Cnemidophorus Inornatus, the Valid Name for the Little Striped Whiptail Lizard, with the Description of an Annectant Subspecies

Total Page:16

File Type:pdf, Size:1020Kb

Cnemidophorus Inornatus, the Valid Name for the Little Striped Whiptail Lizard, with the Description of an Annectant Subspecies Cnemidophorus inornatus, the Valid Name for the Little Striped Whiptail Lizard, with the Description of an Annectant Subspecies Ralph W. Axtell Copeia, Vol. 1961, No. 2. (Jun. 19, 1961), pp. 148-158. Stable URL: http://links.jstor.org/sici?sici=0045-8511%2819610619%293%3A1961%3A2%3C148%3ACITVNF%3E2.0.CO%3B2-K Copeia is currently published by American Society of Ichthyologists and Herpetologists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/asih.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Wed Dec 12 18:45:48 2007 148 COPEIA, 1961, NO. 2 is tannish-gray above and white below in American Museum of Natural History diabola. and it is reddish above and below in (AMNH); M. Alvarez del Toro, Museo Zo- rubra. In rubra, the lower postocular is usu- ologic~de Tuxtla Gutierrez (MZTG); R. F. ally white, or white with a black anterior Inger, Chicago Natural History Museum margin, and the fourth upper labial generally (CNHM); H. M. Smith, University of Illinois has a white posterior border; but in diabola hluseum of Natural History (UIMNH); and both postoculars are entirely black and the C. F. Walker, University of Michigan Museum fourth upper labial is black to the posterior of Zoology (UMMZ). W. F. Blair also read the margin. Ventrals and subcaudals are more manuscript. We also wish to thank Mr. and numerous in diabola than in rubra. In rubra Mrs. G. E. Drewry for donation of the novel ventrals number 147 to 167, subcaudals 56-70. specimen. Numbers of ventrals and subcaudals of rubra Specimens examined (T. rubra).-Xuevo are graphically compared with those of dia- Leon: CNHM 30825. Tamaulipas-San Luzs bola in Figure l. Both counts are higher in Potosi: AMNH 66161,79960; UMMZ 107145- diabola than in any rubra. Clinal variation 46, 11 1042, 11 1044, 11 1046-52. Southern seems evident in the rubra populations for Puebla-Xorthern Oaxaca: AMNH 65141; both characters. The ventral count of diabola CNHM 105339, 105341, 105343; UIMNH might be interpreted as part of this cline, but 48562-63. Tehuantepec (Oaxaca) area: no such interpretation is possible with regard AhlNH 62644-45, 62922-25, 65884, 66796, to the subcaudals. The localities where rubra 66959, 68025, 68883; CNHM 82728, 105340, and diabola have been found are shown in 105342, 105344; UIMNH 3773-74, 36815, Figure 2, which indicates the samples grouped 37145-46, 48561; UMMZ 82728. Chiapas: in Figure 1. UIMNH 37991, 38041; UhlMZ 102239; Four other species of this genus are known MZTG 76, 259, 41 1, 425, 434, 435. from Texas. Three of these belong to the In addition, ventral and subcaudal counts nigriceps group and the other to the gracilis were included on the basis of published infor- group of Smith (1942). The latter group is mation for CNHhl 40813 from Nuevo Leon represented by T. gracilis, which has a conical (Smith, 1944). head with no black pigment, no nuchal collar, and six upper labials. The Texas representa- tives of the nigriceps group include nigriceps, which has no nuchal collar; atriceps, which SMITH,H. M. 1942. A resume of Mexican snakes of the genus Tantilla. Zoologica 2733-42. may have a faint nuchal collar but no pos- . 1944. Snakes of the Hooestraal Ex~edi- terior black border; and cucullata, which has tions to northern Mexico. Field Gus.Nat. kist., a black head and neck, but no light collar. Zool. Ser. 29:135-152. Acknowledgments.-We are grateful to the following people and institutions for the use of specimens: W. F. Blair, University of Texas Natural History Collection; C. M. Bogert, Cnernidophorus inornatus, the Valid Name for the Little Striped Whiptail Lizard, with the Description of an Annectant Subspecies N 1858, Spencer F. Baird described two of Pesqueria Grande (subsequently changed I lizards, Cnemidophorus inornatus and to Villa de Garcia), in the Mexican state of Cnemidophorus octolineatus, on the same Nuevo Leon. The two cotypes of C. inornatus page of the Proceedings of the Academy of (United States National Museum 3032), al- Natural Science of Philadelphia. Both new though in very poor condition, are rather species were collected by the same man (Lt. dark (deep brown from many years in pre- D. N. Couch) at the same locality-the village servative), completely unstriped lizards hav- ing 80 and 85 granular dorsal scale rows (ac- with the little striped whiptail. See both cording to Dr. Doris M. Cochran), while Burger (1950) and hlaslin et al. (1958) for the type of C. octolineatus (USNhl 3009) has comments on this problem. Burger (op. cit.) eight light stripes on a dark background and relegated C. octolineatus to the synonymy only 66 dorsal granules. of C. inornatus, thus being the first to in- brief history reviewing the nomen- dicate that these two lizards might be identi- clatorial association of C. inornatus and C. cal. The implication of the possible synonymy octolineatzts with each other, and with the of these two names has stirred considerable lizard comnlonly called the little striped skepticism among the interested saurologists. whiptail may be enlightening. The descrip- Do two different, closely related species live tions of both species (Baird, 1858:255) are at the original collecting site, or only one repeated below: dimorphic species? "Cnemidophorus inornatus, Baird- At the onset (1958) of preparation for my Scales on the gular fold smaller than those work on Texas lizards many systematic prob- on the breast anteriorly, and scarcely larger lems involving forms occurring within Texas than those on the middle of the chin. Scales have presented themselves. As the taxonomic of back tubercular and elevated. Hind feet status of C. inornatus was one of the most about two-fifths the head and body. Gen- controversial and insecure, I decided to visit eral color light greenish olive, paler be- the type locality of that species to try to neath. No lines on the body. answer the question of dimorphism posed Hab.-New Leon. Lt. Couch. Type No. above, and in doing so resolve our future use 3032. of the names C. inoi-natus and C. octoline- Cnemidopkoi-us octolineatus, Baird-Gu- atzis. On June 9 and 10, 1960, Michael Sabath lar fold as in the last. Hind foot not two- and I collected 14 (6 $ , 8 0 ), Cnemidopkorus fifths the head and body. Scales of back de- inovnntus fronl a group of wind formed, sandy pressed. General color light greenish olive, mounds (about eight feet high) across the Rio paler beneath. Back with eight equidistant Pesqueria from Villa de Garcia. Of these 14 and approximated light lines. specimens, six were completely unicolor Hab.-New Leon. Lt. Couch. Type No. brownish olive above, and eight were dis- 3009." tinctly striped with eight light lines on a Subsequently both names were retained by brownish gray to olive background. We found various authors until about 1906. after which six unicolor and five striped members of both they slipped, for unknown reasons, into the sexes living within a small dune area esti- synonymy of other Cnemidopkorzts. The two mated to be 30 yards wide by 100 yards long. names were consistently synonymized, always Approximately 100 yards southeast of the under different headings. Burt (1931:9) dunes, among several small mounds (not placed C. inornatus under Cnemidopkorus over one foot high), we took three more in- sexlineatus gularis, and C. octolinentus un- dividuals, but all of these were striped. This der Cnemidopkorus sexlineatus perplexzts. suggests that strong selection pressure may be Schmidt and Smith (19441I lifted octolineatus active outside the restricted dune area, but from synonymy to apply to a lizard occurring more evidence for this is needed. From in the mountainous regions of central Coa- cursory observation the ratio of striped huila, Mexico. Burger (1950) has more to unicolor individuals in the main dunes recentlv referred Schmidt and Smith's octo- population appeared to be one to one, and lineatus to Cnemzdopkovtts snckz semtfasci- the number of specimens collected by Sabath atus. Smith (1946) contributed to the already and myself (both morphotypes were in equal g~owingconfusion by using octolineatus as demand) tends to substantiate this observa- the subspecific name of yet another form of tion. Unicolored individuals were the same C. sackt, which recently has been identified color as, and therefore blended with the and described as a distinct subspecies (C. s. substratum. To my eye, unicolored lizards exsanguis) by Lowe (1956). The name C. were more difficult to trail than were the inornatus was brought out of syrlonylny by striped members. This might explain their Burger (1950) to become a substitute name relatively high survival rate in the main for C.
Recommended publications
  • A Review of the Cnemidophorus Lemniscatus Group in Central America (Squamata: Teiidae), with Comments on Other Species in the Group
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3722 (3): 301–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:4E9BA052-EEA9-4262-8DDA-E1145B9FA996 A review of the Cnemidophorus lemniscatus group in Central America (Squamata: Teiidae), with comments on other species in the group JAMES R. MCCRANIE1,3 & S. BLAIR HEDGES2 110770 SW 164th Street, Miami, Florida 33157-2933, USA. E-mail: [email protected] 2Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract We provide the results of a morphological and molecular study on the Honduran Bay Island and mainland populations of the Cnemidophorus lemniscatus complex for which we resurrect C. ruatanus comb. nov. as a full species. Morphological comparison of the Honduran populations to Cnemidophorus populations from Panama led to the conclusion that the Pan- amanian population represents an undescribed species named herein. In light of these new results, and considering past morphological studies of several South American populations of the C. lemniscatus group, we suggest that three other nominal forms of the group are best treated as valid species: C. espeuti (described as a full species, but subsequently treat- ed as a synonym of C. lemniscatus or a subspecies of C.
    [Show full text]
  • The Bisexual Brain: Sex Behavior Differences and Sex Differences in Parthenogenetic and Sexual Lizards
    BRAIN RESEARCH ELSEVIER Brain Research 663 (1994) 163-167 Short communication The bisexual brain: sex behavior differences and sex differences in parthenogenetic and sexual lizards Matthew S. Rand *, David Crews Institute of Reproductive Biology, Department of Zoology, University of Texas at Austin, Austin, TX 78712, USA Accepted 2 August 1994 Abstract The parthenogenetic lizard Cnemidophorus uniparens alternates in the display of male-like and female-like sexual behavior, providing a unique opportunity for determining the neuronal circuits subserving gender-typical sexual behavior within a single sex. Here we report a 6-fold greater [14C]2-fluoro-2-deoxyglucose uptake in the medial preoptic area of C. uniparens displaying male-like behavior in comparison with C. uniparens displaying female-like receptivity. The ventromedial nucleus of the hypothalamus showed greater 2DG accumulation in receptive C. uniparens than in courting C. uniparens. When a related sexual species (C. inornatus) was compared to the unisexual species, the anterior hypothalamus in C. inornatus males exhibited significantly greater activity. Keywords: 2-Deoxyglucose; Anterior hypothalamus; Medial preoptic area; Reptile; Ventromedial hypothalamus Female-typical and male-typical sex behavior are C. inornatus [7,17]. The aims of this study were to known to be integrated by specific hypothalamic nuclei determine: (1) if specific regions in the brains of in the vertebrate brain [6,18,22]. The ventromedial parthenogenetic and gonochoristic whiptail lizards ex- nucleus of the hypothalamus (VMH) and the medial hibit sexually dimorphic metabolic activity, as mea- preoptic area (mPOA) are involved in sexual receptiv- sured by the accumulation of [14C]2-fluoro-2-de- ity in females and both the mPOA and anterior hy- oxyglucose (2DG) in the brain during mating behavior, pothalamus (AH) play an important role in the regula- and (2) if these dimorphisms complement previous tion of copulatory behavior in males [6,18,19,22].
    [Show full text]
  • NIH Public Access Author Manuscript J Comp Neurol
    NIH Public Access Author Manuscript J Comp Neurol. Author manuscript; available in PMC 2014 October 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Comp Neurol. 2013 October 1; 521(14): . doi:10.1002/cne.23351. Characterization of the Trunk Neural Crest in the bamboo shark, Chiloscyllium punctatum Marilyn Juarez*, Michelle Reyes*, Tiffany Coleman*, Lisa Rotenstein, Sothy Sao, Darwin Martinez, Matthew Jones#, Rachel Mackelprang, and Maria Elena de Bellard California State University Northridge. Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330. # California Institute of Technology. Division of Biology, 139-74. 1200 East California Blvd. Pasadena, CA 91125. Abstract The neural crest is a population of mesenchymal cells that after migrating from the neural tube give rise to a structures and cell-types: jaw, part of the peripheral ganglia and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with DiI and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, branchial arches, gut, sensory ganglia and nerves. Interestingly, Chiloscyllium punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs.
    [Show full text]
  • Endoparasites Infecting Two Species of Whiptail Lizard (<I
    SHORT NOTES SHORT NOTES 1980; Ribas et al., 1995; 1998; Vrcibradic et al., 2000; Menezes et al., 2004). In this study we survey the en- doparasite faunas of two sympatric species of whiptail HERPETOLOGICAL JOURNAL, Vol. 15, pp. 133-137 (2005) lizards from Brazil, Cnemidophorus abaetensis Dias, ENDOPARASITES INFECTING TWO Rocha & Vrcibradic, 2002 and Cnemidophorus ocellifer (Spix, 1824). Cnemidophorus abaetensis is a recently SPECIES OF WHIPTAIL LIZARD described species whose geographic distribution is ap- (CNEMIDOPHORUS ABAETENSIS AND parently restricted to the northern coast of Bahia state C. OCELLIFER; TEIIDAE) IN A (Dias et al., 2002), whereas C. ocellifer is widespread in ‘RESTINGA’ HABITAT OF NORTH- South America south of the Amazonian region, from EASTERN BRAZIL north-eastern and central Brazil to Paraguay, Bolivia and northern Argentina (Vanzolini et al., 1980; Cei, EDUARDO JOSÉ R. DIAS, DAVOR VRCIBRADIC 1993). So far, nothing has been published about the AND CARLOS FREDERICO D. ROCHA endoparasites associated with these two species [in the study of Ribas et al., (1995) regarding nematodes of C. Setor de Ecologia, Instituto de Biologia, Universidade do ocellifer, the species under treatment is actually C. Estado do Rio de Janeiro, Rua São Francisco Xavier littoralis Rocha, Araújo, Vrcibradic & Costa, 2000, 524, 20550-011, Rio de Janeiro, RJ, Brazil which had not yet been formally described at the time We analysed the endoparasite fauna associated with (see Rocha et al., 2000a)]. two species of whiptail lizard (Cnemidophorus A total of 73 lizards (33 C. abaetensis and 40 C. abaetensis and C. ocellifer) from north-eastern Brazil. ocellifer) were collected by the first author with the aid Overall parasite prevalence was relatively low for both of elastic rubber bands at the coastal sand-dune species (18.2% in C.
    [Show full text]
  • Range Extension and Geographic Distribution of the Poorly Known Species, Contomastix Leachei Peracca, 1897
    Check List 9(4): 844–846, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Range extension and geographic distribution of the poorly known species, Contomastix leachei Peracca, 1897 ISTRIBUTIO (Squamata: Teiidae) D 1,2* 1 1 RAPHIC Federico José Arias , Francisco Barrios and Antonio Palavecino G EO G 1 Universidad Nacional de Salta, Instituto de Bio y Geociencias del Noa (IBIGEO). Avenida Bolivia 5150, Salta 4400, Argentina.. N 2 Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Caixa Postal 11.46 1, CEP 05422-970, São Paulo, Brazil. O * Corresponding author. E-mail: [email protected] OTES N Abstract: The records of distribution of Contomastix leachei Peracca, 1897 indicate that this species is endemic of Southeast Jujuy Province, occurring only in the Ledesma Department. Here, we report the southernmost known locality of this species, from Alemanía, Salta Province, Argentina. This record represents the southern limit of distribution of the species. We also provide an updated range map for this species based on data from museum records and field studies. The Contomastix genus was recently proposed by transition”, which is characterized by being drier than the Harvey et al. (2012) for grouping the species of the “Yungas sensu stricto”, with vegetation typical of the semi- formerly called Cnemidophorus lacertoides group (Cei arid Chaco and “Chaco serrano” ecotones (Brown et al. 1993) in a monophyletic cluster. Five species are currently 2002). recognized for this new genus: C. lacertoides, C. leachei, In order to evaluate the taxonomic status of the C.
    [Show full text]
  • Arizona Wildlife Notebook
    ARIZONA WILDLIFE CONSERVATION ARIZONA WILDLIFE NOTEBOOK GARRY ROGERS Praise for Arizona Wildlife Notebook “Arizona Wildlife Notebook” by Garry Rogers is a comprehensive checklist of wildlife species existing in the State of Arizona. This notebook provides a brief description for each of eleven (11) groups of wildlife, conservation status of all extant species within that group in Arizona, alphabetical listing of species by common name, scientific names, and room for notes. “The Notebook is a statewide checklist, intended for use by wildlife watchers all over the state. As various individuals keep track of their personal observations of wildlife in their specific locality, the result will be a more selective checklist specific to that locale. Such information would be vitally useful to the State Wildlife Conservation Department, as well as to other local agencies and private wildlife watching groups. “This is a very well-documented snapshot of the status of wildlife species – from bugs to bats – in the State of Arizona. Much of it should be relevant to neighboring states, as well, with a bit of fine-tuning to accommodate additions and deletions to the list. “As a retired Wildlife Biologist, I have to say Rogers’ book is perhaps the simplest to understand, yet most comprehensive in terms of factual information, that I have ever had occasion to peruse. This book should become the default checklist for Arizona’s various state, federal and local conservation agencies, and the basis for developing accurate local inventories by private enthusiasts as well as public agencies. "Arizona Wildlife Notebook" provides a superb starting point for neighboring states who may wish to emulate Garry Rogers’ excellent handiwork.
    [Show full text]
  • 92 IRCF Reptiles & Amphibians • Vol 18, No 2 • Jun 2011 Young Aruba
    92 IRCF ReptIles & AmphIbians • Vol 18, No 2 • JUN 2011 van Buurt Young Aruba Whiptail (Cnemidophorus arubensis) from Aruba sitting on a tonalite block (a type of andesite rock). Distinguishing the sexes is difficult in young and subadult animals. When males become larger, they change color from yellow-brown or light brown to gray and blue. In an animal of this size that would be noticeable, thus the lizard in the picture is very likely a female. teiid Lizards IRCF ReptIles & AmphIbians • Vol 18, No 2 • JUN 2011 93 The Teiid lizards of aruba, curaçao, bonaire (Dutch caribbean), and the Península de Paraguaná (Venezuela) Gerard van Buurt Kaya Oy Sprock 18, Curaçao ([email protected]) photographs by the author. erein I discuss the larger teiid lizards of the genera Ameiva and is about 190 km2, Curaçao 444 km2, Klein Curaçao 1.2 km2, Bonaire 282 hCnemidophorus on the Dutch Leeward Islands (Aruba, Curaçao, and km2 (including Klein Bonaire with 7 km2). At various times during its his- bonaire) and those on the nearby Península de Paraguaná in Venezuela. tory, Paraguaná was an island. In the late Pleistocene or early Holocene, it lizards in the genus Cnemidophorus are generally called “Whiptail Lizards” became connected to the mainland by a narrow strip of dunes. During the or “Racerunners,” whereas those in the genus Ameiva are called “Jungle ice ages, when sea levels were much lower, it was part of the South American Runners.” The genera differ in the number of rows of ventral scales and in mainland. Aruba might at one time have been connected to the mainland; the structure of the bones in the tongue.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Collection, Trade, and Regulation of Reptiles and Amphibians of the Chihuahuan Desert Ecoregion
    Collection, Trade, and Regulation of Reptiles and Amphibians of the Chihuahuan Desert Ecoregion Lee A. Fitzgerald, Charles W. Painter, Adrian Reuter, and Craig Hoover COLLECTION, TRADE, AND REGULATION OF REPTILES AND AMPHIBIANS OF THE CHIHUAHUAN DESERT ECOREGION By Lee A. Fitzgerald, Charles W. Painter, Adrian Reuter, and Craig Hoover August 2004 TRAFFIC North America World Wildlife Fund 1250 24th Street NW Washington DC 20037 Visit www.traffic.org for an electronic edition of this report, and for more information about TRAFFIC North America. © 2004 WWF. All rights reserved by World Wildlife Fund, Inc. ISBN 0-89164-170-X All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC Network, World Wildlife Fund (WWF), or IUCN-The World Conservation Union. The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Fitzgerald, L.A., et al. 2004. Collection, Trade, and Regulation of Reptiles and Amphibians of the Chihuahuan Desert Ecoregion. TRAFFIC North America. Washington D.C.: World Wildlife Fund.
    [Show full text]
  • Aspidoscelis Laredoensis B) and Both Gonochoristic Progenitors (A
    Herpetological Conservation and Biology 11(1):29–39. Submitted: 10 August 2015; Accepted: 5 February 2016; Published: 30 April 2016. RARE SYNTOPY OF THE DIPLOID PARTHENOGENETIC LIZARD (ASPIDOSCELIS LAREDOENSIS B) AND BOTH GONOCHORISTIC PROGENITORS (A. GULARIS AND A. SEXLINEATA) IN TEXAS, USA 1,4 2 3 JAMES M. WALKER , JAMES E. CORDES , AND MARK A. PAULISSEN 1Department of Biological Sciences. University of Arkansas, Fayetteville, Arkansas 72701, USA 2Division of Sciences and Mathematics, Louisiana State University Eunice, Louisiana 70535, USA 3Department of Natural Sciences, Northeastern State University, Tahlequah, Oklahoma 74464, USA 4Corresponding author, e-mail: [email protected] Abstract.—We surveyed several sites in Dimmit County, Texas, and provide the first records for Aspidoscelis laredoensis (Laredo Striped Whiptail) clonal complex B therein. Site D-5 (= Texas FM 2644 West), about 31 km (straight line distance) east of the Rio Grande in chronically disturbed habitat bordering Texas FM Hwy 2644, is the most distant point from the river known for this hybrid-derived diploid parthenogenetic lizard. It is also the only site in the range of clonal complex B, which includes certain border areas of Texas and the Mexican states Coahuila and Tamaulipas, where large numbers of A. laredoensis B have been observed in syntopy with substantial numbers of its gonochoristic progenitors, A. gularis (Texas Spotted Whiptail) and A. sexlineata (Six-lined Racerunner). Aspidoscelis gularis is the only whiptail species present at all of the other five sites in Dimmit County featured herein, with no other congener at D-1 (= Carrizo Springs) and D-2 (= Valley Wells), with A. laredoensis clonal complex A at D-3 (= Catarina), and with A.
    [Show full text]
  • Monitoring Science and Technology Symposium
    Herpetological Communities of the Middle Rio Grande Bosque: What Do We Know, What Should We Know, and Why? Alice L. Chung-MacCoubrey, Research Wildlife Biologist, USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM Heather L. Bateman, Graduate Student, Department of Biology, University of New Mexico, Albuquerque, NM Abstract—Amphibians and reptiles (herpetofauna) play important roles within eco- systems. Similar to many birds and mammals, they are major consumers of terrestrial arthropods. However, amphibians and reptiles are more efficient at converting food into biomass and are a higher quality food source for predators. Recent declines in some herpetofaunal populations have stimulated a greater overall interest in the monitoring of these populations. Although studies have examined the use of exotic plant-invaded ecosystems by birds and mammals, few have focused on the herpetofaunal community. Specifically, there is little information on the ecology and management of reptiles and amphibians within riparian cottonwood forest (bosque) along the Middle Rio Grande in New Mexico. Invasion by exotic plant species and accumulation of woody debris have led to high fuel loadings and thus the risk of catastrophic fire in the bosque. Thus, land managers are interested in removing exotics and reducing fuels by various techniques. To effectively manage habitat and make sound decisions, managers must understand how various fuels reduction treatments affect wildlife communities, including the dis- tribution, abundance, and ecology of amphibian and reptile populations. In 1999, the U.S. Forest Service- Rocky Mountain Research Station initiated a study to monitor and evaluate the response of vegetation and wildlife to three fuel reduction treatments in the Middle Rio Grande bosque.
    [Show full text]
  • Assessing Translocation of Whiptail
    MSc Conservation Science ‘Assessing the Translocation of the St Lucia Whiptail Lizard Cnemidophorus vanzoi: A Retrospective Analysis of Abundance, Demographics and Habitat Utilization’ Heidi Brown A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science and the Diploma of Imperial College London Abstract The St. Lucia whiptail lizard C. vanzoi is a ground dwelling, diurnal, primarily insectivorous macroteiid and a small island endemic. Originally it was only found on two islands (Maria Major and Maria Minor) off the coast of St. Lucia, West Indies. In 1995 due to perceived risk from the mainland a small population was translocated to the smaller uninhabited island of Praslin on the same coastline. In accordance with critics’ views on the long term monitoring of translocated populations, I studied the abundance, demography, morphometrics and habitat utilization of the translocated lizard population over a 3 month period, 13 years post release. Not only was I analysing data collected in this study but also the data collected from previous monitoring studies in a time series analysis, in order to identify how the population has faired since the original translocation. Age, sex, snout-vent length (SVL), body mass (BM) and overall condition (moulting, gravid, cuts, parasites) of 100 lizards caught during the study were analysed and compared with the previous data. Body Condition (CI (BM/SVL)), age ratio (adult: juvenile), sex ratio (male: female) were also calculated and compared under the time series analysis. Distance sampling and mark re-sight surveys were used, calculating a mean abundance of 183 (95% CI: 132 – 279).
    [Show full text]