Assessing Translocation of Whiptail

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Translocation of Whiptail MSc Conservation Science ‘Assessing the Translocation of the St Lucia Whiptail Lizard Cnemidophorus vanzoi: A Retrospective Analysis of Abundance, Demographics and Habitat Utilization’ Heidi Brown A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science and the Diploma of Imperial College London Abstract The St. Lucia whiptail lizard C. vanzoi is a ground dwelling, diurnal, primarily insectivorous macroteiid and a small island endemic. Originally it was only found on two islands (Maria Major and Maria Minor) off the coast of St. Lucia, West Indies. In 1995 due to perceived risk from the mainland a small population was translocated to the smaller uninhabited island of Praslin on the same coastline. In accordance with critics’ views on the long term monitoring of translocated populations, I studied the abundance, demography, morphometrics and habitat utilization of the translocated lizard population over a 3 month period, 13 years post release. Not only was I analysing data collected in this study but also the data collected from previous monitoring studies in a time series analysis, in order to identify how the population has faired since the original translocation. Age, sex, snout-vent length (SVL), body mass (BM) and overall condition (moulting, gravid, cuts, parasites) of 100 lizards caught during the study were analysed and compared with the previous data. Body Condition (CI (BM/SVL)), age ratio (adult: juvenile), sex ratio (male: female) were also calculated and compared under the time series analysis. Distance sampling and mark re-sight surveys were used, calculating a mean abundance of 183 (95% CI: 132 – 279). Habitat utilisation was tested to identify if lizards select habitat randomly and also split by age and sex group. Overall since the translocation took place there appears to be no significant change in abundance, sex ratio, BM and CI. However the age ratio has changed, the number of juveniles to males had decreased suggesting there were problems potentially with juvenile mortality but this threat appears to have now passed. Juvenile mortality could also explain the significant decrease in adult female SVL and this should continue to be monitored. Lizards appear to select habitat non-randomly, choosing areas that help regulate thermoregulation. Overall, the study suggests that the population has successfully colonised Praslin Island, producing a self sustaining viable population. 1 TABLE OF CONTENTS Abstract……………………………………………………………………… ……..1 Contents………………………………………………………………...…….……..2 List of tables……………………………………………………………….….……..3 List of figures………………………………………………………………….…….4 List of appendices…………………………………………………………..….……5 1. INTRODUCTION…………………………..………………..……….6 1.1 This study………………………………………………………………….7 1.2 Objectives …………………………………………………………………9 2. BACKGROUND……………………………………………………………… 10 2.1 Assessment of translocation………………………………………………. 10 2.2 Small island reserves in translocations …………………………………….14 2.3 Translocation of St. Lucia whiptail lizards (Cnemidophorus vanzoi)…….. 15 3. METHODS……………………………………………………………………..18 3.1 Study species………………………………………………………………...18 3.2 Study site…………………………………………………………………….19 3.3 Abundance estimates………………………………………………………...20 3.4 Morphometry and demography……………………………………………...22 3.5 Habitat utilisation……………………………………………………………23 3.6 Statistical analysis…………………………………………………………...24 4. RESULTS………………………………………………………………………26 4.1 Abundance estimates………………………………………………………...26 4.2 Population trends…………………………………………………………….27 4.3 Demographics and dimorphismn…………………………………………….28 4.4 Morphometrics………………………………………………………………29 4.5 Morphometrics and habitat selection………………………………………..32 4.6 General habitat selection…………………………………………………….32 4.7 Body Condition……………………………………………………………...33 5. DISCUSSION…………………………………………………………………..35 6. ACKNOWLEDGEMENTS……………………………………………………41 7. REFERENCES………………………………………………………………....42 8. APPENDICES………………………………………………………………….47 2 LIST OF TABLES Table 1 Description of microhabitat variables for C.vanzoi on Praslin Island…….24 Table 2 Table identifying abundance estimate provided by Distance 5.0…………24 Table 3 Table identifying abundance estimate provided by PETERESEN………..26 3 LIST OF FIGURES Figure 1 Illistration of male and female C.vanzoi on Praslin Island……………….18 Figure 2 Map of St Lucia showing position of Praslin Island………………………20 Figure 3 Map of Praslin Island showing Transects and habitat type……………….21 Figure 4 Grapgh showing C.vanzoi abundance 1999 – 2008………………………27 Figure 4 Graph showing age and sex ratios of C.vanzoi 1999 – 2008………………28 Figure 5 Graph showing presence of Adult Clouration of male C.vanzoi 2008……30 Figure 6 Graph showing decrease in mean SVL for adult female C.vanzoi 1999 – 2008…………………………………………………………………………………..31 Figure 7 Graph showing CI for C.vanzoi 1999 – 2008 …………………………….33 Figure 8 Graph showing Mean CI pooled with abundance for C.vanzoi 1999 – 2008 ………………………………………………………………………………….34 4 LIST OF APPENDICES APPENDIX A: Distance 5.0 Outputs…………………………………………..47 Figure A1: Example of models run in distance…………………………………...47 Figure A2: Output for model used in this study………………………………….47 Figure A3: Graph showing detection probability for this study………………….48 APPENDIX B: Identifying unknown males of 2002…………………………...49 Figure B1: Graph identifying Unknown males of 2002…………………………..49 APPENDIX C: Statistical outputs from R used in this study………………….50 5 1. Introduction Biodiversity is the very basis for the survival of all living organisms on earth, encompassing all life forms, ecosystems and ecological processes, acknowledging the hierarchies at genetic, taxon and ecosystem levels. Estimates of the total number of species on earth vary from 5 – 50 million; though 13.6 million is a more conservative figure (McNeely et al, 1990). However research has indicated that we are entering into a new phase of mass extinction (Myers, 1990). While previous extinctions have happened over millions of years the current mass extinction could well occur within a short period of time; within 200 years. Current scenarios predict a 20% loss of all species within the next 30 years and 50% or more by the end or the 21st century (Singh, 2002). Conservation projects have become common place in the world, striving to preserve Biodiversity and halt continuing declines. Conservation scientists have thus been attempting to incorporate a wide range of management techniques to reduce this decline in Biodiversity. In the face of this global biodiversity crisis translocation has become an important conservation technique. Translocation is defined as the intentional release of animals to the wild to establish, re-establish, or augment a population (IUCN, 1987). Species translocations can form a valuable part of a species recovery programme, which is aimed mainly at reversing historical declines or increasing limited ranges sizes in the status of species of conservation significance. However, the role of translocations in conserving species is a matter of debate, with a range of views within the statutory conservation agencies (and elsewhere) on when and where such activities are acceptable and desirable. Although species translocation has become a popular tool, several previous studies have suggested that many relocations are not successful and fail to achieve self sustaining populations (Grittith et al, 1989; Dodd and Seigel, 1991; lindburg, 1992; Wolf et al, 1996; Fischer et al, 2000) and thus have given rise to increased scientific speculation as to what factors influence the success or failure of translocations. 6 Like so many other conservation practices, translocations are often ad–hoc decisions made in crisis situations, without clear defined objectives, methodologies, measures of success and long term follow up studies, which are all indications of a project that is likely to fail (Dodd and Seigel, 1991). A recent survey carried out by Fischer et al (2000) on the assessment of animal relocations found that only 26% of reintroductions could be classified as a complete success. However this number is likely to be over estimated due to the study only being carried out on published results and often projects will only publish their results if they have been successful. Despite countless articles highlighting problems concerning species translocations and how they can be addressed (Dodd and Seigel, 1991; Fischer et al, 2000); and regardless of the many variables which influence the success of a translocation not all translocation programmes evaluate those factors, nor are they carefully monitored (Cabezas et al, 2007). To ensure that any translocation efforts are going to be as successful as they can be, it is essential they follow through with the recommendations. One of the main recommendations, which relates to this study, is the long term monitoring of the species once it has been translocated (Dodd and Seigel, 1991; Fischer et al, 2000). Monitoring should be carried out on a long term basis because success can take a long time to confirm, especially if a species has a slow reproductive life history. A lot of studies have failed to follow a strict population monitoring scheme (Fisher et al, 2000), and it has been suggested that wildlife managers should develop long term monitoring protocols in which key parameters that can reflect success are carried out at specified time intervals. These parameters can be abundance, sex and age ratios to name but a few. Secondly is the importance of sharing information about translocations (Fischer et al, 2000)
Recommended publications
  • A Review of the Cnemidophorus Lemniscatus Group in Central America (Squamata: Teiidae), with Comments on Other Species in the Group
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3722 (3): 301–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:4E9BA052-EEA9-4262-8DDA-E1145B9FA996 A review of the Cnemidophorus lemniscatus group in Central America (Squamata: Teiidae), with comments on other species in the group JAMES R. MCCRANIE1,3 & S. BLAIR HEDGES2 110770 SW 164th Street, Miami, Florida 33157-2933, USA. E-mail: [email protected] 2Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract We provide the results of a morphological and molecular study on the Honduran Bay Island and mainland populations of the Cnemidophorus lemniscatus complex for which we resurrect C. ruatanus comb. nov. as a full species. Morphological comparison of the Honduran populations to Cnemidophorus populations from Panama led to the conclusion that the Pan- amanian population represents an undescribed species named herein. In light of these new results, and considering past morphological studies of several South American populations of the C. lemniscatus group, we suggest that three other nominal forms of the group are best treated as valid species: C. espeuti (described as a full species, but subsequently treat- ed as a synonym of C. lemniscatus or a subspecies of C.
    [Show full text]
  • Sexual Dimorphism and Natural History of the Western Mexico Whiptail, Aspidoscelis Costata (Squamata: Teiidae), from Isla Isabel, Nayarit, Mexico
    NORTH-WESTERN JOURNAL OF ZOOLOGY 10 (2): 374-381 ©NwjZ, Oradea, Romania, 2014 Article No.: 141506 http://biozoojournals.ro/nwjz/index.html Sexual dimorphism and natural history of the Western Mexico Whiptail, Aspidoscelis costata (Squamata: Teiidae), from Isla Isabel, Nayarit, Mexico Raciel CRUZ-ELIZALDE1, Aurelio RAMÍREZ-BAUTISTA1, *, Uriel HERNÁNDEZ-SALINAS1,2, Cynthia SOSA-VARGAS3, Jerry D. JOHNSON4 and Vicente MATA-SILVA4 1. Centro de Investigaciones Biológicas (CIB), Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo, Km 4.5 s/n, Colonia Carboneras, Mineral de La Reforma, A.P. 1-69 Plaza Juárez, C.P. 42001, Hidalgo, México. 2. Instituto Politécnico Nacional, CIIDIR Unidad Durango, Sigma 119, Fraccionamiento 20 de Noviembre II, Durango, Durango 34220, México. 3. Laboratorio de Herpetología, Escuela de Biología, Benemérita Universidad Autónoma de Puebla, C. U. Boulevard Valsequillo y Av. San Claudio, Edif. 76, CP. 72570, Puebla, Puebla, México. 4. Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA. *Corresponding author, A. Ramírez-Bautista, E-mail: [email protected] Received: 25. April 2014 / Accepted: 13. June 2014 / Available online: 16. October 2014 / Printed: December 2014 Abstract. Lizard populations found in insular environments may show ecological and morphological characteristics that differ from those living in continents, as a result of different ecological and evolutionary processes. In this study, we analyzed sexual dimorphism, reproduction, and diet in a population of the whiptail lizard, Aspidoscelis costata, from Isla Isabel, Nayarit, Mexico, sampled in 1977 and 1981. Males and females from Isla Isabel showed no sexual dimorphism in many morphological structures, such as snout-vent length (SVL), but they did in femur length (FL) and tibia length (TL).
    [Show full text]
  • Lac Bay: Then and Now… a Historical Interpretation of Environmental Change During the 1900S
    Lac Bay: Then and Now… A Historical Interpretation of Environmental Change During the 1900s A Site Characterization of Lac Bay for Resource Managers and Naturalists prepared for Bonaire Marine Park by Environics, N.V. Cynthia E. Lott, Environmental Consultant Final Edition October 2001 Lac Bay Then and Now A Historical Interpretation of Environmental Change During the 1900s A Site Characterization of Lac Bay For Resource Managers and Naturalists By Cynthia E. Lott Environmental Consultant Bonaire, Netherlands Antilles Final Edition October 2001 Copyright 2001 All rights reserved Title Page Map Credits: Top: Year 1866, Year 1911 (Hummelinck en Roos 1969); Middle: Year 1949, Year 1967 (Hummelinck en Roos 1969); Bottom left: Year 1961 (Hummelinck en Roos 1969); Bottom right: Year 1998 (Wing Group, N.V. 1998/Dec.) This Work is dedicated… In the fondest memory of My beloved friend, Dick Harrison, who encouraged me to believe in myself. God Bless Us Every One…. Lac Bay: Then and Now…A Historical Interpretation of Environmental Change During the 1900s A Site Characterization for Resource Managers and Naturalists Foreword by Boi Antoin, Editor of EXTRA, Bonaire's Daily Newspaper, and respected local historian LAC No tin duda ku Lac ta un sitio, un bahia, ku nos mester trata na protehá i konservá na tur manera. E historia, kultura i naturalesa di Lac hamas por bai pèrdí. Asina importante e lugá aki tabata I ta pa Boneiru. Despues di investigashonnan arkeológiko i ekológiko ku a tuma lugá di Lac, tabata nesesario, na mi konsepto, pa a bini ku un investigashon mas profundo i sientífiko di e área bunita aki.
    [Show full text]
  • The Bisexual Brain: Sex Behavior Differences and Sex Differences in Parthenogenetic and Sexual Lizards
    BRAIN RESEARCH ELSEVIER Brain Research 663 (1994) 163-167 Short communication The bisexual brain: sex behavior differences and sex differences in parthenogenetic and sexual lizards Matthew S. Rand *, David Crews Institute of Reproductive Biology, Department of Zoology, University of Texas at Austin, Austin, TX 78712, USA Accepted 2 August 1994 Abstract The parthenogenetic lizard Cnemidophorus uniparens alternates in the display of male-like and female-like sexual behavior, providing a unique opportunity for determining the neuronal circuits subserving gender-typical sexual behavior within a single sex. Here we report a 6-fold greater [14C]2-fluoro-2-deoxyglucose uptake in the medial preoptic area of C. uniparens displaying male-like behavior in comparison with C. uniparens displaying female-like receptivity. The ventromedial nucleus of the hypothalamus showed greater 2DG accumulation in receptive C. uniparens than in courting C. uniparens. When a related sexual species (C. inornatus) was compared to the unisexual species, the anterior hypothalamus in C. inornatus males exhibited significantly greater activity. Keywords: 2-Deoxyglucose; Anterior hypothalamus; Medial preoptic area; Reptile; Ventromedial hypothalamus Female-typical and male-typical sex behavior are C. inornatus [7,17]. The aims of this study were to known to be integrated by specific hypothalamic nuclei determine: (1) if specific regions in the brains of in the vertebrate brain [6,18,22]. The ventromedial parthenogenetic and gonochoristic whiptail lizards ex- nucleus of the hypothalamus (VMH) and the medial hibit sexually dimorphic metabolic activity, as mea- preoptic area (mPOA) are involved in sexual receptiv- sured by the accumulation of [14C]2-fluoro-2-de- ity in females and both the mPOA and anterior hy- oxyglucose (2DG) in the brain during mating behavior, pothalamus (AH) play an important role in the regula- and (2) if these dimorphisms complement previous tion of copulatory behavior in males [6,18,19,22].
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Endoparasites Infecting Two Species of Whiptail Lizard (<I
    SHORT NOTES SHORT NOTES 1980; Ribas et al., 1995; 1998; Vrcibradic et al., 2000; Menezes et al., 2004). In this study we survey the en- doparasite faunas of two sympatric species of whiptail HERPETOLOGICAL JOURNAL, Vol. 15, pp. 133-137 (2005) lizards from Brazil, Cnemidophorus abaetensis Dias, ENDOPARASITES INFECTING TWO Rocha & Vrcibradic, 2002 and Cnemidophorus ocellifer (Spix, 1824). Cnemidophorus abaetensis is a recently SPECIES OF WHIPTAIL LIZARD described species whose geographic distribution is ap- (CNEMIDOPHORUS ABAETENSIS AND parently restricted to the northern coast of Bahia state C. OCELLIFER; TEIIDAE) IN A (Dias et al., 2002), whereas C. ocellifer is widespread in ‘RESTINGA’ HABITAT OF NORTH- South America south of the Amazonian region, from EASTERN BRAZIL north-eastern and central Brazil to Paraguay, Bolivia and northern Argentina (Vanzolini et al., 1980; Cei, EDUARDO JOSÉ R. DIAS, DAVOR VRCIBRADIC 1993). So far, nothing has been published about the AND CARLOS FREDERICO D. ROCHA endoparasites associated with these two species [in the study of Ribas et al., (1995) regarding nematodes of C. Setor de Ecologia, Instituto de Biologia, Universidade do ocellifer, the species under treatment is actually C. Estado do Rio de Janeiro, Rua São Francisco Xavier littoralis Rocha, Araújo, Vrcibradic & Costa, 2000, 524, 20550-011, Rio de Janeiro, RJ, Brazil which had not yet been formally described at the time We analysed the endoparasite fauna associated with (see Rocha et al., 2000a)]. two species of whiptail lizard (Cnemidophorus A total of 73 lizards (33 C. abaetensis and 40 C. abaetensis and C. ocellifer) from north-eastern Brazil. ocellifer) were collected by the first author with the aid Overall parasite prevalence was relatively low for both of elastic rubber bands at the coastal sand-dune species (18.2% in C.
    [Show full text]
  • Range Extension and Geographic Distribution of the Poorly Known Species, Contomastix Leachei Peracca, 1897
    Check List 9(4): 844–846, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Range extension and geographic distribution of the poorly known species, Contomastix leachei Peracca, 1897 ISTRIBUTIO (Squamata: Teiidae) D 1,2* 1 1 RAPHIC Federico José Arias , Francisco Barrios and Antonio Palavecino G EO G 1 Universidad Nacional de Salta, Instituto de Bio y Geociencias del Noa (IBIGEO). Avenida Bolivia 5150, Salta 4400, Argentina.. N 2 Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Caixa Postal 11.46 1, CEP 05422-970, São Paulo, Brazil. O * Corresponding author. E-mail: [email protected] OTES N Abstract: The records of distribution of Contomastix leachei Peracca, 1897 indicate that this species is endemic of Southeast Jujuy Province, occurring only in the Ledesma Department. Here, we report the southernmost known locality of this species, from Alemanía, Salta Province, Argentina. This record represents the southern limit of distribution of the species. We also provide an updated range map for this species based on data from museum records and field studies. The Contomastix genus was recently proposed by transition”, which is characterized by being drier than the Harvey et al. (2012) for grouping the species of the “Yungas sensu stricto”, with vegetation typical of the semi- formerly called Cnemidophorus lacertoides group (Cei arid Chaco and “Chaco serrano” ecotones (Brown et al. 1993) in a monophyletic cluster. Five species are currently 2002). recognized for this new genus: C. lacertoides, C. leachei, In order to evaluate the taxonomic status of the C.
    [Show full text]
  • 92 IRCF Reptiles & Amphibians • Vol 18, No 2 • Jun 2011 Young Aruba
    92 IRCF ReptIles & AmphIbians • Vol 18, No 2 • JUN 2011 van Buurt Young Aruba Whiptail (Cnemidophorus arubensis) from Aruba sitting on a tonalite block (a type of andesite rock). Distinguishing the sexes is difficult in young and subadult animals. When males become larger, they change color from yellow-brown or light brown to gray and blue. In an animal of this size that would be noticeable, thus the lizard in the picture is very likely a female. teiid Lizards IRCF ReptIles & AmphIbians • Vol 18, No 2 • JUN 2011 93 The Teiid lizards of aruba, curaçao, bonaire (Dutch caribbean), and the Península de Paraguaná (Venezuela) Gerard van Buurt Kaya Oy Sprock 18, Curaçao ([email protected]) photographs by the author. erein I discuss the larger teiid lizards of the genera Ameiva and is about 190 km2, Curaçao 444 km2, Klein Curaçao 1.2 km2, Bonaire 282 hCnemidophorus on the Dutch Leeward Islands (Aruba, Curaçao, and km2 (including Klein Bonaire with 7 km2). At various times during its his- bonaire) and those on the nearby Península de Paraguaná in Venezuela. tory, Paraguaná was an island. In the late Pleistocene or early Holocene, it lizards in the genus Cnemidophorus are generally called “Whiptail Lizards” became connected to the mainland by a narrow strip of dunes. During the or “Racerunners,” whereas those in the genus Ameiva are called “Jungle ice ages, when sea levels were much lower, it was part of the South American Runners.” The genera differ in the number of rows of ventral scales and in mainland. Aruba might at one time have been connected to the mainland; the structure of the bones in the tongue.
    [Show full text]
  • Aspidoscelis Laredoensis B) and Both Gonochoristic Progenitors (A
    Herpetological Conservation and Biology 11(1):29–39. Submitted: 10 August 2015; Accepted: 5 February 2016; Published: 30 April 2016. RARE SYNTOPY OF THE DIPLOID PARTHENOGENETIC LIZARD (ASPIDOSCELIS LAREDOENSIS B) AND BOTH GONOCHORISTIC PROGENITORS (A. GULARIS AND A. SEXLINEATA) IN TEXAS, USA 1,4 2 3 JAMES M. WALKER , JAMES E. CORDES , AND MARK A. PAULISSEN 1Department of Biological Sciences. University of Arkansas, Fayetteville, Arkansas 72701, USA 2Division of Sciences and Mathematics, Louisiana State University Eunice, Louisiana 70535, USA 3Department of Natural Sciences, Northeastern State University, Tahlequah, Oklahoma 74464, USA 4Corresponding author, e-mail: [email protected] Abstract.—We surveyed several sites in Dimmit County, Texas, and provide the first records for Aspidoscelis laredoensis (Laredo Striped Whiptail) clonal complex B therein. Site D-5 (= Texas FM 2644 West), about 31 km (straight line distance) east of the Rio Grande in chronically disturbed habitat bordering Texas FM Hwy 2644, is the most distant point from the river known for this hybrid-derived diploid parthenogenetic lizard. It is also the only site in the range of clonal complex B, which includes certain border areas of Texas and the Mexican states Coahuila and Tamaulipas, where large numbers of A. laredoensis B have been observed in syntopy with substantial numbers of its gonochoristic progenitors, A. gularis (Texas Spotted Whiptail) and A. sexlineata (Six-lined Racerunner). Aspidoscelis gularis is the only whiptail species present at all of the other five sites in Dimmit County featured herein, with no other congener at D-1 (= Carrizo Springs) and D-2 (= Valley Wells), with A. laredoensis clonal complex A at D-3 (= Catarina), and with A.
    [Show full text]
  • AMPHIBIANS and REPTILES of ORGAN PIPE CACTUS NATIONAL MONUMENT Compiled by the Interpretive Staff with Technical Assistance from Dr
    AMPHIBIANS AND REPTILES OF ORGAN PIPE CACTUS NATIONAL MONUMENT Compiled by the Interpretive Staff With Technical Assistance From Dr. J . C. McCoy, Carnegie Museum, Pittsburg, Pa. and Dr. Robert C. Stebbins, University of California, Berkeley Comm:m Names Scientific Names Amphibians Class Amphibia Frogs ~ Toads Order Sa.;J.ienta Toads Family Bufonidae Colorado River toad Bufo alvaris (s) Great plains toad nuro co~tus (s) Red- spotted toad Biil'O puncatus (s) Sonora green toad Buf'O retiformis Spadefoot Toads Family Pelobatidae Couch's spadefoot Scaphiopus couchi (8) Reptiles Class Reptilia Turtles Order Testudinata Mud Turtles and Their Allies Family Chelydridae Sonora mud turtle Kinosternon sonorien8e (s) Land Tortoises and Their Allies Family Testudinjdae - -.;.;.;.;;;.;;;;;..--- Desert tortoise Gopherus agassizi Lizards and Snakes Order Squamata Lizards Suborder Sauria Geckos Family Gekkonidae Desert banded gecko Coleoqyx ! . variegatus (s) Iguanids Family Iguanidae Arizona zebra- tailed lizard Callisaurus draconoides ventralis (s) Western collard lizard Crotaphytus collaris bailer) ( s) Long-nosed leopard lizard Crotaphytus ! . wislizeni (s Desert iguana ~saurus d. dorsalis (s) Southern desert horned lizard osoma p!atyrhinos calidiarum Regal horned lizard Phrynosoma solara ( s) Arizona chuckwalla Sauromalus obesus tumidus (s) Desert spi~ lizard SceloEorus m. magister (s) Colorado River tree lizard Urosaurus ornatus symmetricus (s) Desert side-blotched lizard ~ stansburiana stejnegeri (s) Teids Family Teidae Red-backed whiptail Cnemidophorus burti xanthonot us ~) Southern whiptail Cnemidophorus tigris gracilis (6) Venomous Lizards Family Heloderrr~tidae Reticula.te Gila m:mster Heloderma ! .. suspectum (6) Snakes Suborder Serpentes Worm Snakes Family Leptotyphlopidae Southwestern blind snake Leptottphlops h. humilis (s) Boas Family Boidae Desert rosy boa Lichanura trivirgata gracia (s) Colubrids Family Colubridae Arizona glossy snake Arizona elegans noctivaga c.
    [Show full text]
  • SOUTH AMERICAN LIZARDS in the COLD Made and Many Lots Of
    59.81, 1 (8) 59.81, 1.07 (74.71) Article VII.-SOUTH AMERICAN LIZARDS IN THE COLD LECTION OF THE AMERICAN MUSEUM OF NATURAL HISTORY BY CHARLES E. BURT AND MAY DANHEIM BURT CONTENTS FIGURES 1 TO 15 PAGE INTRODUCTION............................................. ........... 227 SUMMARY OF TAXONOMIC ALTERATIONS...................................... 228 LIST OF THE SPECIES OF SOUTH AMERICAN LIZARDS IN THE COLLECTION OF THE AMERICAN MUSEUM OF NATURAL HISTORY.......................... 232 SYSTEMATIC DISCuSSION OF THE LIZARDS OF THE FAMILIES REPRESENTED IN THE COLLECTION................................................... 238 Amphisbaenidal ................................................ 238 Anguida ........................................................ 241 Gekkonida ................................................... 243 Iguanide ........................................................ 254 Scincidle....................................................... 299 Teiide.......................................................... 302 LITERATURE CITED................................................. 380 INDEX..... 387 INTRODUCTION In the past, particularly during the last twenty years, many mem- bers of the scientific staff of The American Museum of Natural History have maintained an active interest in the fauna of South America. As a consequence of this, numerous expeditions and exchanges have been made and many lots of amphibians and reptiles have accumulated. The importance of these specimens will be evident to those who study the papers based upon
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 29 (January 2019), 23-36 Herpetological Journal FULL PAPER https://doi.org/10.33256/hj29.1.2336 Published by the British A new species of Contomastix (Squamata, Teiidae) Herpetological Society supported by total evidence, with remarks on diagnostic characters defining the genus Mario R. Cabrera1,5, Santiago Carreira2, Diego O. Di Pietro3 & Paula C. Rivera4,5 1Museo de Zoología, Universidad Nacional de Córdoba, Argentina 2Laboratorio de Sistemática e Historia Natural de Vertebrados, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UdelaR, and Sección Herpetología, Museo Nacional de Historia Natural, Montevideo, Uruguay 3Sección Herpetología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina 4Universidad Nacional de Chilecito, La Rioja, Argentina 5Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA), CONICET/UNC, Córdoba, Argentina Formerly Cnemidophorus was thought to be the most speciose genus of Teiidae. This genus comprised four morphological groups that were later defined as four different genera, Ameivula, Aurivela, Cnemidophorus and Contomastix. The last appears as paraphyletic in a recent phylogenetic reconstruction based on morphology, but monophyletic in a reconstruction using molecular characters. Six species are allocated to Contomastix. One of them, C. lacertoides, having an extensive and disjunct geographic distribution in Argentina, Uruguay and Brazil. Preliminary analyses revealed morphological differences among its populations, suggesting that it is actually a complex of species. Here, we describe a new species corresponding to the Argentinian populations hitherto regarded as C. lacertoides, by integrating morphological and molecular evidence. Furthermore, we demonstrate that the presence of notched proximal margin of the tongue is a character that defines the genus Contomastix.
    [Show full text]