLES PUBLISHED: 17 JULY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17113 High-concentration planar microtracking photovoltaic system exceeding 30% eciency Jared S. Price1†, Alex J. Grede1†, Baomin Wang1†, Michael V. Lipski1, Brent Fisher2, Kyu-Tae Lee3, Junwen He4, Gregory S. Brulo5, Xiaokun Ma5, Scott Burroughs2, Christopher D. Rahn5, Ralph G. Nuzzo4, John A. Rogers3 and Noel C. Giebink1* Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion eciency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high eciency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system <2 cm thick that operates at fixed tilt with a microscale triple-junction solar cell at >660 concentration ratio over a 140◦ full field of view. In outdoor testing over the course of two sunny days, the system operates× automatically from sunrise to sunset, outperforming a 17%-ecient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to- head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the eciency of rooftop solar panels at a commercially relevant concentration ratio. he economic landscape of photovoltaic (PV) power has on a laterally moving solar cell array have previously shown promise fundamentally changed. Driven by manufacturing advances in this regard but have never been demonstrated at a fully opera- Tand economies of scale over the past decade, silicon and thin- tional level14. -
Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems
Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems 1 Report IEA-PVPS T12-02:2011 IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems IEA PVPS Task 12, Subtask 20, LCA Report IEA-PVPS T12-02:2011 October 2011 Operating agent: Vasilis Fthenakis, Brookhaven National Laboratory Upton, New York, USA Authors: Vasilis Fthenakis, Hyung Chul Kim, Rolf Frischknecht, Marco Raugei, Parikhit Sinha and Matthias Stucki Citation: V. Fthenakis, H. C. Kim, R. Frischknecht, M. Raugei, P. Sinha, M. Stucki , 2011, Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems, International Energy Agency(IEA) PVPS Task 12, Report T12-02:2011. i IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity Table of Contents Executive Summary ................................................................................................................................. 1 Foreword ................................................................................................................................................ 2 1. Introduction ................................................................................................................................... 3 2. Life Cycle Assessment Overview ...................................................................................................... 3 2.1 Life