A Heliostat Field Control System

Total Page:16

File Type:pdf, Size:1020Kb

A Heliostat Field Control System A Heliostat Field Control System by Karel Johan Malan Dissertation presented for the degree of Master of Engineering in the Faculty of Engineering at Stellenbosch University Supervisor: Mr Paul Gauché Co-supervisor: Mr Johann Treurnicht April 2014 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: ……………………………. Copyright © 2014 Stellenbosch University All rights reserved i Stellenbosch University http://scholar.sun.ac.za Abstract The ability of concentrating solar power (CSP) to efficiently store large amounts of energy sets it apart from other renewable energy technologies. However, cost reduction and improved efficiency is required for it to become more economically viable. Significant cost reduction opportunities exist, especially for central receiver system (CRS) technology where the heliostat field makes up 40 to 50 per cent of the total capital expenditure. CRS plants use heliostats to reflect sunlight onto a central receiver. Heliostats with high tracking accuracy are required to realize high solar concentration ratios. This enables high working temperatures for efficient energy conversion. Tracking errors occur mainly due to heliostat manufacturing-, installation- and alignment tolerances, but high tolerance requirements generally increase cost. A way is therefore needed to improve tracking accuracy without increasing tolerance requirements. The primary objective of this project is to develop a heliostat field control system within the context of a 5MWe CRS pilot plant. The control system has to govern the tracking movement of all heliostats in the field and minimize errors over time. A geometric model was developed to characterize four deterministic sources of heliostat tracking errors. A prototype system comprising 18 heliostats was constructed to function as a scaled down subsection of the pilot plant heliostat field and to validate the chosen control method and system architecture. Periodic measurements of individual heliostats’ tracking offsets were obtained using a camera and optical calibration target combined with image processing techniques. Mathematical optimization was used to estimate model coefficients to best fit the measured error offsets. Real-time tracking error corrections were performed by each heliostat’s local controller unit to compensate for a combination of error sources. Experimental tracking measurements were performed using the prototype system. Daily open-loop RMS tracking errors below one milliradian were obtained, thereby satisfying the project’s primary objective. The thesis concludes that high tracking accuracy can be achieved using the control method proposed here. This could potentially lead to a reduction in heliostat cost, thereby lowering the levelised cost of electricity for CRS plants. ii Stellenbosch University http://scholar.sun.ac.za Opsomming Gekonsentreerde sonkrag se vermoë om groot hoeveelhede energie effektief te stoor onderskei dit van ander hernubare energie tegnologieë. Kostebesparing en hoër effektiwiteit word egter vereis om dit ekonomies meer lewensvatbaar te maak. Beduidende kostebesparingsgeleenthede bestaan wel, spesifiek vir tegnologieë vir sentraal-ontvangerstelsels (central receiver system (CRS)) waar die heliostaatveld 40 tot 50 persent van die totale kapitaalbestedings uitmaak. CRS aanlegte gebruik heliostate om sonlig op ’n sentrale ontvanger te reflekteer. Heliostate met ’n hoë volgingsakkuraatheid word vereis om hoë sonkragkonsentrasie- verhoudings te laat realiseer. Dit maak hoë werkstemperature moontlik vir effektiewe energie-omsetting. Volgingsfoute kom hoofsaaklik voor a.g.v. die heliostaat se vervaardigings-, installasie- en instellingstoleransies, maar hoë toleransie-vereistes verhoog gewoonlik die koste. Daar is dus ’n manier nodig om volgingsakkuraatheid te verbeter sonder om die toleransie-vereistes te verhoog. Die primêre doel van hierdie projek is om ’n heliostaat aanleg kontrole-stelsel te ontwikkel binne die konteks van ’n 5 MWe CRS toetsaanleg. Die kontrole-stelsel moet die volgingsbeweging van al die heliostate in die aanleg bestuur en ook met verloop van tyd volgingsfoute verminder. ’n Geometriese model is ontwikkel om die vier bepalende bronne van heliostaat volgingsfoute te karakteriseer. ’n Prototipe stelsel met 18 heliostate is gebou om as ’n funksionele skaalmodel van die toetsaanleg heliostaatveld te dien en om die gekose kontrole-metode en stelsel- argitektuur geldig te verklaar. Periodieke metings van die individuele heliostate se volgingsafwykings is verkry deur ’n kamera en optiese kalibrasie teiken te kombineer met beeldprosesseringstegnieke. Wiskundige optimering is gebruik om die model se koëffisiënte te skat om die beste passing te bepaal vir die gemete foutafwykings. Intydse volgingsfoutregstellings is deur elke heliostaat se plaaslike beheereenheid gedoen om te vergoed vir ’n kombinasie van foutbronne. Eksperimentele volgingsmetings is uitgevoer met die prototipestelsel. Daaglikse oop- lus RMS volgingsfoute onder een milliradiaan is verkry, en sodoende is die projek se primêre doel behaal. Die tesis maak die gevolgtrekking dat hoë volgingsakkuraatheid behaal kan word deur die gebruik van die beheer-metode soos hier voorgestel. Dit kan potensieel bydra tot kostebesparing in die heliostaatveld van CRS aanlegte om sodoende die geykte koste van elektrisiteit te verminder. iii Stellenbosch University http://scholar.sun.ac.za Acknowledgements I would like to thank the following people and organizations: Mr Paul Gauché, my supervisor and director of STERG, for his mentorship and academic guidance throughout the course of this project. Mr Johann Treurnicht, my co-supervisor, for his valuable inputs particularly on communications and control theory. The Solar Thermal Energy Research Group for an academic base and for funding this work through the following organizations: - The Stellenbosch University Hope Project - The South African Department of Science and Technology Solar Spoke Fund - Sasol Technology The team at the solar roof laboratory, for their help during the many phases of experimental work. The majority of diagrams and illustrations in this document were made using Inkscape. iv Stellenbosch University http://scholar.sun.ac.za Contents DeclarationDeclarationDeclaration................................Declaration................................................................................................................................................................................................................................ iii AbstractAbstractAbstract ................................................................................................................................................................................................................................................................................iiiiiiii OpsommingOpsommingOpsomming .......................................................................................................................................................................................................................................................iiiiiiiiiiii Acknowledgements ........................................................................................................................................................................................................ iviviv ContentsContentsContents ............................................................................................................................................................................................................................................................................ vvv List of Figures .................................................................................................................................................................................................................. viiiviiiviii List of Tables .......................................................................................................................................................................................................................... xxx NNNomenclatureNomenclatureomenclatureomenclature ...................................................................................................................................................................................................................... xixixi 1. Introduction ..............................................................................................................................................................................................................................................1111 1.1. Solar Energy ................................................................................................ 1 1.2. Objectives.................................................................................................... 6 1.3. Methodology ............................................................................................... 6 1.4. Scope and Limitations ................................................................................. 7 1.5. Document Outline ...................................................................................... 7
Recommended publications
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • CSPV Solar Cells and Modules from China
    Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Robert B. Koopman Acting Director of Operations Staff assigned Christopher Cassise, Senior Investigator Andrew David, Industry Analyst Nannette Christ, Economist Samantha Warrington, Economist Charles Yost, Accountant Gracemary Roth-Roffy, Attorney Lemuel Shields, Statistician Jim McClure, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 C O N T E N T S Page Determinations.................................................................. 1 Views of the Commission ......................................................... 3 Separate Views of Commission Charlotte R. Lane ...................................... 31 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Organization of report.........................................................
    [Show full text]
  • Loddon Mallee Renewable Energy Roadmap
    Loddon Mallee Region Renewable Energy Roadmap Loddon Mallee Renewable Energy Roadmap Foreword On behalf of the Victorian Government, I am pleased to present the Victorian Regional Renewable Energy Roadmaps. As we transition to cleaner energy with new opportunities for jobs and greater security of supply, we are looking to empower communities, accelerate renewable energy and build a more sustainable and prosperous state. Victoria is leading the way to meet the challenges of climate change by enshrining our Victorian Renewable Energy Targets (VRET) into law: 25 per cent by 2020, rising to 40 per cent by 2025 and 50 per cent by 2030. Achieving the 2030 target is expected to boost the Victorian economy by $5.8 billion - driving metro, regional and rural industry and supply chain development. It will create around 4,000 full time jobs a year and cut power costs. It will also give the renewable energy sector the confidence it needs to invest in renewable projects and help Victorians take control of their energy needs. Communities across Barwon South West, Gippsland, Grampians and Loddon Mallee have been involved in discussions to help define how Victoria transitions to a renewable energy economy. These Roadmaps articulate our regional communities’ vision for a renewable energy future, identify opportunities to attract investment and better understand their community’s engagement and capacity to transition to renewable energy. Each Roadmap has developed individual regional renewable energy strategies to provide intelligence to business, industry and communities seeking to establish or expand new energy technology development, manufacturing or renewable energy generation in Victoria. The scale of change will be significant, but so will the opportunities.
    [Show full text]
  • A Rational Look at Renewable Energy
    A RATIONAL LOOK AT RENEWABLE ENERGY AND THE IMPLICATIONS OF INTERMITTENT POWER By Kimball Rasmussen | President and CEO, Deseret Power | November 2010, Edition 1.2 TABLE OF CONTENTS Forward................................................................................................................................................................. .2. Wind Energy......................................................................................................................................................... .3 Fundamental.Issue:.Intermittency............................................................................................................ .3 Name-plate.Rating.versus.Actual.Energy.Delivery............................................................................... .3 Wind.is.Weak.at.Peak.................................................................................................................................. .3 Texas...............................................................................................................................................................4 California.......................................................................................................................................................4 The.Pacific.Northwest................................................................................................................................ .5 The.Western.United.States.......................................................................................................................
    [Show full text]
  • US Solar Industry Year in Review 2009
    US Solar Industry Year in Review 2009 Thursday, April 15, 2010 575 7th Street NW Suite 400 Washington DC 20004 | www.seia.org Executive Summary U.S. Cumulative Solar Capacity Growth Despite the Great Recession of 2009, the U.S. solar energy 2,500 25,000 23,835 industry grew— both in new installations and 2,000 20,000 employment. Total U.S. solar electric capacity from 15,870 2,108 photovoltaic (PV) and concentrating solar power (CSP) 1,500 15,000 technologies climbed past 2,000 MW, enough to serve -th MW more than 350,000 homes. Total U.S. solar thermal 1,000 10,000 MW 1 capacity approached 24,000 MWth. Solar industry 494 revenues also surged despite the economy, climbing 500 5,000 36 percent in 2009. - - A doubling in size of the residential PV market and three new CSP plants helped lift the U.S. solar electric market 37 percent in annual installations over 2008 from 351 MW in 2008 to 481 MW in 2009. Solar water heating (SWH) Electricity Capacity (MW) Thermal Capacity (MW-Th) installations managed 10 percent year-over-year growth, while the solar pool heating (SPH) market suffered along Annual U.S. Solar Energy Capacity Growth with the broader construction industry, dropping 10 1,200 1,099 percent. 1,036 1,000 918 894 928 Another sign of continued optimism in solar energy: 865 -th 725 758 742 venture capitalists invested more in solar technologies than 800 542 any other clean technology in 2009. In total, $1.4 billion in 600 481 2 351 venture capital flowed to solar companies in 2009.
    [Show full text]
  • Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota
    Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota DOE/EA-2068 April 2021 Table of Contents Introduction and Background ................................................................................... 1 Purpose and Need for WAPA’s Federal Action ...................................................................... 1 Wild Springs Solar’s Purpose and Need .................................................................................. 1 Proposed Action and Alternatives ............................................................................ 2 No Action Alternative .............................................................................................................. 2 Alternatives Considered but Eliminated from Further Study .................................................. 2 Proposed Action ....................................................................................................................... 2 Solar Panels and Racking ................................................................................................3 Electrical Collection System ...........................................................................................4 Inverter/Transformer Skids .............................................................................................4 Access Roads ..................................................................................................................5 Fencing & Cameras .........................................................................................................5
    [Show full text]
  • Small Wind Electric Systems: an Oklahoma Consumer's Guide
    Small Wind Electric Systems An Oklahoma Consumer’s Guide Small Wind Electric Systems Cover photo: This 10-kW Bergey Excel is installed on a 100-ft. (30-m) guyed lattice tower at a residence in Norman, Oklahoma and is interconnected with the Oklahoma Gas & Electric utility. Photo credit — Bergey Windpower/PIX01476 Small Wind Electric Systems 1 Small Wind Electric Systems A U.S. Consumer’s Guide Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for affordable and reliable sourc- es of electricity. Small wind electric systems can make a significant contribution to our nation’s energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home gen- erally require one acre of property or more, approximately 21 million U.S. homes are built on one-acre and larger sites, and 24% of the U.S. population lives in rural areas. A small wind electric system will work for you if: Bergey Windpower/PIX01476 • There is enough wind where you Homeowners, ranchers, and small businesses can use wind- generated electricity to reduce their utility bills. This grid- live connected system installed for a home in Norman, Oklahoma, • Tall towers are allowed in your reduces the homeowner’s utility bill by $100 per month. neighborhood or rural area • You have enough space Contents • You can determine how much Introduction ...................................... 1 electricity you need or want to First, How Can I Make My Home More Energy Efficient? . 2 produce Is Wind Energy Practical for Me? .....................
    [Show full text]
  • Optimal Design and Control of Heliostat for Solar Power Generation
    IACSIT International Journal of Engineering and Technology, Vol. 4, No. 4, August 2012 Optimal Design and Control of Heliostat for Solar Power Generation Dong Il Lee, Woo Jin Jeon, Seung Wook Baek, and Nazar T. Ali transfer is changed by distance or angle between two surfaces. Abstract—The purpose of this research is to optimal design Consider two surfaces, 1 and 2, of an enclosure. Radiation and control of heliostat for solar power generation in real time. from A1 to A2 can be described by Eq. 1. B1A1 is the total Tracking the sun and calculating the position of the sun are possible by using illuminance sensor (CdS) and Simulink energy leaving the surface A1 as a constant and F1→2 indicates program. As heat transfer from heliostat to receiver is delivered its fraction arriving at A2. So, radiation flux reaching the by solar radiation, configuration factor commonly utilized in radiation is applied to control heliostat. Algorithms for surface A2 is maximized when F1→2 is maximal. Eq. 2 is the maximizing configuration factor between sun, heliostat and definition of the configuration factor. Fig. 1(a) represents the receiver in real time are programmed by Simulink. By applying fraction of total energy leaving surface 1 that is intercepted the optimized algorithms, the efficiency of the solar absorption by surface 2. in receiver can be maximized. Simulation was performed how to control azimuthal and elevation angles during the daytime with = respect to diverse distances. qBAF12→→ 1112. (1) Index Terms—Configuration factor, heliostat, CdS, simulink, solar tracking device. θθ 1 cos12 cos (2) Fd− = AdA.
    [Show full text]
  • Potential Map for the Installation of Concentrated Solar Power Towers in Chile
    energies Article Potential Map for the Installation of Concentrated Solar Power Towers in Chile Catalina Hernández 1,2, Rodrigo Barraza 1,*, Alejandro Saez 1, Mercedes Ibarra 2 and Danilo Estay 1 1 Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago 8320000, Chile; [email protected] (C.H.); [email protected] (A.S.); [email protected] (D.E.) 2 Fraunhofer Chile Research Foundation, General del Canto 421, of. 402, Providencia Santiago 7500588, Chile; [email protected] * Correspondence: [email protected]; Tel.: +56-22-303-7251 Received: 18 March 2020; Accepted: 23 April 2020; Published: 28 April 2020 Abstract: This study aims to build a potential map for the installation of a central receiver concentrated solar power plant in Chile under the terms of the average net present cost of electricity generation during its lifetime. This is also called the levelized cost of electricity, which is a function of electricity production, capital costs, operational costs and financial parameters. The electricity production, capital and operational costs were defined as a function of the location through the Chilean territory. Solar resources and atmospheric conditions for each site were determined. A 130 MWe concentrated solar power plant was modeled to estimate annual electricity production for each site. The capital and operational costs were identified as a function of location. The electricity supplied by the power plant was tested, quantifying the potential of the solar resources, as well as technical and economic variables. The results reveal areas with great potential for the development of large-scale central receiver concentrated solar power plants, therefore accomplishing a low levelized cost of energy.
    [Show full text]
  • Evaluation of the Spot Shape on the Target for Flat Heliostats
    energies Article Evaluation of the Spot Shape on the Target for Flat Heliostats David Jafrancesco, Daniela Fontani ID , Franco Francini and Paola Sansoni * CNR-INO National Institute of Optics, Largo E. Fermi, 6-50125-Firenze, Italy; [email protected] (D.J.); [email protected] (D.F.); [email protected] (F.F.) * Correspondence: [email protected]; Tel.: +39-055-23081 Received: 23 May 2018; Accepted: 18 June 2018; Published: 21 June 2018 Abstract: The aim of this study is to evaluate the changes of the spot shape on the target in dependence of the variations of size and faceting of a flat heliostat or an array of heliostats. The flat heliostat, or a flat heliostat array, is a layout common for Concentation Solar Power (CSP) plants. The spot shape is evaluated by means of a numerical integration of an appropriate function; in order to confirm the results, both an analysis based on the Lagrange invariance and some simulations are performed. The first one validates the power density value in the central part of the spot, while the simulations assess the spot shape, which in its central part differs less than 3% from the calculated result. The utilized numerical method does not require specialized software or complex calculation models; it determines an accurate spot shape but cannot take into account shading and blocking phenomena. Keywords: optical design; heliostat; solar; concentration 1. Introduction During the last years, many theoretical and experimental researches were carried out in order to increase the efficiency and the ratio benefits/costs of solar plants.
    [Show full text]
  • Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells
    Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells by Kwan Wee Tan B.Eng (Materials Engineering) Nanyang Technological University, 2006 SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN MATERIALS SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2008 © 2008 Kwan Wee Tan. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author ……………………………………………………………………….... Department of Materials Science and Engineering July 16, 2008 Certified by ...……………………………………………………………………………..... Yet-Ming Chiang Kyocera Professor of Ceramics Thesis Supervisor Certified by ...……………………………………………………………………………..... Chee Cheong Wong Associate Professor, Nanyang Technological University Thesis Supervisor Accepted by ……………………………………………………………………………….... Samuel M. Allen POSCO Professor of Physical Metallurgy Chair, Departmental Committee for Graduate Students 1 Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells By Kwan Wee Tan Submitted to the Department of Materials Science and Engineering on July 16, 2008 in partial fulfillment of the requirements for the Degree of Master of Engineering in Materials Science and Engineering ABSTRACT The price of oil has continued to rise, from a high of US$100 per barrel at the beginning 2008 to a new record of above US$140 in the recent weeks (of July). Coupled with increasing insidious greenhouse gas emissions, the need to harness abundant and renewable energy sources is never more urgent than now. The sun is the champion of all energy sources and photovoltaic cell production is currently the world’s fastest growing energy market.
    [Show full text]
  • Standards and Requirements for Solar Equipment, Installation, and Licensing and Certification a Guide for States and Municipalities
    SUSTAINABLE SOLAR EDUCATION PROJECT Beren Argetsinger, Keyes&FoxLLP•BenjaminInskeep,EQResearchLLC Beren Argetsinger, A GuideforStatesandMunicipalities and LicensingCertification for SolarEquipment,Installation, Standards andRequirements FEBRU A RY 2017 RY © B igstock/ilfede SUSTAINABLE SOLAR EDUCATION PROJECT ABOUT THIS GUIDE AND THE SUSTAINABLE SOLAR EDUCATION PROJECT Standards and Requirements for Solar Equipment, Installation, and Licensing and Certification: A Guide for States and Municipalities is one of six program guides being produced by the Clean Energy States Alliance (CESA) as part of its Sustainable Solar Ed- ucation Project. The project aims to provide information and educational resources to help states and municipalities ensure that distributed solar electricity remains consumer friendly and its benefits are accessible to low- and moderate-income households. In ad- dition to publishing guides, the Sustainable Solar Education Project will produce webinars, an online course, a monthly newsletter, and in-person training on topics related to strengthening solar accessibility and affordability, improving consumer information, and implementing consumer protection measures regarding solar photovoltaic (PV) systems. More information about the project, including a link to sign up to receive notices about the project’s activities, can be found at www.cesa.org/projects/sustainable-solar. ABOUT THE U.S. DEpaRTMENT OF ENERGY SUNSHOT INITIATIVE The U.S. Department of Energy SunShot Initiative is a collaborative national effort that aggressively drives innovation to make solar energy fully cost-competitive with traditional energy sources before the end of the decade. Through SunShot, the Energy Department supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour.
    [Show full text]